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Collapse and three-body loss in a 85Rb Bose-Einstein condensate
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Collapsing Bose-Einstein condensates are rich and complex quantum systems for which quantitative
explanation by simple models has proved elusive. We present experimental data on the collapse of high-density
85Rb condensates with attractive interactions and find quantitative agreement with the predictions of the
Gross-Pitaevskii equation. The collapse data and measurements of the decay of atoms from our condensates
allow us to put new limits on the value of the 85Rb three-body loss coefficient K3 at small positive and negative
scattering lengths.

DOI: 10.1103/PhysRevA.84.033632 PACS number(s): 03.75.Kk, 67.85.Hj

I. INTRODUCTION

While most experiments with dilute gas Bose-Einstein
condensates have employed atomic species with repulsive
interactions, it has long been known that interesting and
exotic physics is manifest in attracting condensates. These
include macroscopic quantum tunneling [1], the formation
of soliton trains and vortex rings [2,3], and the violent
collapse and explosion known as the “bosenova” [4–6]. The
first evidence for the collapse of attracting Bose-Einstein
condensates (BECs) was found by Sackett and coworkers,
who analyzed the thermal equilibration of a sample of 7Li
atoms with negative scattering length that was cooled below
the critical temperature [7]. Soon after this work, condensate
collapse was directly observed in pioneering experiments at
JILA [6], which revealed a host of interesting dynamics and
prompted a surge of theoretical interest [8–19]. More recently,
the collapse of dipolar chromium BECs has been observed,
displaying the striking d-wave symmetry of long-range dipole-
dipole interactions in excellent agreement with theory [3].

However, while initial mean-field analysis of the JILA
experiment using the Gross-Pitaevskii (GP) equation was
able to qualitatively account for most of the experimental
observations, including the formation of atomic “bursts” and
“jets” [9,13,16–19], further investigation exposed a quan-
titative discrepancy between theory and experiment in the
time taken for the condensates to collapse [15]. This was
especially puzzling because the short-time low-density phase
of the experiment is exactly where the GP equation should
be an excellent approximation. This disagreement, of about
100%, could not be eliminated by more complex quantum
field calculations [19,20] and has led to the development of
competing models for the collapse mechanism [21]. Yet amid
the extensive theoretical work on this phenomenon that has
continued in recent years, there has been a notable absence of
further experimental data, and the discrepancy between theory
and the 85Rb experiment remains unresolved.

Here we present the first results on this phenomenon from a
new 85Rb BEC machine [22], finding good agreement between
the measured collapse times and those predicted by a GP
model. Although we use the same atom, our experiment has
several important differences from the original JILA work.
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Most notably, our condensates are confined in a purely optical
potential, with a homogeneous magnetic bias field applied
to manipulate the interatomic interactions. In addition, we
measured condensate collapses with 4 × 104 atoms in a tighter
trap, which together result in an initial density over an order of
magnitude larger than in Ref. [6]. This leads to shorter collapse
times and lower values of the critical scattering length, but
should not affect the ability of mean-field theory to describe
the evolution of the system. It also allows us to investigate
three-body recombination rates in a high-density regime where
they are the dominant source of atom loss.

II. EXPERIMENT

Our apparatus for producing Bose-Einstein condensates of
85Rb with tunable interactions has been described in detail
elsewhere [22]. In brief, we employ sympathetic cooling
using 87Rb as a refrigerant, initially in a quadrupole-Ioffe-
configuration magnetic trap and subsequently in a weak,
large-volume crossed optical dipole trap. During the fi-
nal evaporation, a magnetic bias field of 167 G is ap-
plied to reduce losses due to two-body inelastic collisions
[23,24]. We can create condensates of up to 105 85Rb
|F = 2, mF = −2〉 atoms with a thermal fraction below
10% in a trap with harmonic oscillation frequencies ωx,y,z =
2π × {53,22,27} Hz. Condensates form at scattering lengths
between a = +50a0 and a = +200a0, where a0 is the Bohr
radius. We determine the scattering length from the applied
magnetic bias field using the known parameters of the
155 G 85Rb Feshbach resonance [25]. The field is calibrated
by addressing radiofrequency transitions between the mF

sublevels of the F = 2 manifold; the transition frequency
is related to the magnetic field strength by the Breit-Rabi
equation [26]. The magnetic field can be determined in
this way to within 5 mG, which, near the zero crossing of
the scattering length, corresponds to an uncertainty in a of
±0.2a0.

To observe condensate collapse, we follow the procedure
of Donley et al., tuning the atomic interactions using the
Feshbach bias magnetic field as shown in Fig. 1(a). First,
the scattering length is ramped smoothly from a = +89.1a0

to ainit = +0.2a0 over 100 ms to produce a near-ideal,
noninteracting gas. The magnetic field is then increased
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(b)

(a)

FIG. 1. (a) Manipulation of scattering length to induce and
observe condensate collapse. After a variable evolution time t , the
atoms are released from the optical trap simultaneously with an
increase in a from acollapse to +50a0. The cloud is allowed to expand
at this value for 15 ms before the magnetic bias field is switched off.
(b) Measured atom number as a function of t for acollapse = −20a0.
The solid line is a fit of the experimental data to Eq. (1). The atom
number remains approximately constant for a time tcollapse, before a
sudden onset of loss due to three-body recombination.

suddenly (<100 μs1) to a value at which the interactions are
attractive (acollapse < 0) and held there for a time t before the
trap is switched off and the scattering length simultaneously
increased to a = +50a0. The condensate is allowed to expand
ballistically at this value for 15 ms, after which the magnetic
field is switched off, changing the scattering length to abg =
−443a0. Following a further 5 ms of free evolution, the number
of atoms present is determined by absorption imaging.

The number of atoms remaining as a function of evolution
time at acollapse = −20a0 is shown in Fig. 1(b). In agreement
with the original work of Donley et al., we observe a sudden

1We have measured the response time of the magnetic field using a
small pickup coil near the location of the atoms.

and delayed onset of atom loss. This is explained by density-
dependent three-body recombination; when the interactions
are made attractive, the condensate begins to contract slowly
and its peak density n0 increases, although not enough to
cause significant three-body loss. As the condensate shrinks,
however, the contraction accelerates, resulting eventually in a
sudden implosion which increases the density by several orders
of magnitude. This induces significant recombination losses
(the loss rate scales with n3) which ultimately halt the growth
in density. The subsequent dynamics include further sporadic
local implosions, which effect decay of the atom number in an
approximately exponential form. We have observed remnant
clouds surviving long after the collapse which contain several
times the critical number of atoms Ncr � 0.6aho/|a|, where
aho = √

h̄/(mωho) is the harmonic oscillator length [27] (the
critical number for a condensate with a = −20a0 in our trap is
Ncr � 1200; cf. Fig. 1). Such configurations have been shown
to achieve stability through the formation of mutually repelling
bright solitons [2].

III. COLLAPSE TIME

The discrepancy between the JILA experiment and theoret-
ical models concerns one of the most elemental characteristics
of the bosenova: the time for which the atom number remains
constant before the first density implosion—the so-called
“collapse time” tcollapse. Although the dynamics after the
collapse are predicted to be complex and may exhibit behavior
beyond mean-field effects, the evolution prior to the first
implosion should be captured in the mean-field approximation
and is determined almost exclusively by the initial density
which is experimentally constrained. In particular, it has
been noted that tcollapse does not depend strongly on the
the three-body recombination rate K3 [9,15], which is not
well-determined in the vicinity of the Feshbach resonance.
Despite this, Gross-Pitaevskii (GP) simulations were found to
systematically overestimate the collapse time measured in the
JILA system by almost 100%; a discrepancy at the 2σ level
given the experimental uncertainties [15].

A. Experimental collapse times

As in previous work, we determine the collapse time by
fitting plots of the measured atom number versus time to the
function

N (t) = (N0 − Nf ) exp

[
− (t − tcollapse)

τdecay

]
+ Nf (1)

for t > tcollapse, where N0 and Nf denote the atom number
at t < tcollapse and t � tcollapse, respectively. Figure 2 shows
the collapse time determined in this way as a function of
acollapse for samples of N0 = 4 × 104 atoms. As expected, the
collapse time is shorter for larger |acollapse|, because stronger
attraction between the condensate atoms results in more rapid
contraction. The data are in qualitative agreement with the
original experiment of Ref. [6] and later theoretical work.

B. GP simulations

To ascertain the ability of mean-field theory to quantita-
tively reproduce our experimental data, we have performed
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FIG. 2. Collapse times as a function of scattering length for
ainit = +0.2a0 and N0 = 4 × 104 atoms. The data points represent
experimental values from measured decay curves such as that shown
in Fig. 1(b), with error bars denoting the statistical uncertainty in
the fit of Eq. (1). The solid line is the result of GP simulations for
our experimental parameters and shows good quantitative agreement
with the experimental data. The dotted lines represents the variation
in the simulated collapse time due to experimental uncertainties in
ainit, acollapse, ω̄, and N0. The dashed vertical line shows the critical
scattering length for collapse at this atom number, below which the
condensate’s kinetic energy stabilizes it against implosion.

numerical simulations for the parameters of our system using
the Gross-Pitaevskii equation for the condensate wave function
�:

ih̄
∂�

∂t
=

[
− h̄2

2m
∇2 + Vtrap + 4πh̄2a

m
|�|2 − i

h̄

2
K3 |�|4

]
�,

(2)

where Vtrap is the confining potential. Three-body recombi-
nation is modelled by the phenomenological inclusion of an
imaginary loss term proportional to the three-body loss rate
coefficient K3 (which differs by a Bose statistical factor of 3!
from the coefficient for noncondensed atoms). This term leads
to loss proportional to the cube of the atomic density,

∂

∂t

∫
|�|2dr = −

∫
K3|�|6dr, (3)

and entails the assumption that the products of recombination
collisions leave the trap without interacting with the remaining
atoms. As three-body processes dominate at the high densities
relevant to this experiment [9], we do not include the effect
of two-body inelastic collisions. To make the computation
tractable, in integrating Eq. (2) we assume a cylindrically sym-
metric trap with oscillation frequencies ωz,ρ = 2π × {53,24}
Hz, such that the mean trap frequency ω̄ matches that of our
crossed dipole trap (the collapse time has been found to be
relatively robust with respect to asymmetry in the trapping
potential [15]). The simulation includes the 100 ms magnetic
field ramp from a = +89.1a0 to ainit = +0.2a0, but we neglect
the expansion of the condensate in our simulation, because the

density spikes which trigger the recombination losses cease
once the interactions are made repulsive.

C. Comparison of experiment and theory

The results of this simulation for N0 = 4 × 104 and ainit =
+0.2a0 are overlaid with the experimental data in Fig. 2 (solid
line). For these simulations the three-body loss coefficient was
scaled with acollapse as K3 = 8 × 10−14a2 cm4/s (the value of
K3 and its scaling with a will be discussed further in Sec. IV).
The dotted lines show the variation in the simulated collapse
time due to the combined experimental uncertainties in the
initial scattering length and the trap frequencies, as well as
run-to-run number fluctuations of 20%. The simulations show
good quantitative agreement with the experimental data.

It should be noted that the 100 ms ramp of the scattering
length from a = +89.1a0 to a = +0.2a0 is not truly adiabatic.
Our GP simulations show that the ramp excites breathing
mode oscillations, despite the duration of the ramp exceeding
the mean trap oscillation period by a factor of 3. The
oscillation is predominantly along the weak trapping axes and
has an amplitude of approximately 10% of the condensate
radius. It occurs because, although a is varied smoothly, the
condensate size does not depend linearly on the scattering
length—in the Thomas-Fermi limit, the radius scales as
rTF ∼ a1/5. This excitation accelerates the contraction of the
condensate, decreasing tcollapse by approximately 15%. The
effect is included in the simulations shown in Fig. 2. It could
be reduced by tailoring the magnetic field ramp to ensure that
the condensate radius decreases smoothly. As rTF ∼ a1/5, one
might expect that performing a smooth ramp of a1/5 instead
of a would decrease the effect, which is confirmed by GP
simulations. Our simulations show that the optimum ramp
shape depends on the initial scattering length and the duration
of the ramp: for our parameters, ramping a1/2 smoothly over
100 ms reduces the breathing mode oscillations to below 0.5%
and causes the collapse times to be indistinguishable from
those for a condensate that is in the ground state immediately
prior to the collapse.

D. Systematics

We now turn our attention to the possible systematics which
may affect the agreement between theory and experiment.
The source of the largest experimental uncertainty in our
system is the oscillation frequencies of the crossed dipole trap,
which vary during the evaporation to BEC as the intensity
of the trapping laser is reduced. For technical reasons, we
cannot directly measure the trap frequencies at the end of the
evaporation. Instead, we make several measurements at higher
intensities, which we fit to an analytic model of the dipole
potential including the effect of gravity in the vertical direction.
The model is further constrained by knowledge of the intensity
I0 at which gravity overcomes the dipole potential and the trap
vanishes. Due to the strong dependence of the vertical trap
frequency on the laser intensity near I0, and the variation in
the intensity itself, we estimate an uncertainty in ω̄ of 10%,
predominantly in the vertical direction. As the peak density of
a noninteracting condensate scales as ω̄3/4, this corresponds to
an estimated uncertainty in n0 of 7%, which in turn produces
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an uncertainty in the simulated collapse time of approximately
15%. This is not sufficient to explain the inconsistency between
our results and the JILA experiment.

We must also consider the possibility of a systematic
error in our determination of atom number. N0 is calculated
using the theoretical optical cross section by integrating the
optical depth of an absorption image. We image the atoms on
resonance with circularly polarized light and apply a small
bias magnetic field along the imaging direction to provide a
quantization axis. The calculation therefore makes use of the
resonant cross section and saturation intensity of the cycling
transition |F = 3, mF = ±3〉 → ∣∣F ′ = 4, mF ′ = ±4

〉
. As a

result, our measured value of N0 is a lower bound: any errors
in the polarization or detuning of the imaging light, or in the
alignment of the quantization field, will reduce the measured
atom number. We estimate the uncertainty in N0 due to these
effects to be less than 5%.2 Furthermore, if the atom number
were undercounted then correcting for this would decrease the
simulated collapse times, as a higher initial density speeds up
the contraction. This effect therefore also cannot explain the
disparity between our results and the original experiment, for
which GP simulations overestimated the collapse times.

IV. INELASTIC LOSS COEFFICIENTS

Although tcollapse is only weakly dependent on the three-
body loss coefficient K3, the shape of the loss curves is affected
by varying this parameter. The values of K3 used in simulations
of the original JILA experiment ranged from K3 = 2 ×
10−28 cm6/s [9] to K3 = 2 × 10−26 cm6/s [15]. Several
authors also considered a relationship between the loss coeffi-
cient and the scattering length of the form K3 ∼ |a|2 for a < 0
[18,28], with Bao et al. deducing K3 = 2.68 × 10−13a2 cm4/s
[17]. We find that these values cannot reproduce the shape of
our measured loss curves.

Figure 3 shows the results of GP simulations using values
of K3 between 5 × 10−27 cm6/s and 5 × 10−29 cm6/s overlaid
with experimental data for acollapse = −8.4a0. At higher loss
rates, the high initial density of our sample causes significant
loss during the contraction of the condensate in the simulation
during the moments leading up to the collapse. In fact, for
K3 > 10−27 cm6/s this initial loss is so great that there is
no sudden implosion of the condensate and no discernible
elbow in the loss curve.3 In order to obtain the abrupt onset
of loss that we observe in the experiment, a three-body loss
rate of K3 � 5 × 10−29 cm6/s at a = −8.4a0 is required.
From a similar analysis of the acollapse = −20a0 data shown
in Fig. 1(b), we find K3 � 1 × 10−28 cm6/s at that scattering

2We have also attempted to calibrate N0 using the number
dependence of the BEC phase transition. The result agrees with our
measured number but, due to the uncertainty in trap frequency and
the weak scaling of Tc ∼ N 1/3, there is a large uncertainty in this
calibration.

3To aid comparison of the elbow in the loss curve, the trap
frequencies in the simulations have been adjusted to give the observed
collapse time in Fig. 3. Nonetheless, as can be seen from Fig. 2, the
experimental collapse time, at acollapse = −8.4a0, is within the error
of the simulated collapse time.

FIG. 3. Comparison of experimental and simulated collapse data
for acollapse = −8.4a0. The data points show the measured atom
number N (normalized to N0) as a function of evolution time
t at a < 0, and the lines represent GP simulation results with
different values of the three-body loss coefficient K3. A value of
K3 � 5 × 10−29 cm6/s is necessary to replicate the sudden onset of
loss detected in the experiment.

length. These limits are more than an order of magnitude
below most of the values used to simulate the original ex-
periment. Assuming a scaling with |a|2, they imply K3 � 1 ×
10−14a2 cm4/s. In this regime, loss after the initial implosion
is caused by intermittent local density spikes between which
three-body loss is negligible. This was first predicted by Saito
and Ueda [4] even before the JILA experiment. These discrete
implosions result in the numerous plateaus apparent in the
simulated loss curve, although the scatter in our experimental
data—caused primarily by run-to-run fluctuations in atom
number—is too large to observe these directly.

We have investigated the inelastic loss rates further by
measuring the depletion of our condensates over time with
positive scattering lengths, at which the condensates are stable.
The rate at which atoms are lost due to two- and three-body
inelastic collisions depends on the density profile of the
condensate. In the limit that a → 0, the density is given by the
modulus squared of the ground-state harmonic oscillator wave
function, and the loss rate equation Ṅ/N = −∑

i Ki〈ni−1〉
becomes

Ṅ = −N/τ − η2K2N
2 − η3K3N

3, (4)

where τ represents the one-body loss rate, η2 = (2πa2
ho)−3/2,

and η3 = (
√

3πa2
ho)−3. In the Thomas-Fermi limit Na/aho �

1, the condensate density takes on the shape of the confining
potential and the loss rate equation evaluates to

Ṅ = −N/τ − γ2K2N
7/5 − γ3K3N

9/5, (5)

with γ2 = 152/5/[14πa3/5a
12/5
ho ] and γ3 =

54/5/[56π231/5a6/5a
24/5
ho ]. It should be noted that these

expressions are valid only when the loss rate is small
compared with the trap frequencies Ki〈ni−1〉 � ω̄, so that the
atomic density profile does not change significantly.
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FIG. 4. Measurements of inelastic losses in 85Rb condensates.
The data points show the atom number as a function of hold time
in the optical trap for condensates with a = 0 and a = +37.6a0.
The solid lines are fits of the solutions of (4) and (5) to the
experimental data, assuming K3 = 0 (solid) and K2 = 0 (dashed).
Although the contributions of two- and three-body processes cannot
be distinguished in this manner, these fits may be used to place upper
bounds on the values of K2 and K3.

Figure 4 shows the number of atoms remaining as a function
of time in condensates with a = 0 and a = +37.6a0. The
lines plot the best-fit solutions to (4) and (5), respectively,
assuming that the loss is entirely due to two-body (solid)
or three-body (dashed) inelastic collisions. It is difficult to
separate the contributions of two- and three-body loss purely
from the shape of the decay curve, as has been noted in previous
work [23]. Nonetheless, attributing all of the measured loss
to two- or three-body processes allows us to place an upper
limit on the value of K2 and K3 at these scattering lengths.
Figure 5(a) shows these upper bounds for scattering lengths
between 0 and +100a0. In our system, Na/aho � a/a0 and
we use the Thomas-Fermi approximation (5) except at a = 0.
The error bars represent the statistical uncertainties in the fits;
we assign an additional systematic error of 10% to incorporate
the uncertainty in ω̄.

Theoretical calculations suggest that the recombination rate
should vary strongly with the two-body elastic scattering
cross section, with several authors predicting a universal
K3 ∼ a4 scaling in the zero-temperature limit [29–31]. Our
observations are consistent with a strong suppression of the
recombination rate at the zero crossing of the s-wave scattering
length, with the measured upper bound K3 � (3.9 ± 0.7) ×
10−29 cm6/s at a = 0 an order of magnitude below that for
a > +50a0 and more than three orders of magnitude below
the loss rate far from the Feshbach resonance, K3 = 7 ×
10−26 cm6/s [23].

We can combine these latest data with previous measure-
ments of the two-body loss rate to further constrain the three-
body recombination coefficient. Figure 5(b) shows the locus
of possible K2, and K3 values for which the solution to (4) best
fits our experimental loss curve at a = 0. In Ref. [23], Roberts
et al. measured Knc

2 � 2.4 × 10−14 cm3/s for thermal clouds
in the vicinity of a = 0, corresponding to a value of K2 �
1.2 × 10−14 cm3/s for condensed atoms. This matches our
measured upper bound of K2 � (1.2 ± 0.2) × 10−14 cm3/s.
Coupled with this result, our data are consistent with a value of
the three-body loss coefficient K3 � 10−30 cm6/s. Reference
[31] predicts K3 � 5 × 10−32 cm6/s at a = 0. In compari-

FIG. 5. (a) Upper bounds on K2 (open circles) and K3 (solid
circles) as a function of scattering length, calculated from fits to
the solutions of (4) and (5). The error bars represent statistical
uncertainties. (b) Locus of two- and three-body loss coefficients for
which the solution to (4) fits the experimental data for a = 0 shown in
Fig. 4. The x and y intercepts correspond to the upper bounds shown
in (a). Assuming K2 � 1.2 × 10−14 cm3/s [23], the data suggest a
three-body loss coefficient K3 � 10−30 cm6/s.

son, the three-body loss coefficient for 87Rb is K3 = 6 ×
10−30 cm6/s [32].

V. CONCLUSIONS

In conclusion, we have presented new experimental data on
the collapse of 85Rb Bose-Einstein condensates with attractive
interactions in an optical dipole trap. Our results qualitatively
match those of the original JILA bosenova experiment, but
in addition agree quantitatively with GP simulations. We find
that a value of the three-body loss coefficient K3 lower than
was used in simulating the original experiment is needed
to reproduce the sudden onset of loss that we observe. We
have also analyzed the decay of atoms from our condensates
and thereby placed further constraints on the three-body loss
coefficient K3 at small positive scattering lengths. We expect
that this work will inform future experimental and theoretical
investigations of this rich quantum system.
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