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Condensate fraction of a resonant Fermi gas with spin-orbit coupling in three and two dimensions
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We study the effects of laser-induced Rashba-like spin-orbit coupling along the Bardeen-Cooper-Schrieffer–
Bose-Einstein condensate (BCS-BEC) crossover of a Feshbach resonance for a two-spin-component Fermi gas.
We calculate the condensate fraction in three and two dimensions and find that this quantity characterizes the
crossover better than other quantities, like the chemical potential or the pairing gap. By considering both the
singlet and the triplet pairings, we calculate the condensate fraction and show that a large-enough spin-orbit
interaction enhances the singlet condensate fraction in the BCS side while suppressing it on the BEC side.
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I. INTRODUCTION

Over the past several years, the predicted crossover [1–3]
from the Bardeen-Cooper-Schrieffer (BCS) state of weakly
bound Fermi pairs to the Bose-Einstein condensate (BEC) of
molecular dimers has been observed by several experimental
groups [4–9]. In two experiments [7,9] the condensate fraction
of Cooper pairs [10], which is directly related to the off-
diagonal long-range order of the two-body density matrix
of fermions [11,12], has been studied with two hyperfine
component Fermi vapors of 6Li atoms in the BCS-BEC
crossover. The experimental data are in quite good agreement
with mean-field theoretical predictions [13,14] and Monte
Carlo simulations [15] at zero temperature, while at finite
temperature beyond-mean-field corrections are needed [16].
Recently, the condensate fraction in the BCS-BEC crossover
for a two-dimensional (2D) Fermi gas [17], and for a three-
spin-component Fermi gas with SU(3) symmetry [18], has
been theoretically investigated. Remarkably, last year 2D
degenerate Fermi gases were experimentally realized for ultra-
cold atoms in a highly anisotropic disk-shaped potential [19].

Quite recently, artificial spin-orbit coupling has been
obtained in neutral bosonic systems [20], where the strength
of the coupling can be controlled optically, and it has been
suggested that the same techniques can be used with ultracold
fermions [21,22]. These results have stimulated the theoretical
investigation of spin-orbit effects with Rashba [23] and
Dresselhaus [24] terms in the BCS-BEC crossover [25–30].
In particular, very recently and independently, several authors
have analyzed the evolution from BCS to BEC superfluidity in
the presence of spin-orbit coupling for a 3D uniform Fermi
gas [25–28] and in the 2D case by use of a perturbative
approach [29]. Nevertheless, those papers did not consider
the condensate fraction of Fermi pairs.

In the present paper we calculate the chemical potential, the
pairing gap, and the condensate fraction along the BCS-BEC
crossover both in 3D and 2D as a function of spin-orbit
coupling. We show that the two contributions—i.e., those
related to the singlet and triplet pairings—to the condensate
fraction, separately, characterize the crossover better than
the other quantities. Remarkably, a large-enough spin-orbit
interaction enhances the singlet contribution to the condensate
fraction in the BCS side while suppressing it on the BEC
side. The triplet contribution to the condensate grows by
increasing the spin-orbit coupling and is larger close to the

crossover. On the contrary, the chemical potential and the
pair function exhibit no peculiarities along the crossover.
Moreover, we find that when the Rashba velocity becomes
of the order of the Fermi velocity, there is a value for the
dimensionless interaction strength y = 1/(kF as), where kF

denotes the Fermi linear momentum and as the interatomic
s-wave scattering length, for which the singlet condensate
fraction no longer depends on spin-orbit coupling. This nodal
point can be promoted as the real point of the crossover. What
is observed in three dimensions occurs also in two dimensions
where the nodal point occurs when the binding energy εB is
almost equal to the Fermi energy εF , i.e., εB ≈ εF . In 2D the
condensate fraction approaches a value of 1 only for extremely
large values of the scaled binding energy εB/εF .

II. THE MODEL

Let us consider the following Hamiltonian:

H = H0 + HI , (1)

where H0 is the single-particle Hamiltonian in the presence of
Rashba and Dresselhaus terms [23,24], namely

H0 =
∑

k

ψ(k)†
{

h̄2k2

2m
+ h̄[vR(σxky − σykx)

+ vD(σxky + σykx)]

}
ψ(k), (2)

where vD and vR are, respectively, the Rashba and Dresselhaus
velocities; σx and σy denote the Pauli matrices in the x and
y directions; and ψ(k) is the spinor ψ(k) = (ψ↑(k),ψ↓(k))T .
HI is the interaction term given by

HI = − g

V

∑
kk′q

ψ
†
↑(k + q)ψ†

↓(−k)ψ↓(−k′ + q)ψ↑(k′), (3)

where g > 0, which corresponds to attractive interaction. After
defining the order parameter describing the particle pairs,
� = (g/V )

∑
k〈ψ↓(−k)ψ↑(k)〉, where V is the volume, at

the mean-field level we can decouple the interaction, finding

HI = V
|�|2
g

−
∑

k

(�∗ψ↓(−k)ψ↑(k) + �ψ
†
↑(k)ψ†

↓(−k)).

(4)
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Introducing the following multispinor �(k) = (ψ↑(k),
ψ

†
↓(−k),ψ↓(k),ψ†

↑(−k))T , one can resort to standard path
integral formulation at finite temperature obtaining, within
a saddle point approximation and after integrating over the
fermions [31], the thermodynamic potential

� = V
|�|2
g

− 1

2β

∑
k ω

Tr ln G−1 +
∑

k

ξk, (5)

where β = 1/(kBT ), where kB denotes the Boltzmann constant
and T the absolute temperature, and G−1 is a matrix on the
basis of �(k) which reads

G−1(k,ω) =

⎛
⎜⎜⎜⎝

iω + ξk −� γ (k) 0

−�∗ iω − ξk 0 −γ (−k)

γ ∗(k) 0 iω + ξk �

0 −γ ∗(−k) �∗ iω − ξk

⎞
⎟⎟⎟⎠

(6)

with γ (k) = h̄vR(ky + ikx) + h̄vD(ky − ikx) and ξk = h̄2k2/

2m − μ. After summing over the Matsubara frequencies [31]
the thermodynamic potential becomes

� = V
|�|2
g

− 1

2β

∑
k

4∑
i=1

ln(1 + e−βEi (k)) +
∑

k

ξk, (7)

where E1(k) =
√

(ξk − |γ (k)|)2 + |�|2, E2(k) =√
(ξk + |γ (k)|)2 + |�|2, E3 = −E1, and E4 = −E2. From

the thermodynamic formula N = − ∂�
∂μ

we obtain the equation
for the number of particles

N =
∑

k

{
1 − tanh (βE1(k)/2)

ξk − |γ (k)|
2E1(k)

− tanh (βE2(k)/2)
ξk + |γ (k)|

2E2(k)

}
. (8)

The gap equation is, instead, given by

V

g
= 1

4

∑
k

[
tanh (βE1(k)/2)

E1(k)
+ tanh (βE2(k)/2)

E2(k)

]
, (9)

and, finally, the condensate number [12,13] reads

NC = N0 + N1, (10)

where

N0 =
∑

k

|〈ψ↑(k)ψ↓(−k)〉|2

= |�|2
16

∑
k

[
tanh (βE1(k)/2)

E1(k)
+ tanh (βE2(k)/2)

E2(k)

]2

is the singlet contribution to the condensate, with total spin 0,
whereas

N1 =
∑

k

|〈ψ↑(k)ψ↑(−k)〉|2

= |�|2
16

∑
k

[
tanh (βE1(k)/2)

E1(k)
− tanh (βE2(k)/2)

E2(k)

]2

is the triplet one, with total spin 1.

We are interested in the low temperature regime where the
condensate is quite large. Quantitatively we can restrict our
study to the zero temperature limit, or, in three dimensions,
when at least 2kBT 	 �, with � now supposed to be a real
number. The zero temperature limit is also mandatory for the
two dimensional case. In the equations above we have therefore
simply tanh(βEi(k)/2) → 1.

III. THREE DIMENSIONS

Let us consider first the three-dimensional case. Hereafter,
we proceed in the same spirit of Ref. [32], generalizing the
calculation including the spin-orbit coupling. After rescaling
the momenta

k =
√

2m�

h̄
q (11)

and summing in the continuum (
∑

k → V
(2π)3

∫
d3k) we get,

for the number of particles

n = N

V
= (2m�)3/2

(2πh̄)3
I 3d
N (x0,x1,x2), (12)

where

I 3d
N (x0,x1,x2) =

∫
d3q

[
1 − 1

2

∑
r=±1

×
q2 − x0 + r

√
x2

1q2
x + x2

2q2
y√(

q2 − x0 + r

√
x2

1q2
x + x2

2q2
y

)2 + 1

]
,

(13)

with dimensionless parameters defined as follows:

x0 = μ

�
(14)

x1 = 2m
(vR − vD)2

�
(15)

x2 = 2m
(vR + vD)2

�
. (16)

In the continuum limit, due to the choice of a contact
potential, the gap equation (9) diverges in the ultraviolet. After
regularization [2] the gap equation reads

1

g
= − m

4πh̄2as

+ 1

V

∑
k

1

2(ξk + μ)
, (17)

where as is the s-wave scattering length between fermions
with different spin component. In this way we get

y ≡ 1

kF as

= 1

31/3π5/3

Ias
(x0,x1,x2)

I 3d
N (x0,x1,x2)1/3

, (18)

where

Ias
(x0,x1,x2) =

∫
d3q

[
1

q2
− 1

2

∑
r=±1

× 1√(
q2 − x0 + r

√
x2

1q2
x + x2

2q2
y

)2 + 1

]
.

(19)
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Finally, the condensate densities are given by

ns = Ns

V
= (2m�)3/2

16(2πh̄)3
I 3d
Ns(x0,x1,x2), (20)

where s = 0,1, and

I 3d
Ns

(x0,x1,x2) =
∫

d3q

⎡
⎢⎢⎣∑

r=±1

× rs√(
q2 − x0 + r

√
x2

1q
2
x + x2

2q
2
y

)2
+ 1

⎤
⎥⎥⎦

2

.

(21)

We can write also the gap and the chemical potential in terms
of the Fermi energy εF = h̄2k2

F /(2m) = h̄2/(2m)(3π2n)2/3,
therefore

�

εF

= 4

(
π

3

)2/3

I 3d
N (x0,x1,x2)−2/3, (22)

μ

εF

= 4

(
π

3

)2/3

x0I
3d
N (x0,x1,x2)−2/3 . (23)

Finally, the spin-orbit velocities can be written in terms of the
Fermi velocity

(vR ∓ vD)2

v2
F

=
(

π

3

)2/3

x1,2 I 3d
N (x0,x1,x2)−2/3. (24)

We are now in the position to express the two contributions to
the condensate fraction

2ns

n
= 1

8

I 3d
Ns(x0,x1,x2)

I 3d
N (x0,x1,x2)

, (25)

the chemical potential, Eq. (23), and the gap, Eq. (22), in terms
of the scattering parameter y, Eq. (18). This is guaranteed, at
least heuristically, by the fact that for any point in the space of
dimensionless parameters, (x0,x1,x2), there are single values
for y, 2ns/n, μ/εF , and �/εF . For x1 = x2 = 0, namely
without spin-orbit couplings, we indeed recover previous
analytic results reported in Ref. [32].

The results shown here in the figures are obtained fixing
x1 = x2, namely when only Rashba (vD = 0) or only Dres-
selhaus (vR = 0) are present. The other special case with
vR = vD is actually less interesting since in that case the
condensate fraction seems to be always suppressed. On the
contrary, with only Rashba term (or only Dresselhaus) we
observe (see Fig. 1) that, turning on the spin-orbit coupling,
the singlet condensate fraction increases in the BCS regime,
whereas it decreases in the BEC regime. In particular, for
vR � vF the condensate fraction at y ≈ 0.2, slightly above the
unitarity, which is 2n0/n ≈ 0.7, does no longer depends on
the spin-orbit coupling; see Fig. 2. On the left (BCS side)
of this point the singlet condensation is improved by the
spin-orbital interaction, whereas on the right (BEC side) this
condensation is suppressed. The triplet condensate fraction,
instead, decreases in both the BCS and BEC limits, whereas
it is sizable close to the crossover, exhibiting a nonmonotonic
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FIG. 1. Singlet (n0, upper curves) and triplet (n1, lower curves)
condensate fractions of the 3D Fermi gas as functions of the
dimensionless interaction strength y = 1/(kF as) for different values
of Rashba velocity, (vR/vF )2 = 0 (solid line), 0.5 (long-dashed line),
1 (short-dashed line), 2 (dotted line), and 4 (dashed-dotted line).

behavior. On the contrary, the chemical potential μ (upper
panel of Fig. 3) is shifted toward negative values in both the
regimes, while the pair function � (lower panel of Fig. 3 ) is
enhanced both in the BCS side and in the BEC one, although,
in the latter, the enhancement is less pronounced. These last
quantities, therefore, unlike the condensate fraction, exhibit no
peculiarities across the crossover.

IV. TWO DIMENSIONS

In two dimensions the regularization of the gap equation
differs, with a bound state always present [33]. With εB as the
binding energy, we have, therefore,

1

g
= 1

V

∑
k

1

2(ξk + μ) + εB

, (26)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

(vR ⁄vF)2

2n
0

⁄n

FIG. 2. Singlet condensate fraction of the 3D Fermi gas as a
function of (vR/vF )2 for y = −2,−1.5,−1,−0.5,0,0.18,0.5,1,1.5,2
(corresponding to the curves from below). The solid thicker line is
for y = 0. The dashed line is when y ≈ 0.2, below this value all the
curves have a minimum, while above it they always decrease.
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FIG. 3. 3D Fermi gas: Chemical potential μ (upper panel) and
pair function � (lower panel), both in units of εF , as a function of the
dimensionless interaction strength y = 1/(kF as) for different values
of (vR/vF )2 (the same ones as in Fig. 1, with same line types).

which, after rescaling the momenta as in Eq. (11) and
integrating, leads to

1

g
= m

4πh̄2 ln

(
2�2

εB/�
+ 1

)
, (27)

where � is the ultraviolet momentum cutoff. On the other
hand, Eq. (9) holds, where now the sum is over momenta in
two dimensions, and, therefore, we have

1

g
= m

(2πh̄)2
Ig(x0,x1,x2) (28)

with

Ig(x0,x1,x2) = 1

2

∫ �

d2q

⎡
⎢⎢⎣∑

r=±1

× 1√(
q2 − x0 + r

√
x2

1q2
x + x2

2q
2
y

)2 + 1

⎤
⎥⎥⎦ .

(29)
From this expression we derive the binding energy

εB

�
= lim

�→∞
2�2

exp[Ig(x0,x1,x2)/π ] − 1
, (30)

which actually does not depend on the cutoff since Ig has a
logarithmic divergence in the ultraviolet which cancels exactly
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FIG. 4. Singlet (n0, upper curves) and triplet (n1, lower curves)
condensate fractions of the 2D Fermi gas as functions of the binding
energy εB , in units of the Fermi energy εF , for different values of
Rashba velocity, (vR/vF )2 = 0 (solid line), 0.5 (long-dashed line), 1
(short-dashed line), 2 (dotted line), and 4 (dashed-dotted line).

the factor �2. In the absence of spin-orbit, x1 = x2 = 0, we
recover, in fact, the known result εB/� =

√
x2

0 + 1 − x0 [32].
As in the the three-dimensional case, the quantities we

consider are the following:

2ns

n
= 1

8

I 2d
Ns(x0,x1,x2)

I 2d
N (x0,x1,x2)

, (31)

μ

εF

= 2πx0

I 2d
N (x0,x1,x2)

, (32)

�

εF

= 2π

I 2d
N (x0,x1,x2)

, (33)

as functions of εB/εF where now εF = h̄2πn/m is the Fermi
energy in two dimensions. The integrals I 2d

N and I 2d
Ns are

0 1 2 3 40.0

0.2

0.4

0.6

0.8

vR vF 2

2n
0
n

FIG. 5. Singlet condensate fraction of the 2D Fermi gas as
a function of (vR/vF )2 for εB/εF = 0.01,0.06,0.2,0.5,1,1.5,2,2.5
(corresponding to the curves from below). The dashed line is when
εB/εF ≈ 1; below this value all the curves have a minimum, whereas,
above it, they always decrease.
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FIG. 6. 2D Fermi gas: Chemical potential μ (upper panel) and
pair function � (lower panel), both in units of εF , as a function of
the binding energy εB (in units of εF ) for different values of (vR/vF )2

(the same ones as in Fig. 4 with same line types).

the same ones as in Eqs. (13) and (21) but defined in two
dimensions (d3q → d2q).

Experimentally, the realization of a 2D system can be ob-
tained by a strong harmonic confinement in one direction, i.e.,
ωz � ωx,ωy ; therefore, one can link the tunable 3D scattering
length as to the two-body binding energy in 2D. Introducing,
conveniently, the confining length �z = √

h/mωz, one finds, in
fact, ln(εB/h̄ωz) ∼ �z/as (for more details see Refs. [34,35]).

Again, we focus our attention to the case with only
Rashba (or, equivalently, only Dresselhaus) term, i.e., x1 = x2.
Also in this case, as in the three-dimensional one, the spin-
orbit produces interesting effects in the condensate fraction,
showing a nodal point at εB ≈ εF , set in when vR � vF , see

Figs. 4 and 5, in the neighborhood of which the slope of the
curve decreases. As a result, the spin-orbit coupling promotes
the singlet condensation in the BCS side and suppresses
it on the BEC side. We observe that, contrary to the 3D
case, in 2D the condensate fraction approaches the value
of 1 only for an extremely large interaction strength, i.e.,
for εB/εF � 1. Again, the chemical potential μ is pushed
toward more negative values (see the upper panel of Fig. 6).
For small spin-orbit coupling, and εB → 0, one recovers the
known perturbative result, μ � εF − mv2

R/2. The pairing gap
� (lower panel of Fig. 6) is, instead, increased by the Rashba
spin-orbit interaction in the whole crossover.

V. CONCLUSIONS

We have studied the evolution of BCS superconductors
to BEC superfluids in the presence of an artificial spin-orbit
coupling of Rashba and/or Dresselhaus type in two and three
dimensions. We have shown that, unlike the chemical potential
and the pairing gap which exhibit no particular behaviors at
the crossover, the condensate fraction is very peculiar. The
condensation of singlet pairs, in fact, is promoted by Rashba
coupling in the BCS regime, whereas it is suppressed in the
BEC regime. In the middle, both in three and in two dimensions
and for large-enough Rashba spin-orbit coupling, there is a
nodal point where the curves of the condensate fraction cross
each other, and, for this reason, this can be considered the
putative point of the crossover. On the other hand, the triplet
contribution to the condensate fraction has not a monotonic
behavior as a function of the scattering parameter, swelling
up close to the crossover. Because in our calculations we
have used the mean-field theory, it is important to stress that
Monte Carlo simulations have shown that, at zero temperature,
beyond-mean-field effects are negligible in the BCS side of
the BCS-BEC crossover, whereas they become relevant in the
deep BEC side [15,35]. In conclusion, we think that our results
can be of interest for future experiments with artificial gauge
potentials in degenerate gases made of alkali-metal atoms.
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