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Complex and real unconventional Bose-Einstein condensations in high orbital bands
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We perform a theoretical study on the recently observed unconventional Bose-Einstein condensations (UBEC)
in the high bands of optical lattices. These exotic states are characterized by complex-valued condensate wave
functions with nodal points or real-valued wave functions with nodal lines; thus, they are beyond the “no-
node” theorem of conventional BECs. A quantum phase transition is driven by the competition between the
single-particle band and interaction energies. The complex UBECs spontaneously break time-reversal symmetry,

exhibiting a vortex-antivortex lattice structure.
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Quantum wave functions are generally complex-valued.
However, the usual ground state wave functions of bosons
are very restricted because they are positive definite, as stated
in the “no-node” theorem [1]. This theorem applies under
very general conditions: the kinetic energy is unfrustrated
(e.g. the Laplacian type), the single particle potential can
be arbitrary, and the two-body interaction depends only on
coordinates. Mathematically, it is a direct consequence of
the Perron-Frobenius theorem of matrix analysis [2]. This
theorem implies that time-reversal (TR) symmetry cannot
be spontaneously broken in various ground states of bosons,
including superfluid, Mott-insulating, and supersolid states.

The “no-node” theorem, however, only applies to the
ground state and hence not to metastable excited states of
bosons. This opens up a possibility for “unconventional”
states of bosons beyond the “no-node” theorem [3]. Similarly
to unconventional superconductors, in unconventional Bose-
Einstein condensation (UBEC), the condensate wave functions
form nontrivial representations of the lattice symmetry groups.
However, a major difference exists. Cooper pairs have the
center-of-mass motion and the relative motion between the
two electrons of the pair. In unconventional superconductors,
itis the relative motion that is nontrivial. The degree of freedom
of the relative motion does not exist in the single-boson BEC.
In UBECsSs, the condensate wave functions are nontrivial.

Considerable efforts have been made to study unconven-
tional states of bosons, both experimentally and theoretically.
Among the most exciting achievements are the realizations of
metastable excited states of bosons in high orbital bands [4-7],
which lead to the opportunity to study UBEC [8-15] and other
exotic properties [16-21]. Below are some recent experimental
results. Sebby-Strabley et al. succeeded in pumping a large
fraction of bosons into the excited bands in a double-well
lattice [4]. Mueller et al. observed the quasi-one-dimensional
phase coherence pattern by exciting bosons into the p orbital
bands in a cubic lattice [5]. Important progress was made by the
group of Hemmerich [6]: UBEC in sp-hybridized orbital bands
were realized in a checkerboard-like lattice, which allows
the establishment of fully cross-dimensional coherence. More
recently, UBEC in even higher orbital bands has been observed
by the same group [7].

In this paper, we present a theoretical study of UBEC ob-
served in the second- or first-excited band of the checkerboard
optical lattice. This band is of a hybridized nature between the
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s orbitals of the shallower sites and the p orbitals of the deeper
sites. The lattice asymmetry favors a real-valued condensate
wave function with nodal lines, while interactions favor a
complex-valued one with nodal points. By solving the Gross-
Pitaevskii (GP) equation for these metastable condensates,
we find that tuning the lattice asymmetry drives the phase
transition between these two types of UBEC, in a good
agreement with experimental observations.

We now introduce the optical lattice employed in the
experiment [6]. Each unit cell consists of two sites with
different depths (denoted A and B below) as shown in Fig. 1(a).
(A similar lattice potential with different parameters is plotted
in Ref. [6]). The lattice is constructed by the interference
pattern of phase-coherent laser beams along the +x and +y
directions generated from a single laser through beam splitters
and reflectors. The optical potential reads

ik,x —iklx

\%
Vix,y) = —IOI(E cosa + ysina)e’™* + eZe

1 nef3(e 4 eemihn)2, (1)

where y and Z are unit vectors describing light polarizations, k;
is the laser wave vector,e < 1 andn < 1 describe the imperfect
reflection and transmission efficiencies, respectively, 6 is the
phase difference between beams along the x and y directions,
and « is used to tune the lattice asymmetry by rotating the light
polarization out of the Z direction.

The point group symmetry of this lattice is analyzed below.
We start from the ideal case of € = 1 witha = 0° and 8 = 90°,
for which the A and B sites are equivalent. For n < 1, the lattice
has the reflection symmetries with respect to both the x and
y axes; thus, the lattice is orthorhombic. Next, we keep € = 1
and o = 0° but set § away from 90°. In this case, the unit
cell includes both A and B sites. The primitive lattice vectors
are ag(é; & é,), where ag = m/k; as shown in Fig. 1(b). The
optical potential becomes V = — %2 (cos 2k;x + n* cos 2k;y +
4n cos 6 cos k;x cos k;y). The quantity 6 controls the potential
difference between A and B sites. The point group symmetry
remains orthorhombic.

Now we move to the realistic case of € < 1. The
unit cell remains double-well shaped and the primitive
lattice vectors are the same. However, the orthorhombic
symmetry is broken and there is no point group sym-
metry for general values of parameters. This asymmetry
can be partially compensated by setting g = cos™' €. We
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FIG. 1. (Color online) (a) Optical lattice with reflection symmetry
with respect to the x axis and parameter values: n = 0.95, ¢ = 0.81,
0 =954°, ¢ =y =36° and V, = 6.2E,. The A sites have deeper
potential depth than the B sites. (b) Basis vectors of double-well
lattice.

denote this configuration as ‘“symmetric” and the other
ones with o # ap as “asymmetric.” The symmetric lat-
tice potential becomes V = —%e(e cos 2k;x + n? cos 2k;y) —
Vone cos kjx[cos(k;y + 60) + €? cos(k;y — 6)], which has re-
flection symmetry with respect to the x axis but not with respect
to the y axis.

Next, we calculate the band
ciprocal lattice vectors are defined as Gm n = mb1 +
ngz with 51,2 = (£%,%). The single-particle Hamiltonian
reads Hy = V2 /2M) + V(r), where M is the boson
mass. Using the plane wave bas1s the diagonal matrix
elements are (k + G,,,,,|H0|k + Gmn) E {lak,/7m + (m —
m? + [aky /7 + (m + n)]?}, where E, = h*n?/(2Ma?)is the
recoil energy. The off-diagonal matrix elements read

structures. The re-

- - V. ) )
(KIHolk + G110) =~ me(cosae™ + 1),

- > Vi . )
(k|Holk + Go,+1) = —Zon(cos aet? 4 2T,

v )
(k|Holk + Gx1,51) = —Zoe cosa,

- - - V
(k|Holk + G4y 41) = —Zoenz cos a.

We focus on the second band into which bosons are pumped
[6] There are four points in the Brillouin zone (BZ); namely,
=(0,0), K;» = (:E:Za 2 ), and M = ( ) at which the
Bloch wave functions are TR invariant and thus real valued.
The band spectra are symmetric with respect to these points,
which means that they are local energy extrema or saddle
points. For the symmetric lattice with @ = «y, the second band
has doubly degenerate energy minima of the states g, and
Yk, located at K; and K», respectively. For the asymmetric
case, the degeneracy between vk, and v, is lifted. For
o < oy (@ > ap), K; (K,) becomes the band minimum. The
energy spectrum of o = 0 is shown in Figs. 2(a) and 2(b) (a
similar energy spectrum with different parameters is plotted in
Ref. [6]).

The real-space distributions of g, and g, are also
calculated. Their nodal lines pass the centers of the deeper
sites of A. Thus, the orbital component on the A sites is p type
and that on the shallower sites of B is s type. In fact, the p
orbital configurations of g, (7) and Yk, (F)

in the A sites are actually not exactly along the directions
of &, & é, because of the lack of tetragonal symmetry. This
point is mostly clear in the case of strong potentials so that we
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FIG. 2. (Color online) (a) Energy spectrum for second band. The
parameter values are the same as for Fig. 1 except that o = 0°. (b)
Spectrum of (a) along line from (0, %) to (X,0).
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can define local orbitals on each site. Even for the symmetric
lattice, the p, and p, orbitals on the A sites can be defined
according to their parities under reflection with respect to
the x axis. However, they are nondegenerate. The orbital
components of ¥k, (F) and 1//1(2(7) are nearly the same on
A sites; that is, mostly the lower-energy p orbital is slightly
hybridized with the higher one. The orthogonality of these two
states comes from their different lattice momenta.

Interactions determine the configurations of UBEC in the
presence of degenerate band minima. Any linear superposition
among them gives rise to condensate wave functions with
the same kinetic energy. However, interactions break this
degeneracy. Previous studies on p orbital BECs based on
tight-binding models predicted linear superpositions between
two Bloch wave functions at degenerate band minima with a
phase difference 7. Such a condensate breaks TR symmetry
spontaneously [3,8]. Bosons on p orbital sites aggregate into
the p, & ip, states to reduce their repulsive interaction energy.
This is a result of the second Hund rule: complex p orbitals are
spatially more extended than the real orbitals and thus bosons
have more room to avoid each other.

The optical potential in the current experiment is shallow;
thus, the system is in the weak-correlation regime [6]. Instead
of the tight-binding model, we use the GP equation. Because of
the absence of the lattice potential along the z axis, we neglect
the z dependence of the condensate wave function. We only
consider its distribution W(#) in the xy plane. It is normalized
as & [ d’r|W(#)> = 1 where [’ d°7 integrates over one unit
cell with the area of = 2a3. The GP equation reads

z%z

oM

+ V(F) + gﬂol‘lf(7)|2} V() =EV(F), (3)

where pg = Ny/V is the average three-dimensional (3D) den-
sity, with Ny being the total boson number in the condensate
and V being the 3D volume of the system. g is the s-wave
scattering interaction parameter. In the calculations below,
various values of interaction parameters gpo are used from
0 up to E,, which is of the same order of magnitude as the
bandwidth. For this intermediate interaction, the GP equation
is known to provide a good description of the system.
Although Eq. (3) looks the same as the usual GP equation,
the marked difference is that W(¥) is not the ground state
condensate but the metastable one belonging to the second
band. The nonlinearity of the GP equation allows mixing
between different Bloch wave states. Let us start from
the symmetric lattice with o = ¢p. Equation (3) is solved
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FIG. 3. (Color online) Distributions of (a) phase and (b) density
patterns of complex UBEC. The parameter values are the same as
in Fig. 1, except that goy = 0.6E, and o = 36°. The vortex and
antivortex cores are located in the centers of A sites.
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self-consistently as follows: We define the renormalized poten-
tial as V() = V(7) + gpo| ¥ (¥)|? and solve the correspond-
ing renormalized band structure. Then the condensate wave
function is optimized to minimize the total energy, which in
turn determines V.. The renormalized band structure is similar
to the free band structure, which still has two degenerate band
minima at K; and K,. We define the condensate wave function
as

W(F) = cos 8Yk, (F) + €' sin 8y, (7). 4)
The total energy reaches a minimum at § = 7 and ¢ = +7.

Notice that the point ¢ = 0 also represents a metastable
stationary state which exhibits nontrivial dynamical instability
[22-24], which is beyond the scope of our paper. These com-
plex condensate wave functions only have nodal points, while
the real ones ¥, and ¥k, have nodal lines. The complex ones
are spatially more uniform and thus are favored by interactions.
We plot the phase and density patterns of this condensate in
Fig. 3 , which exhibit a vortex-antivortex lattice structure.
The vortex and antivortex cores are located alternatively at
the centers of A sites, where the antiferromagnetic order of
orbital angular momentum develops. For every closest-four B
sites, their phases wind around the central A site following the
same vorticity. This is similar to the case of the tight-binding
models [3,8]. The Bragg peaks in the time of flight (TOF)
spectra are located at (m + 2)b] + nbz and mbl + @+ 2)b2
as observed in the experlment [6]. In particular, the four peaks
of £1 b1 2= (= o 2ao) are strongest with equal intensities,
as shown in Fig. 4(a).

Now we move to the asymmetric lattice whose free
band structure minimum is nondegenerate. The complex
condensates are favored by interactions and thus should be
stable at sufficiently weak asymmetries. Certainly, at large
asymmetries, the real condensate wins due to the gain of

IO

FIG. 4. (Color online) Density distribution in the time-of-flight
spectrum for (a) complex condensate in the symmetric case (¢ =
36.0°), (b) complex condensate in the asymmetric case (@« = 35.5°),
and (c) real condensate (¢ = 34.5°). Other parameter values are the
same as for Fig. 1, except for .
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FIG. 5. (Color online) (a) Phase diagram as a function of o and
interaction strength gp,. Other parameters values are the same as
for Fig. 2. (b) Condensate fractions of Yk, in the complex UBEC
W = cos 8k, £isindyg,. The parameter values are the same as
for Fig. 1 except for « and gpy = 0.6E,.

band energy. This picture is explicitly confirmed by the phase
diagram calculated by the GP equation. As shown in Fig. 5(a),
for a given value of the interaction strength gpy, the complex
condensate in the form of Eq. (4) is stable in a finite parameter
range from «; to «p; beyond this regime the condensate
changes to the real one, and the TOF spectra of such a real
condensate only contain peaks of (m + %)bl or (m + %)bz, as
shown in Fig. 4(c)

In the complex condensate, the relative phase ¢ between
Yk, and Yk, is always +%; that is, ¥ and W* are degenerate as
TR partners; § is asymmetry dependent. The spatial asymmetry
of |W(7)|?> depends on that of the bare potential V. However,
Ve, a combination of V and |W|?, becomes symmetric.
Without loss of generality, W(¥) is expanded in terms of
two orthonormal real wave functions v () and ¥ () in the
same way as in Eq. (4) by replacing ¥k, (Y¥k,) with ¥
(). Apparently, both W(¥) and W*(¥) satisfy Eq. (3) and
yield the same V.. The corresponding renormalized single
particle Hamiltonian —#%V?/(2M) + Vi has degenerate band
minima v; and vr,. However, please note that the superposition
principle does not apply to the nonlinear GP equation: ¥; and
Y, are not solutions to Eq. (3). W ()% is also asymmetric
depending on the asymmetry of the bare potential V. The TOF
spectra still exhibit four dominant peaks at :l:(2a e =) and
+(— 3ac* 2ag =), as shown in Fig. 4(b). The relative intensities
of these two pairs of peaks depend on the lattice asymmetry,
which can be reflected by the condensation fractions yk, in the
complex condensate, as plotted in Fig. 5(b). An observation
of the asymmetric peaks at :I:%l;l,z for oy < a < ay would
provide supporting evidence for the complex condensates. The
TOF spectra lack phase information; thus, the observation of
the symmetric peaks +1 bl 2 at ag [6] could be interpreted as
the phase separation of real condensates of ¥k, or Y,, or an
incoherent mixing between them. However, in these scenarios,
the lattice asymmetry lifts the degeneracy and only leads to
one pair of peaks. Even two condensates could coexist forming
domains; the condensate fraction of g, in the complex
condensate should not follow that plotted in Fig. 5(b).

For a better understanding of phase transitions between real
and complex UBEC, we construct the Ginzburg-Landau (GL)
free energy as

F = —r|Wg > = r|Wg " + g1|Wk,[* + g2 Vg, |*
+ 83| Wk, PV | + ga(Wk, Wi, Wk, Wk, +He),  (5)
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FIG. 6. (Color online) Phase diagram as a function of r, and r,
predicted by Eq. (6) for (a) g > O and (b) g < O.

where Wy, = Yk, e'? and Wg, = ¥k, e describe the con-
densate order parameters at K| and K, respectively; 6; and 6,
are the phases of the condensates of Wk, and W, , respectively,
and ¥, and v, are real as explained before. Although W, and
W, do not couple at the quadratic level due to the requirement
of translational symmetry, they do couple at the quartic level
as in the g4 term because :tZ(I} 1 — I}Z) equals reciprocal
lattice vectors. g4 is positive for repulsive interactions, which
favors the relative phase difference ) — 6, = +7; thus, the
free energy in Eq. (5) can be reduced to

F=—ryg, —nVg, + Vs, + oV, + 8V ¥g,. (6

in which g = g3 —2g4. We define G =4g,8, — g> and
81,82,G > 0 as required by the thermodynamic stability
condition. In the superfluid regime, the complex UBEC is
characterized by the nonzero values of both Wk, and Wg,,
while the real BECs correspond to one of these values being
zero. Without loss of generality, we fix g;,8», and g and plot
the phase diagram of the superfluid regime as a function of
ry and r,. As shown in Fig. 6 , for g > 0, the complex BECs

2 i
occur when %2 << %, where both 7| and r, are positive.
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It is interesting to notice that, for g < 0, the complex BEC can
exist even if one channel is off critical (r; < Oorr, < 0), which
means that, in this case, the complex BEC is purely induced
by interaction. A similar phase diagram has been proposed in
a different context about a p-wave resonant Bose gas [25,26].

As the interaction increases, the system is brought into
the Mott insulating regime. Nevertheless, at least in the
weakly insulating regime, the suppression of the superfluidity
ordering is due to phase fluctuations, and the magnitudes
|Wk,| and |Wg,| remain nonzero. Although 6, and 6, are
disordered such that (Wg,) = (Vg,) = 0, their relative phase
0 —6, = :I:%. This indicates a TR-breaking order with a
bilinear form of Wk, and W, as L = i(Vg Wk, — Vi Vk,)
in the Mott insulating state. Its physical meaning here remains
the staggered circulating currents; that is, these exotic Mott
insulating states preserve the antiferromagnetic orbital angular
momentum (OAM) order of the complex BECs but not the
global phase coherence.

In summary, we studied the UBEC observed in the high
orbitals bands reported in Ref. [6]. The unconventional
condensate wave functions can be real and TR invariant with
nodal lines, or complex breaking TR symmetric with nodal
points. In both cases, translational symmetry is broken due to
the nonzero condensation wave vectors; thus, these UBECs
can be considered as unconventional supersolid states. The
interplay between lattice asymmetry and interactions drives
the transition between them.
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