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Quantum phase transition in Bose-Fermi mixtures
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We study a quantum Bose-Fermi mixture near a broad Feshbach resonance at zero temperature. Within a
quantum field theoretical model, a two-step Gaussian approximation allows us to capture the main features of
the quantum phase diagram. We show that a repulsive boson-boson interaction is necessary for thermodynamic
stability. The quantum phase diagram is mapped in chemical-potential and density space, and both first- and
second-order quantum phase transitions are found. We discuss typical characteristics of the first-order transition,
such as hysteresis or a droplet formation of the condensate, which may be searched for experimentally.
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I. INTRODUCTION

Experiments with ultracold quantum gases provide an
attractive new way to study many-body physics of neutral
particles with short-range interactions. Considerable progress
in understanding the phenomena of Bose-Einstein conden-
sation for bosons and the BCS-BEC crossover for fermions
are among the key successes of the field [1]. On the other
hand, many-body mixtures of particles with different quantum
statistics, i.e., Bose-Fermi mixtures, are not as well understood
theoretically and are believed to exhibit very different behavior
to pure Bose and Fermi systems. Moreover, recent experiments
allowed to prepare and study mixtures of bosons and fermions
in the quantum degenerate regime, thus leading to direct
experimental tests of theoretical predictions for these mixtures.

Early theoretical studies were mainly focused on weakly
coupled systems, both isotropic and trapped [2,3]. Bose-
induced fermion pairing in strongly coupled Bose-Fermi
mixtures was studied in Ref. [4]. Advent of Feshbach
resonances provided an experimental stimulus to develop
theoretical descriptions of strongly interacting Bose-Fermi
mixtures. First, properties of an individual boson-fermion
Cooper pair embedded in the many-body environment were
studied [5,6]. Subsequently, a number of theoretical studies
has been undertaken to address both narrow [7–9] and broad
resonances [10–13]. On the experimental side, enhanced
three-body recombination was used as an efficient tool for
the identification of a number of Feshbach resonances in
Bose-Fermi mixtures (for review see [14]).

In this article, we consider a mixture of bosons and fermions
whose interaction strength can be tuned through a Feshbach
resonance at zero temperature T = 0. The theoretical formal-
ism presented in this work is applicable for the description of
resonances with arbitrary width. But since recent experiments
with Bose-Fermi mixtures found relatively broad resonances,
our main results are obtained for Feshbach resonances in the
limit of infinite width.

If the attraction between bosons and fermions is the only
relevant interaction, the general picture of the behavior of
this system at zero temperature seems to be quite intuitive
and is schematically illustrated in Fig. 1: for weak attraction
between bosons and fermions, one expects to find a Fermi
sphere for the fermions. The bosons will, up to a depletion
caused by purely bosonic quantum fluctuations, occupy the

ground state and form a pure Bose-Einstein condensate (BEC).
As one increases the attraction between the two distinct atoms,
a bound state consisting of one boson and one fermion can
form. If the number of fermions is larger than the number
of bosons, the Bose-Einstein condensate will vanish at some
point as all bosons will pair with fermions. This point marks a
second-order quantum phase transition.

Our investigation reveals, however, a competing effect,
namely an effective attractive interaction between bosons
which is induced by the fluctuations of fermion-boson bound
states in the presence of a BEC. If one restricts the analysis to
the regime with a small condensate, the effect of the attractive
fermion-boson interaction described above dominates and
can lead to a vanishing BEC for large enough interaction
strength. On the other hand, for a large BEC the induced
boson-boson interaction becomes important. It turns out that
the quantum phase transition introduced in the preceding
paragraph describes actually only a metastable state. For the
densities and interactions near the phase transition of the
metastable state, a quantum state with a large BEC has a
much lower grand canonical potential. It turns out that in
this true ground state, which we call the “BEC-liquid,” the
fluctuation-induced boson-boson attraction must be balanced
by a microscopic repulsion between bosons. Thus, no stable
ground state without a microscopic repulsive interaction
between bosons exists within the validity of the model.

In Fig. 2, we depict the sketch of the zero-temperature
phase diagram, parametrized by the density ratio of fermions
and bosons nψ

nφ
and the dimensionless Bose-Fermi interaction

strength akF , which emerges from our investigation for a
fixed small boson-boson microscopic repulsion. In this case,
the normal and BEC-liquid phases are separated by a first-
order phase transition. At the first-order phase transition, the
mixture is in chemical equilibrium, which corresponds to fixed
chemical potentials. On the other hand, the densities undergo
a discontinuous jump as the transition is approached from
the different phases by varying the Bose-Fermi interaction
strength. In Fig. 2, the phase transition is thus depicted by two
red solid lines, and the entire region between the two curves
represents a mixed state where the two phases coexist. The
second-order quantum phase transition introduced in Fig. 1 is
illustrated by the dashed blue curve in Fig. 2 and separates
the metastable normal and BEC phases. At higher bosonic
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FIG. 1. (Color online) Transition from noninteracting mixtures
of bosons (shaded blue) and fermions (solid red) to a strongly
interacting system where fermionic molecules are formed. For the
density-balanced case illustrated here, the cross marks the quantum
critical point (QCP) where the Bose-Einstein condensate vanishes.

repulsion, the coexistence region will shrink. One may guess
that at some critical value the two red curves will merge with
the second-order dashed line, inducing a second-order phase
transition.

As a consequence of the first-order quantum phase tran-
sition, an interesting hysteresis effect could be found ex-
perimentally without changing the temperature (at T � 0).
In particular, one expects sudden jumps in the superfluid
density as a function of a continuously varying magnetic field
(Bose-Fermi interaction a) for fixed numbers of fermionic and
bosonic atoms. These jumps might appear at different values of
the magnetic field depending on the previous evolution history
of the system.

To demonstrate this, we may follow what happens if we
decrease the strength of the boson-fermion attraction at fixed
densities. This can be realized experimentally by tuning the
magnetic field near a Feshbach resonance. Starting with a large
attraction corresponds to large (akF)−1 in Fig. 2. For nψ > nφ ,
the normal phase without a condensate where all bosons are
bound to fermions is stable. As we cross the phase boundary
of the first-order transition, the new ground state becomes
the BEC-liquid with a large BEC. At the critical chemical

FIG. 2. (Color online) Sketch of the quantum phase diagram in
the space of nψ/nφ vs (akF)−1 for a small repulsive boson interaction
ãB = aB/a = 0.17. The first-order phase transition separates the
symmetry broken phase (BEC-LIQUID) from the symmetric phase
(NORMAL). The region between the two solid red lines corresponds
to a mixed state where the two phases coexist. In this regime,
the second-order phase transition line (blue dashed) separates the
metastable (MS) normal and BEC phases.

potential, the pure BEC-liquid state has a substantially larger
density (for given Bose-Fermi scattering length a) than the
normal state. At the transition, the state with the lowest grand
canonical potential switches between two points that share the
same chemical potential on the respective first-order transition
lines. As an example, we have depicted in Fig. 2 two such
corresponding points by full circles.

For the fixed densities nφ and nψ , an immediate transition
to the new ground state is impossible. In this case, a further
increase of the parameter a beyond the critical value leads to
a mixed state (black dotted line in Fig. 2), where a fraction
of the atoms is in the BEC-liquid state, while the remaining
part stays in the normal phase [15]. Only once the black dotted
line crosses the second red line, all atoms will be found in the
new ground state, which is indicated by the square in Fig. 2.
While the system traverses the black dotted line in the mixed
phase, the state of the atoms in the BEC-liquid moves on the
transition line from the circle to the square.

So far, the evolution between two phases seems to be
fully reversible with no hysteresis possible. However, if the
boson-fermion interaction strength a is only moderately larger
than the critical value where the normal phase ceases to be
the ground state, a large grand canonical potential barrier
separates the normal and BEC-liquid states—similar to the
vapor-water transition. This barrier typically suppresses the
transition to the new ground state—the atoms are caught in
a metastable homogeneous state, analogous to supercooled
vapor. By further increasing a at given density, we may cross
the quantum phase transition in the metastable phase, where a
small BEC sets in continuously. This is depicted by a star on
the blue dashed line in Fig. 2.

As a increases (moving left from the full circle on the
black dotted line in Fig. 2), the potential barrier between the
metastable state and the BEC-liquid diminishes. In conse-
quence, the probability of a transition from the metastable
state to a state in the mixed phase increases. This transition
is typically a rather rapid process, meaning that there will
be some value of a where suddenly a large BEC forms. The
jump in the condensate may yield an interesting experimental
signature for the first-order quantum phase transition. For the
particular case where the jump sets in exactly at the second-
order quantum phase transition in the metastable phase, we
indicate the state of the mixed phase by the two empty circles
on the corresponding first-order red lines in Fig. 2.

In the other direction, starting from a large a in the
BEC-liquid phase, we may again encounter a metastable state,
now as a BEC-liquid. It may be necessary to decrease a

beyond the critical value for the first-order phase transition
before the system jumps to the mixed phase. We observe that
the transition between the two phases is path-dependent and
thus we expect a typical hysteresis effect. Interestingly, this
hysteresis may be observed as a function of a varying magnetic
field (varying a) at fixed temperature (e.g., T = 0). It is in this
respect the same as a first-order phase transition in magnets,
with the jump in magnetization replaced by the jump in the
condensate. By continuity, it should also be possible to realize
this hysteresis effect by a variation of temperature at fixed a.

The main subject of the present work is the derivation
and thorough analysis of the above-described quantum phase
diagram of the Bose-Fermi mixture near a broad Feshbach
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resonance. The paper is organized as follows: In Sec. II
we present the two-channel model describing the quantum
Bose-Fermi mixture and introduce our formalism for treating
this system. In Sec. III a short discussion of renormalization
and vacuum properties of the model can be found. We show
how to compute particle densities in Sec. IV. Sections V and VI
are devoted to the exploration of the quantum phase diagram.
We present a detailed discussion of the metastable state and the
associated second-order phase transition in Sec. VII. Finally,
we present our concluding remarks in Sec. VIII. The details of
the calculation of the inverse composite particle propagator and
the density distributions can be found in the two appendices.

II. MODEL AND METHOD

In quantum field theory, the microscopic model of the
Bose-Fermi mixture is defined by a classical action that
is a functional of a bosonic field φ(x) and the fermionic
(Grassmann) fields ψ(x) and ξ (x). In the grand canonical
ensemble employing the imaginary time formalism, the action
reads

S =
∫

x

{
φ∗(x)

[
∂τ − �

2mφ

− μφ

]
φ(x)

+ λ

2
[φ∗(x)φ(x)]2 + ψ∗(x)

[
∂τ − �

2mψ

− μψ

]
ψ(x)

+ ξ ∗(x)[∂τ − �

2mξ

− μξ + ν]ξ (x)

−h[ψ∗(x)φ∗(x)ξ (x) + ξ ∗(x)ψ(x)φ(x)]

}
, (1)

where the coordinate-space integral at vanishing temperature is
given by

∫
x

= ∫ ∞
0 dτ

∫
d3x. Equation (1) is a field-theoretical

realization of a two-channel model of a Feshbach resonance
with φ and ψ denoting scattering atoms in the open channel and
ξ representing a molecular state of the closed channel. To the
field ξ we therefore assign the mass mξ = mφ + mψ and the
(bare) chemical potential μξ = μφ + μψ . The bare detuning
ν determines the interaction strength between elementary
bosons and fermions and will be related to the boson-fermion
scattering length a in Sec. III. In addition, s-wave scattering of
two elementary bosons φ is allowed with the coupling strength
λ. Elementary particles φ and ψ are coupled to the composite
molecule ξ through the Yukawa term with the coupling h. This
parameter is related to the width of the Feshbach resonance
�B through �B ∼ h2

�μM
, where �μM denotes the difference

in the magnetic moments of the particles in the open and closed
channel.

We mention here that in the broad resonance limit h → ∞,
ν → ∞, the molecular inverse bare propagator is dominated
by the detuning term

∂τ − �

2mξ

− μξ + ν → ν. (2)

In this limit, Eq. (1) follows directly from a theory with only
elementary bosons and fermions and a pointlike interaction
of the form ∼ h2

ν
ψ∗ψφ∗φ through a Hubbard-Stratonovich

transformation. This one-channel description of the Bose-

Fermi mixture near a broad Feshbach resonance was used
before in Refs. [10,11].

The microscopic model in Eq. (1) has a number of
interesting symmetries. Besides the usual symmetries
associated with translation and rotation, this includes in
particular two global U(1) symmetries U(1)φ × U(1)ψ acting
on the fields according to

φ → eiαφ φ,

ψ → eiαψ ψ, (3)

ξ → ei(αφ+αψ )ξ.

The associated conserved charges are the particle numbers
of elementary bosons φ and fermions ψ . We note here that
due to its composite nature, the field ξ does not have an
independently conserved particle number.

The analytic continuation of Eq. (1) to real time is also
invariant under Galilean boost transformations as well as under
an “energy shift” symmetry, which basically redefines the
absolute energy scale. For details we refer to discussions of
similar models in the literature [16,17].

In order to obtain the thermodynamic properties of the
system in the grand canonical ensemble, we need to compute
the grand canonical potential �G = −pV , where p denotes
the pressure of a homogeneous system of volume V . In this
work we apply a Gaussian approximation to determine the
effective potential U (ρ̄), with ρ̄ denoting an absolute square of
the constant background bosonic field. For thermodynamics,
the effective potential is a very useful function because its
(local) minima determine thermodynamically (meta)stable
states. In particular, if U (ρ̄) has a minimum at ρ̄ = ρ̄0, the
grand canonical potential of the corresponding state can be
determined from �G = V U (ρ̄0). In addition, Bose-Einstein
condensation occurs for ρ̄0 > 0, where ρ̄0 determines the
condensate density.

In the following, we calculate the effective potential in two
steps. First, we integrate out the fluctuations of the elementary
fields, resulting in an effective theory for the composite field ξ

e−Seff [ξ,ρ̄] ≡
∫

DφDψ e−S[φ,ψ,ξ ]. (4)

For this purpose we expand the bosonic field φ = φ̄ +
1√
2
[φ1(x) + iφ2(x)] around its constant part φ̄ ≡ √

ρ̄ and
integrate over the fluctuating fields φ1, φ2, ψ only. In a second
step we integrate over ξ

e−Ṽ U (ρ̄) =
∫

Dξ e−Seff [ξ,ρ̄]. (5)

Here we introduced Ṽ = V/T , which must be understood in
the limit T → 0. In this way, the effective potential remains
finite as T → 0.

Let us explain the procedure in more detail. Due to
translational invariance, it is convenient to work in mo-
mentum space with the inverse Fourier-transform defined
as f (x) = ∫

p
eipxf (p), where

∫
p

= (2π )−4
∫

dp0
∫

d3p and
px = p0τ + 	p · 	x [18]. After expanding the action S to second
order in the elementary fields φ1, φ2, ψ , and ψ∗, the functional
integral Eq. (4) is of a Gaussian type and can easily be
performed analytically. By expanding the result to second
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order in the fields ξ , one obtains

Seff [ξ,ρ̄] = Ṽ

{
λ

2
ρ̄2 − μφρ̄ −

∫
p

ln
[
G−1

ψ (p)
]

+ 1

2

∫
p

ln
[

det G−1
φ

] +
∫

p

ξ ∗(p)G−1
ξ (p)ξ (p)

}
,

(6)

where the bare inverse boson propagator matrix is

G−1
φ =

(
b(p) −p0

p0 a(p)

)
, (7)

with a(p) = 	p2

2mφ
− μφ + λρ̄ and b(p) = a(p) + 2λρ̄. For the

bare inverse elementary fermion propagator, we use G−1
ψ (p) =

ip0 + 	p2

2mψ
− μψ . Finally, as a result of the functional integra-

tion, the renormalized inverse dimer propagator in Eq. (6)
reads

G−1
ξ (p) = ip0 + 	p2

2mξ

− μξ + ν − h2ρ̄

G−1
ψ (p)

− ζ (p),

(8)

with

ζ (p) = h2

2

∫
q

a(q) + b(q) + 2iq0

G−1
ψ (p + q) det G−1

φ (q)
.

(9)

The first four terms in Eq. (8) correspond to the bare inverse
propagator of the particle ξ , which can be directly read off from
the action S. The remaining two terms are depicted in terms
of Feynman diagrams in Fig. 3 [20].

In the second step we compute the effective action �

by performing the Gaussian functional integral over the
composite fermionic field ξ . This leads to the well-known
one-loop formula

�[ξ,ρ̄] = Seff[ξ,ρ̄] + 1
2 STr ln S

(2)
eff [ξ,ρ̄]. (10)

The supertrace STr is understood to sum over both momentum

and internal spinor space, while [S(2)
eff ]p,q

i,j ≡ −→
δ

δϕi (−p)Seff

←−
δ

δϕj (q)

with ϕ1(p) = ξ (p) and ϕ2(p) = ξ ∗(−p). The effective poten-
tial is then obtained from the effective action � evaluated at a
constant background field. Due to the fermionic nature of ξ ,

FIG. 3. Feynman diagrams [20] representing the last two terms
in Eq. (8): (a) A composite particle can supply an elementary boson
to the condensate such that it becomes an elementary fermion. The
elementary fermion then absorbs a boson from the condensate, which
results in the reformation of a fermionic dimer. (b) Alternatively, the
dimer field ξ may split up into an elementary fermion and boson
before binding once again.

we find U (ρ̄) = �[ξ = 0,ρ̄]/Ṽ , resulting in

U (ρ̄) = λ

2
ρ̄2 − μφρ̄ + 1

2

∫
p

ln
[

det G−1
φ

]
−

∫
p

ln G−1
ψ (p) −

∫
p

ln G−1
ξ (p). (11)

The first two terms correspond to the microscopic potential,
which has a global minimum at ρ̄0 = μφ

λ
> 0 for μφ > 0 and

λ > 0. The third term originates from bosonic fluctuations
and results in a quantum depletion of the Bose-Einstein
condensate due to purely bosonic fluctuations [21]. In the
following, we neglect this contribution to the effective
potential [22]. The fourth term equals the (negative) pressure
of the elementary free fermions and gives a contribution that
is independent of the parameter ρ̄. The last term accounts for
the fluctuations of the renormalized composite field ξ . As will
be demonstrated later, the inclusion of this term is crucial for
a proper understanding of the quantum Bose-Fermi mixture
as it is responsible for the appearance of a local minimum of
U (ρ̄) at some ρ̄0 > 0 even for μφ < 0.

We would like to emphasize that in contrast to the BCS-BEC
crossover for fermions, where mean field treatment (i.e.,
neglecting bosonic fluctuations) gives reasonable results at
T = 0 [23], we believe that the two-step procedure described
above is necessary for a proper understanding of the quantum
physics of strongly interacting Bose-Fermi mixtures. The
reason for that is the simple observation that the pairing field ξ

is a fermion and cannot form a Bose-Einstein condensate. Near
a broad Feshbach resonance, the contribution from quantum
fluctuations of the composite field to the effective potential
U (ρ̄) is in fact large, which is why one first needs to include
the pairing dynamics by calculating the renormalized inverse
propagator G−1

ξ . Only subsequently can one properly study
the influence of pairing fluctuations on the Bose-Einstein
condensation of elementary bosons φ. This is directly achieved
by our two-step treatment. A similar observation has been
made before in Ref. [8].

III. VACUUM & RENORMALIZATION

As a consequence of the pointlike interactions in the
microscopic action S, the integral ζ (p) in Eq. (9) is linearly
divergent. For this reason, the quantum theory must be
renormalized, which is most conveniently done in a vacuum,
i.e., for vanishing temperature and densities T = nψ = nφ =
0. Specifically, we regularize the integral ζ (p) using a sharp
ultraviolet momentum cutoff �. All cutoff-dependence can
then be absorbed into the bare detuning ν, which is related to a
low-energy observable—the boson-fermion s-wave scattering
length a. In this way one can take the limit � → ∞. In our
model defined by Eq. (1), the scattering in a vacuum of a
fundamental fermion ψ and a boson φ is described by the
tree-level bound state exchange process. In particular, one has

a = −h2mr

2π
Gξ (ω, 	p = 0), (12)

with the reduced mass mr = mψmφ/(mψ + mφ) of the el-
ementary particles and Gξ (ω, 	p) the real time propaga-
tor obtained from analytic continuation of Eq. (8) using
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ω = −ip0. The frequency ω must be chosen such that the
incoming fermion and boson are on-shell.

The solution of this two-body problem, including the choice
of the chemical potentials in a vacuum, the renormalization of
the detuning parameter ν and the calculation of the binding
energies closely resembles the solution of a similar problem
for two-component fermions. Instead of presenting this in full
detail here, we refer to the literature (e.g., Refs. [24–26]) and
only state the key results.

In the regime with μφ,μψ < 0 and vanishing condensate
ρ̄0 = 0, one finds from Eq. (8) an exact analytic expression for
G−1

ξ (p). For large �, it reads

G−1
ξ (p) = ip0 + 	p2

2mξ

− μξ + ν − h2mr

π2

×
[
� − π

2

√
2mr

(
ip0 + 	p2

2mξ

− μξ

) ]
.

(13)

The cutoff dependent term is canceled by a corresponding
counter term in the bare detuning parameter ν, which reads

ν = −h2mr

2π

[
a−1 + 2�

π

]
, (14)

relating the parameter ν of the microscopic model Eq. (1) to
the experimentally accessible scattering length a.

From Eq. (13) one can obtain the binding energy of the
dimer state that is formed for positive scattering length a > 0.
In the broad resonance model, this leads to the well-known
result [24]

εB = − 1

2mra2
. (15)

In this work we concentrate on the limit of broad resonances
with h → ∞. The inverse propagator for the composite
fermions Eq. (8) is then dominated by the last three terms
which are all proportional to h2. In contrast, the first three
terms ip0 + 	p2

2mξ
− μξ can be neglected in this limit. Thus, the

momentum- and frequency-dependence of G−1
ξ is completely

dominated by quantum fluctuations, implying that the dimer
particle ξ is an emergent degree of freedom. Its origin is the
attractive contact interaction between elementary fermions ψ

and bosons φ.
In a similar fashion, the bare boson-boson coupling λ

can be traded for the experimentally measurable boson-boson
scattering length aB . Specifically,

λ = 4πaB

mφ

[
1 − 2aB�

π

]−1

. (16)

We refer to the literature for its derivation [24]. Throughout
this work we use λ = 4πaB

mφ
, which is the leading order in aB

approximation of the exact relation (16).
Note that we now have, apart from the chemical potentials,

determined all parameters of our microscopic model in Eq. (1).
The chemical potentials will be used to fix the particle densities
in Sec. IV.

IV. PARTICLE DENSITIES

Since actual experiments with ultracold quantum gases
are performed at a fixed particle number, we discuss in
this section how particle densities are calculated from the
effective potential U (ρ̄). Our starting point is Eq. (11) together
with the approximate analytic expressions for the composite
particle inverse propagator that we display in the Appendix A
in Eqs. (A7), (A8). These expressions are valid both in
the symmetric phase without a condensate (ρ̄0 = 0) and in
the spontaneously symmetry broken phase where ρ̄0 �= 0.
For details of the derivation and the limitations of this
parametrization, we refer to Appendix A.

All thermodynamic observables can now be obtained from
the effective potential (11)—the particle density equations, for
instance, follow by differentiation of U (ρ̄0) with respect to
their associated Lagrange multipliers, the chemical potentials.
For the number density of bosons we obtain

nφ = −∂U (ρ̄0)

∂μφ

= ρ̄0 − 1

2

∫
p

∂μφ
det G−1

φ (p)

det G−1
φ (p)

+ lim
δ→0+

∫
p

∂μφ
G−1

ξ (p)

G−1
ξ (p)

e−iδp0 . (17)

Note that we need to evaluate all expressions at the equilibrium
condensate density ρ̄0 that is obtained from the global mini-
mum of the effective potential U (ρ̄). The first term in Eq. (17)
corresponds to the particle density of bosons that occupy the
ground state, while the third term describes the contribution
of bosons contained within the composite fermions ξ . At zero
temperature the second term accounts only for the quantum
depletion caused by the boson-boson-interaction. As discussed
in Ref. [22], this term should be neglected if one consistently
applies our approximation.

Analogously, the particle density equation for the fermions
reads

nψ = −∂U (ρ̄0)

∂μψ

= (2mψμψ )3/2

6π2
�[μψ ]

+ lim
δ→0+

∫
p

∂μψ
G−1

ξ (p)

G−1
ξ (p)

e−iδp0 . (18)

The first term accounts for the fermi sphere of the elementary
fermions, while the second term again provides a contribution
from fermionic molecules ξ .

The factor e−iδp0 appearing in Eqs. (17), (18) is necessary
for the convergence of the frequency integrations and is a direct
consequence of the quantization procedure. When employing
the residue theorem, it forces us to close the integration contour
in the lower p0-half-plane. By analyzing the expression for
G−1

ξ (p) in Eqs. (A7), (A8), we find that in principle we need
to consider both branch-cut and pole contributions: a branch
cut contributes as long as 	p2

2mξ
− μφ − μψ + 2λρ̄0 < 0. In this

paper, however, we restrict our analysis to the region 2λρ̄0 −
μφ − μψ > 0 (see Appendix A). For this reason, branch cuts
never contribute in our calculations. In addition to that, the
integrands in Eqs. (17), (18) can have between zero and three
poles in the lower p0-half-plane. We found that one needs to
consider all three poles to obtain the correct description of the
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system. We determined the positions of the poles numerically
and used the residue theorem to compute the frequency
integral. We also observed that increasing momentum | 	p|
results in the poles moving to the upper p0-half-plane. This cuts
off high momenta and ensures that the momentum integrations
in Eqs. (17) and (18) are ultraviolet convergent.

At this point, we can identify the physical conditions that
must be fulfilled in the vacuum state. In this case, the particle-
density equations should lead to nφ = nψ = 0. Since the
individual terms in Eqs. (17) and (18) give nonnegative con-
tributions, they must vanish separately. This implies the con-
ditions ρ̄0 = 0, μψ � 0, and μφ + μψ � εB for a > 0 in the
vacuum state. The last condition is a consequence of a vanish-
ing contribution from fermionic dimers to Eqs. (17) and (18).

Finally, we extract the particle density distributions and
the fermionic quasiparticle dispersion curves directly from
Eqs. (17) and (18) in Appendix B.

V. QUANTUM PHASE TRANSITION

In this section, we discuss the quantum phase diagram of the
mixture in the theoretically most simple setting. In particular,
we concentrate on the density balanced nφ = nψ system with
equal masses mφ = mψ .

In this case, we can explore the phase diagram as a function
of two dimensionless parameters, (akF )−1 and ãB = aB

a
with

the Fermi momentum kF defined by kF = (6π2nψ )1/3. As will
be demonstrated later, we must consider a positive boson-
boson scattering length aB for stability. In the following we
restrict our attention to the regime aB � |a| or equivalently
|ãB | � 1.

For (akF )−1 → −∞ the elementary fermions and bosons
are only weakly interacting. In this regime, we expect the
bosons to occupy the ground state (up to a small quantum
depletion due to a finite ãB) corresponding to Bose-Einstein
condensation. This leads to a spontaneous breaking of the
global U(1)φ symmetry φ → eiαφ φ, ψ → ψ , ξ → eiαφ ξ . For
the elementary fermions we expect a sharp Fermi sphere such
that the U(1)ψ symmetry ψ → eiαψ ψ , φ → φ, ξ → eiαψ ξ

remains unbroken. For a small but nonvanishing negative
parameter akF , one expects some deviations from this picture.
In particular, there might be an additional depletion of the
Bose-Einstein condensate and a smoothening of the Fermi
sphere by weak Bose-Fermi interactions. Nevertheless, the
symmetry properties of the mixture remain unaltered.

On the other side, for (akF )−1 → ∞, all elementary
fermions and bosons are strongly bound into fermionic dimer
molecules ξ . Since in this limit the molecules are spinless,
pointlike fermions, a local s-wave interaction between them is
forbidden by the Pauli principle. In our approximation where
interactions between the composite fermions are neglected,
they are expected to form a Fermi sphere. Hence, there is no
Bose-Einstein condensate of bosons in this limit and both the
U(1)ψ and U(1)φ symmetries remain unbroken.

Beyond our approximation, there might be p-wave (or
higher partial wave) induced interactions between the com-
posite fermions leading to a more complicated ground state at
T = 0. For a p-wave superfluid ground state corresponding to
a condensate of pairs of fermionic dimers ξ , both the U(1)φ and
the U(1)ψ symmetries are broken spontaneously. However, in

contrast to Bose-Einstein condensation of elementary bosons
φ, a discrete Z2 subgroup of U (1)φ remains unbroken.

In general, we therefore expect a true quantum phase
transition to separate the regimes at (akF )−1 → −∞ and
(akF )−1 → ∞ in the density-balanced mixture. The order of
the phase transition and the exact critical values (akF )−1

c [27]
depend sensitively on the value of the dimensionless boson-
boson scattering length ãB . From our numerical calculations,
we found the phase transition to be located at (akF )−1 > 0
for all choices of studied parameters. We therefore restrict our
discussion to that region.

To identify the order of the phase transition, we calculate the
effective potential U (ρ̄) given by Eq. (11). As was mentioned
in Sec. II, in our treatment Uξ (ρ̄) = − ∫

p
ln G−1

ξ (p) is the
only fluctuation-induced term that carries ρ̄ dependence.
This is why the asymptotic behavior of Uξ (ρ̄) as ρ̄ → ∞
is of particular interest for the stability of the mixture. We
investigated this numerically and observed that, for aB = 0, the
dimer contribution Uξ (ρ̄) diverges to negative values according
to the power law

Uξ (ρ̄) ∼ −ρ̄κ for ρ̄ → ∞, (19)

with the exponent κ ≈ 1.6 [28]. In fact, we observed that the
exponent κ depends weakly on the parameters μφ , μψ , and
a. For the parameters we checked κ ∈ (1.6,1.7). Remarkably,
κ > 1, resulting in the effective potential U (ρ̄) to become
unbounded from below for λ = 0, i.e., for aB = 0. This means
that for λ = 0 the model supports at most metastable states (see
Sec. VII), which eventually collapse into the state with ρ̄ →
∞. In physical terms, the ground state prefers to develop a large
condensate due to induced attractive interactions. Since κ < 2,
the effective potential can be stabilized by imposing some
arbitrarily small but positive value for λ. Indeed, this changes
the microscopic or classical part of the effective potential in
Eq. (11) such that for large ρ̄ it increases according to

lim
ρ̄→∞ U (ρ̄) = λ

2
ρ̄2. (20)

Since the inverse composite propagator G−1
ξ in Eq. (A7)

depends on λ, we find that the fluctuation-induced part of
the effective potential Uξ (ρ̄) becomes a function of λ. It was
observed, however, that this dependence is mild and does
not affect much the large ρ̄ behavior found in Eq. (19). We
conclude that a finite positive boson-boson scattering length aB

plays a vital role in our model, as it bounds the potential from
below and thus renders the system thermodynamically stable.

The situation may be understood by considering the boson-
boson scattering in the presence of a condensate. The relevant
interaction strength is given by the fourth derivative of the
potential with respect to φ, which contains a term ∂2U

∂ρ2 .
While the microscopic interaction is pointlike and repulsive
with strength λ, the interaction induced by fluctuations of
the composite fermions is attractive for large ρ̄, decaying
∼ −ρ̄κ−2 as ρ̄ → ∞. For some ρ̄ the effect of this attractive
boson-boson-induced interaction may win over the effect of the
attractive boson-fermion interaction, which leads to pairing.
In particular, instead of forming fermion-boson composites,
which would lower the condensate, the system prefers to
develop a large condensate with the lower grand canonical
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FIG. 4. (Color online) Effective potential for the Bose-Fermi
mixture as a function of ρ̄ illustrating a first-order phase transition.
From top to bottom, the curves correspond to values of akF = 0, 2.66,
2.69, while ãB = 0.17 is fixed for all three curves [29]. All curves
were obtained for equal masses mφ = mψ .

potential �G. Without the repulsive microscopic interaction,
the mixture would be unstable due to the collapse of the
attractive bosonic system. Since κ < 2, for λ > 0 there should
be a finite critical value ρ̄ = ρ̄0 for which the minimum of
the grand potential �G is reached. We conclude that the
behavior of U (ρ̄) is governed by a competition between
the classical contribution Ucl(ρ̄) = −μφρ̄ + λ

2 ρ̄2 and the
fluctuation-induced term Uξ (ρ̄). Thus, to classify the phase
transition to the phase with Bose-Einstein condensation in
terms of its order, we need to study the global properties of the
effective potential U (ρ̄) for arbitrary ρ̄ � 0.

For (akF )−1 → ∞ and ãB > 0, the Bose-Fermi mixture is
in the normal phase, i.e., with the global minimum of U (ρ̄)
located at ρ̄0 = 0. In general, two scenarios for the transition to
the phase with a Bose-Einstein condensate are now possible.
One corresponds to a first-order phase transition where the
form of the effective potential changes as a function of (akF )−1

such that it first develops a second (local) minimum at ρ̄min >

0. The point (akF )−1
c where U (ρ̄min) becomes equal to U (ρ̄ =

0) marks a first-order phase transition. Figure 4 illustrates how
this scenario is realized in the Bose-Fermi mixture. Strictly

FIG. 5. (Color online) Effective potential for the Bose-Fermi
mixture for ãB = 0 as a function of ρ̄ illustrating a second-order
phase transition. The curves from bottom to top correspond to
increasing values of (akF )−1 = 1.43,1.45,1.49,1.55,1.61,1.66,1.67.
We normalized the curves to the fermi momentum kF,0 at ρ̄0 = 0.

FIG. 6. (Color online) Quantum phase diagram for ãB = 0.17 in
the chemical potential plane with μ̃φ = μφ/|εB | and μ̃ψ = μψ/|εB |
with the different phases defined in Table I. The black circles mark
the first-order phase transition boundary. In the inset, we illustrate
the density-balanced line nφ = nψ inside the normal phase, which
intersects the phase transition line at (akF )−1 ≈ 2.5.

speaking, the effective potential should be a convex function.
The expressions we obtained from the Gaussian approximation
are nonconvex (see Fig. 4). Physically, this suggests the
necessity of a mixed state (phase separation), which can be
obtained via the Maxwell construction [30]. In general, the
particle number densities nφ and nψ and other thermodynamic
observables must be evaluated at the global minimum of
the effective potential. As the global minimum undergoes a
discontinuous jump, there are discontinuities in the particle
densities and (akF )−1

c across the first-order phase transition.
The other possibility is a second-order phase transition.

In that case, the minimum of the effective potential changes
continuously from ρ̄ = 0 to a positive value as a function
of (akF )−1. Also, the particle numbers nφ and nψ are now
continuous functions of (akF )−1. Figure 5 illustrates how the
second-order phase transition is developed in the metastable
state at ãB = 0 (see Sec. VII for more details).

VI. QUANTUM PHASE DIAGRAM

After the detailed analysis of the density balanced case
in the previous section, we are ready for a discussion of the
full quantum phase diagram of a Bose-Fermi mixture with
equal masses mφ = mψ . In general, the phase diagram spans
a three-dimensional space and can be parametrized by three
dimensionless variables. For instance, we can scale away
the boson-fermion scattering length a and use [μ̃φ,μ̃ψ ,ãB],
where μ̃φ,ψ = μφ,ψ

|εB | and ãB = aB

a
with εB defined in Eq. (15).

We will use this parametrization in this section. Alternatively,
the phase diagram can be parametrized by the different set
of dimensionless variables [ nψ

nφ
,(akF )−1,ãB], which is more

appropriate for a direct comparison with experiments with
ultracold Bose-Fermi mixtures (see Sec. I for our detailed
discussion).

Although a three-dimensional plot is necessary to map the
full quantum phase diagram, we resort here to making a two-
dimensional cut; i.e., we fix ãB and plot the phase boundary
in the chemical potential plane (μ̃φ,μ̃ψ ). Since it would be
difficult to present all the details of this cut in a single plot,
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TABLE I. Different phases in Figs. 6 and 8.

SYM1 ρ0 = 0 nφ > 0 nψ > 0 nφ < nψ

SYM2 ρ0 = 0 nφ > 0 nψ > 0 nφ > nψ

SYM3 ρ0 = 0 nφ = 0 nψ > 0
VAC ρ0 = 0 nφ = 0 nψ = 0
BEC1 ρ0 > 0 nφ > 0 nψ > 0 nφ < nψ

BEC2 ρ0 > 0 nφ > 0 nψ > 0 nφ > nψ

BEC3 ρ0 > 0 nφ > 0 nψ = 0

we present two separate figures that cover two qualitatively
different domains of the chemical potential plane.

In Fig. 6, an exemplary cut at ãB = 0.17 is illustrated
for the bosonic chemical potential covering the range μ̃φ ∈
(−1.15, − 0.85). The black circles mark the first-order phase
transition boundary that separates the symmetry broken phase
from the symmetric phase (see Table I for the definition of
the different phases). In the spontaneously broken phase one
finds nφ > nψ corresponding to the regime BEC2. Note that
the phase BEC1 is not visible in Fig. 6, but we found that
it is realized in the Bose-Fermi mixture at more negative
bosonic chemical potential. The dashed black line is obtained
from the condition G−1

ξ (p0 = 0, 	p = 0) = 0. It separates the
area with nonzero boson density (SYM1 and SYM2) from
the area with nφ = 0 (SYM3 and VAC). In the latter case,
the fermion density also vanishes for μ̃ψ � 0, resulting in a
thermodynamic state with no density, i.e., the vacuum state
(VAC). In the inset of Fig. 6, we plot a part of the density
balanced (nφ = nψ ) line (solid blue) located in the normal
phase. The line terminates at (μ̃φ,μ̃ψ ) = (−1,0), where both
nφ and nψ vanish, and intersects the phase transition line at
μ̃φ = −0.99 and μ̃ψ = 0.035 leading to (akF )−1 ≈ 2.5 when
approached from the normal phase.

By changing ãB , we obtained more cuts of the phase
diagram. Qualitatively, ãB > 0.17 leads to an upward shift
of the phase transition line in Fig. 6. In addition, for larger
ãB , our calculation predicts that a part of the phase transition
line in the window μ̃φ ∈ (−1.15, − 0.85) turns to be second
order. This is illustrated in Fig. 7, where ãB = 0.21. For this
particular choice, the order of the phase transition changes
exactly at nφ = nψ . We expect that for a sufficiently large

FIG. 7. (Color online) Quantum phase diagram for ãB = 0.21 in
the chemical potential plane with μ̃φ = μφ/|εB | and μ̃ψ = μψ/|εB |
with the different phases defined in Table I. The black circles mark
the phase transition boundary, where the red (gray) section is of the
first order and the green (light gray) section of the second order.

FIG. 8. (Color online) Quantum phase diagram for ãB = 0.17 in
the chemical potential plane with μ̃φ = μφ/|εB | and μ̃ψ = μψ/|εB |.
The black circles mark the phase transition boundary, which changes
from the first order [red (gray) line] to the second order [green (light
gray) line]. The different phases are defined in Table I.

ãB , the whole transition boundary becomes of second order
and can thus be obtained from the Thouless criterion (see
Sec. VII). On the other hand, we found that for ãB < 0.17,
the transition boundary remains of the first order and is shifted
downward compared to Fig. 6. At sufficiently small ãB , it
enters the vacuum phase, indicating an instability of vacuum
with respect to the formation of a condensate.

We observe that our model predicts that a phase transition
can happen even for nφ > nψ when approached from the
normal phase. This is evident from the inset of Fig. 6, where a
part of the phase transition line bounds the region SYM2 with
nφ > nψ . It remains to be seen in future work whether this
surprising behavior is a true feature of the phase diagram or
an artifact of our approximation [32].

A different region of the phase diagram for ãB = 0.17 is
illustrated in Fig. 8, where μ̃φ ∈ (−0.2,0.3). In this figure,
the symmetric vacuum phase (VAC) is separated from the
symmetry broken phase (BEC2 and BEC3) by the line of phase
transition, which changes its order from the first [red (gray)
line] to the second [green (light gray) line] at μ̃φ = 0 and
μ̃ψ ≈ −1.6. It is worth noticing that we find no normal phase
present for μ̃φ > 0. In fact, for sufficiently small fermionic
chemical potential, i.e., in the region BEC3 in Fig. 8, we
find a vanishing fermion particle density. Since there are no
fermions in this region, the Bose-Fermi mixture reduces to
a pure bosonic theory with pointlike repulsive interactions.
Our approximation then is equivalent to the Bogoliubov
mean-field treatment. The green second-order transition line
in Fig. 8 represents the well-known quantum critical point,
which separates a symmetric vacuum from a BEC at μφ = 0
in the pure bosonic theory.

Since our approximation strategy relies on the smallness of
the boson-boson scattering length aB , we expect that only the
qualitative features of the three-dimensional phase diagram
are captured correctly by our current approach.

VII. METASTABLE STATE

As we emphasized in Sec. V, the effective potential is
unbound from below at aB = 0, and the model ceases to be
thermodynamically stable. Nevertheless, for a certain range of
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FIG. 9. (Color online) Fermion chemical potential in the
metastable normal phase as a function of the combination (akF )−1

for density and mass balanced systems with boson-boson scattering
length aB = 0.

parameters, the effective potential U (ρ̄) has a local minimum
ρ̄0 at or near the origin manifesting the presence of a metastable
state. In this section, we concentrate our attention on this
local minimum and a possible second-order quantum phase
transition. We treat the state as stable, which is justified
provided the decay time to the global minimum of U (ρ̄) is
large compared with the timescales of typical experiments.
The interesting question of a dynamical tunneling from this
state is deferred to a future work.

By working in the symmetric phase where ρ̄0 = 0 and
μφ < 0, we can then simultaneously solve the particle density
Eqs. (17) and (18) for the two chemical potentials at fixed
particle densities nφ and nψ as a function of the dimensionless
quantity (akF )−1. This gives the elementary particle chemical
potentials μφ and μψ as a function of the combination (akF )−1

(blue curves in Figs. 9 and 10).
We can then identify a second-order phase transition point

by the Thouless criterion, which states that the bosonic mass
term m2 = G−1

φ (p = 0) needs to vanish at the critical point,

m2 = −μφ + �φ
!= 0, (21)

FIG. 10. (Color online) Boson chemical potential in the
metastable normal phase (blue) as a function of the combination
(akF )−1 for density and mass balanced systems with boson-boson
scattering length aB = 0. As the boson mass m2 = −μφ + �φ (inset,
red) crosses the horizontal axis, the system undergoes a second-order
phase transition from the metastable normal to BEC phase.

FIG. 11. (Color online) Critical point as a function of the mass
ratio of bosons and fermions in the density balanced case without
boson-boson interactions, aB = 0.

with the boson self-energy denoted by �φ . For aB = 0, one
finds

Σφ = =
p

Gξ(p)Gψ(p).

(22)

As the bosonic mass term can alternatively be obtained from
the first derivative of the effective potential with respect to the
parameter ρ̄, Eq. (21) is equivalent to a vanishing slope of
the effective potential ∂U (ρ̄)/∂ρ̄ = 0 at ρ̄ = 0. We emphasize
that the criterion Eq. (21) is a local condition that can only be
applied for a second-order phase transition.

By substituting the chemical potentials μφ and μψ de-
termined from solving the particle density Eqs. (17)–(18)
into Eq. (21), we obtain m2 as a function of (akF )−1 (red
curve in inset of Fig. 10). We identify the critical point of
the quantum phase transition from the zero-crossing of this
function. It is located at (akF )−1

c = 1.659 for density and mass
balanced systems, nψ

nφ
= mφ

mψ
= 1, with vanishing boson-boson

interactions aB = 0. This number agrees well with the result
recently obtained in Ref. [11].

To relate our findings to experiments, we also investigate
how a change in the mass and density ratio and the boson-boson
scattering length affects the location of the critical second order
phase transition point (akF )−1

c .
Figure 11 illustrates the effect of the mass ratio mφ

mψ
on

the critical point for a range from mφ

mψ
= 0.2 to mφ

mψ
= 20 in

the density balanced case nφ = nψ with aB = 0. We observe
that the value of the critical point (akF )−1

c first decreases with
increasing mass ratio mφ

mψ
before approaching a minimum at a

mass ratio of mφ

mψ
≈ 5 and gradually increasing for large values

of mφ

mψ
. In Fig. 12, we show the change of the position of the

metastable critical point (akF )−1
c with the density imbalance

nψ

nφ
for mφ = mψ and aB = 0. Since we expect the critical

point to be present only for nψ � nφ , we restrict our analysis
to this regime. Our results show that an increasing ratio nψ

nφ

decreases the value of (akF )−1
c . This is expected intuitively,

as an excess of fermions increases the probability for a boson
to find a binding partner. From the result for nψ

nφ
� 1, we can

interpolate to the extremely imbalanced case of one boson
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FIG. 12. (Color online) Critical point as a function of the density
ratio of fermions and bosons for fixed mass ratio mφ

mψ
= 1 and

vanishing boson-boson interactions aB = 0.

immersed in a sea of fermions. As the quantum statistics
for a single particle is immaterial, we expect to recover
the molecule-to-polaron phase transition point, which occurs
in systems where a fermion of one type is immersed in a
sea of fermions of a different type. We found a value of
(akF )−1

c = 1.21, while the established value obtained from the
variational calculation [33] and non-self-consistent T-matrix
[11] is given by (akF )−1

c = 1.27. We note that beyond these
approximations, a value of (akF )−1

c = 0.9 was obtained with
more refined methods [34].

To investigate the influence of the boson-boson scattering
length aB on the location of the critical point for the
metastable state, we must consider an additional diagram for
the computation of the boson self-energy. The self-energy
reads

Σφ = + .

(23)

Note that the tadpole diagram consisting of a simple boson loop
vanishes at the level of our approximation. Our results obtained

FIG. 13. (Color online) Critical point as a function of the rescaled
dimensionless boson-boson scattering length ãB = aB/a for mixtures
with nψ

nφ
= 1 and mφ

mψ
= 1.

TABLE II. List of some broad Feshbach resonances (width
|�B| � 1G) realized in experiments. The table lists the measured
positions of the resonances B0, their widths �B, and the background-
scattering length for the bosons in units of the Bohr radius, aB/a0. We
predict the location of the critical point (akF )−1

c under the assumption
of vanishing boson-boson interactions, aB = 0, and for density
balanced systems with nψ = nφ . Furthermore, we give an estimate
(obtained from the criterion ãB = aB/a ∼ 0.1) for the density nC ,
below which the influence of aB on the location of the critical point
is negligible.

B0[G] �B[G] aB

a0
nC[cm−3] (akF )−1

c

23Na-6Li [35] 795.6 2.177 63 2.2 × 1014 1.265
87Rb-40K [36] 546.9 −3.1 100 4.6 × 1013 1.355
87Rb-6Li [37] 1067 10.62 100 4.4 × 1013 1.377
41K-40K [38] 543 12 85 4.1 × 1013 1.644

for nφ = nψ and mφ = mψ are summarized in Fig. 13. For
small values of ãB = aB/a, the position of the critical point is
almost unaltered by the boson-boson interaction. But starting
at about ãB ∼ 0.1, the boson interactions strongly influence
the position of the critical point. However, we note that this
is exactly the regime where the assumption of a small boson-
boson coupling λ used to derive the analytic formulas for
the inverse composite particle propagator (A7), (A8) might
become invalid. Nevertheless, we conclude that boson-boson
interactions have a negligible effect on the properties of the
metastable state as long as the system is sufficiently dilute, that
is nψ � 1

6π2 [ 0.1
aB (akF )−1

c
]3 ≡ nC .

Table II lists some Feshbach resonances realized in ex-
periments. For these experiments we calculated the position
of the associated metastable quantum critical point as well
as the critical fermion density nC below which boson-boson
interactions are safely negligible.

So far, we only investigated the second-order phase transi-
tion approached from the symmetric phase. Below the critical
point (akF )−1 < (akF )−1

c , we resort to a direct analysis of
the effective potential U (ρ̄), which is plotted in Fig. 5 for
some fixed values of (akF )−1, where all curves approximately
correspond to a fixed density ratio nψ

nφ
� 1 [39]. From that we

can determine the location of the minimum ρ̄0 of the effective
potential U (ρ̄) that gives the metastable equilibrium of the
system. This allows for the computation of the condensate
fraction ρ̄0k

−3
F as a function of (akF )−1 close to criticality

in the spontaneously symmetry broken metastable phase (see
Fig. 14). The critical point is then obtained from the vanishing
of the order parameter

√
ρ̄0, which yields (akF )−1

c = 1.659 in
perfect agreement with the result we previously determined
from the symmetric phase.

Near a second-order phase transition the system is scale
invariant and is governed by a fixed point of the renormaliza-
tion group. It is of great interest to study the behavior of our
model near criticality and determine the critical exponents of
the metastable quantum phase transition. First, we compute
the critical exponent β∗ corresponding to the scaling of the
order parameter near the critical point. It is defined by

√
ρ̄0 ∼ [

(akF )−1 − (akF )−1
c

]β∗
. (24)
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From the linear fit in Fig. 14, we read off β∗ = 1
2 .

Furthermore, we can infer the critical exponent ν∗ for the
scaling of the correlation length

ξL ∼ [
(akF )−1 − (akF )−1

c

]−ν∗
. (25)

In particular, since [ ∂U
∂ρ̄

]ρ̄=0 = m2 = ξ−2
L

2mφ
, we can extract the

value of the critical exponent ν∗ from the behavior of the boson
mass term m2 as a function of (akF )−1 in the normal phase.
From Fig. 10 we find ν∗ = 1

2 .
Both exponents agree with a standard mean-field theory.

Our result is also in agreement with Ref. [7], where the
effective field theory near the critical point was studied in detail
for Bose-Fermi mixtures near a narrow Feshbach resonance.
The authors of Ref. [7] found the mean field critical behavior
with the dynamical nonrelativistic critical exponent z = 2.

VIII. CONCLUSION

In this work, we investigated the general structure of the
quantum phase diagram for homogeneous resonant Bose-
Fermi mixtures near a broad Feshbach resonance. We argued
that a naive mean-field theory treatment is insufficient and
found an adequate description within the two-step Gaussian
approximation. In principle, this method can be straightfor-
wardly adopted for the investigation of Bose-Fermi mixtures
at finite temperature near a Feshbach resonance of arbitrary
width.

We found that a repulsive boson-boson interaction de-
scribed in our model by a positive scattering length aB is
essential to ensure thermodynamic stability of the quantum
Bose-Fermi mixture. Direct analysis of the global properties
of the effective potential allowed us to uncover a rich structure
of the three-dimensional quantum phase diagram with both
first- and second-order phase transitions. Phase separation in
the mixed state and the hysteresis effect seem to be promising
experimental signatures of the predicted first-order phase
transition in Bose-Fermi mixtures.

We have not yet discussed in what parameter ranges the
experimental realization of the first-order transition from the
normal phase to the BEC-liquid is most promising. From a
theoretical point of view a BEC with a moderate particle
density offers the best chances that possible additional physical
effects, which go beyond the approximation of fermions and

FIG. 14. (Color online) Condensate fraction near the metastable
second-order phase transition point as a function of (akF )−1 for
density and mass balances Bose-Fermi mixtures with fixed aB = 0
(blue). The red solid curve is a linear fit.

bosons with pointlike interactions, play only a minor role. This
is a prerequisite for the validity of the found stabilization of
the BEC-liquid by the competition between the fluctuation-
induced attraction and the microscopic repulsion.

In addition, we discussed in detail the “thermodynamics”
of a metastable state. We successfully determined the location
of the second-order quantum critical point, which separates a
metastable phase with a Bose-Einstein condensate from the
metastable normal phase. An investigation of the effect of
such diverse factors as the density and mass ratios and the
boson-boson scattering length on the location of the critical
point provided a direct way to relate our findings to current
experiments. Furthermore, we computed the critical exponents
and analyzed the density distributions of the elementary
particles. The properties of the quasiparticle excitations both
in the BEC and normal phase were investigated.

Let us finally note that we have not yet addressed directly the
question of local stability of a degenerate Bose-Fermi mixture
near a broad Feshbach resonance. This, however, is of central
importance for the experimental realization of the quantum
phase transitions analyzed in this paper. In general, one
requires two different conditions to be fulfilled for stability:

First, the atom loss rate, which originates from microscopic
three-body recombination, must be small. In general, this can
be achieved, if the critical regime is far from the Feshbach
resonance. From this perspective, the most promising systems
should have a small mass ratio mφ

mψ
and a small boson-boson

interaction ãB .
Second, the mixture should be stable against mechanical

collapse and thus have a positive-definite compressibility
matrix. The question of mechanical stability of a Bose-
Fermi mixture near a broad Feshbach resonance has been
recently studied in Ref. [40]. It was found that the system
becomes mechanically stable for sufficiently large positive
dimensionless boson-boson scattering length ãB . We believe
that our discussion of global stability of the effective potential
is complementary to the local stability analysis of Ref. [40].

As we treated the system perturbatively in aB , our results
have only a qualitative character for large aB . Proper quan-
titative understanding of the quantum phase diagram in this
regime provides an interesting subject for future investigation.

We conclude that an experimental realization of Bose-
Fermi mixtures at very low temperatures can offer a large
variety of interesting phenomena, both for the metastable
second-order phase transition, and the first-order transition
to a BEC liquid. In particular, the mixtures are expected to
show many characteristic features related to the first-order
phase transitions. One may expect the mixed phase and in
particular droplets of a Bose-Einstein condensate that are kept
together by surface tension even once the trap potential is
removed, similar to water droplets. Another striking signal
could be hysteresis effects with the sudden appearance and
disappearance of a condensate with a large number of atoms.
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APPENDIX A: COMPOSITE PARTICLE PROPAGATOR

In this appendix, we derive an expression for the (inverse)
propagator of the composite fermion field ξ based on a one-
loop approximation that takes fluctuations of the fundamental
fermion (ψ) and boson field (φ) into account. In the few-
body limit of vanishing particle density and temperature, our
calculation yields the correct result for the binding energy of
the fermion dimer as a function of the scattering length a > 0.
At nonzero density, it accounts for the contribution of dimers
to thermodynamic observables such as the pressure and the
particle densities.

We start from Eq. (9) corresponding to the one-loop
particle-particle diagram in Fig. 3. By writing

detG−1
φ (p) = p2

0 +
( 	p2

2mφ

− μφ + λρ̄

)( 	p2

2mφ

− μφ + 3λρ̄

)
=

(
+ip0 + 	p2

2mφ

− μφ + 2λρ̄

)
×

(
−ip0 + 	p2

2mφ

− μφ + 2λρ̄

)
− λ2ρ̄2 (A1)

and neglecting the last term −λ2ρ̄2, the expression for ζ (p)
considerably simplifies

ζ (p) = h2
∫

q

(
i(p0 + q0) + ( 	p + 	q)2

2mψ

− μψ

)−1

×
(

−iq0 + 	q2

2mφ

− μφ + 2λρ̄

)−1

. (A2)

In the following, let us first restrict our attention to the domain
2λρ̄ − μφ � 0, where the pole due to the boson propagator is
always in the lower half of the complex q0 plane. We close the
q0-integral in the upper half and find that the whole expression
vanishes unless

( 	p + 	q)2

2mψ

− μψ − Im p0 > 0. (A3)

After using the residue theorem for the frequency integration,
we are left with the following integral over spatial momentum
	q:

ζ (p) = h2
∫

	q

�
[ ( 	p+	q)2

2mψ
− μψ − Im p0

]
ip0 + 	q2

2mφ
+ ( 	p+	q)2

2mψ
− μφ − μψ + 2λρ̄

. (A4)

It is straightforward to compute the remaining momentum in-
tegral

∫
	q = (2π )−3

∫
d3q in Eq. (A4) for external momentum

	p = 0. To achieve this goal, we regularize the linear ultraviolet
divergence by imposing a cutoff at the scale |	q| = �. Under
the assumption Im p0 − μψ − μφ + 2λρ̄ > 0, we obtain

ζ (p0) = −h2mr

π2

{
� − π

2

√
χ0(p0)

−�(μψ + Im p0)

[√
2mψ (μψ + Im p0)

−
√

χ0(p0) arctan

(√
2mψ (μψ + Im p0)

χ0(p0)

)]}
, (A5)

with χ0(p0) = 2mr [ip0 − μφ − μψ + 2λρ̄].

FIG. 15. (Color online) Boson density distribution nφ( 	p) as a
function of | 	p|k−1

F near a metastable second-order phase transition
for density and mass balanced systems at aB = 0 at (akF )−1 = 1.608
[blue (dark gray) line], 1.647 [red (gray) line], 1.659 [green (light
gray) line]. All boson density distributions in the symmetric phase
(akF )−1 � (akF )−1

c are identical to the green (light gray) curve.

For μψ + Im p0 > 0 the computation of ζ (p0, 	p) for
nonzero spatial momentum 	p is significantly more compli-
cated and was done in the real-time formalism in Refs. [3,6,10].
At vanishing density we could in principle use analytic
continuation of Eq. (A5) and a Galilean invariance argument
for this task. However, this is not exact at nonzero density.
In the following, we nevertheless derive an approximate
expression inspired by the Galilei-invariant result at zero
density. Specifically, in Eq. (A5) we perform the replacement

χ0(p0) → χ (p) = 2mr

[
ip0 + 	p2

2mξ

− μφ − μψ + 2λρ̄

]
(A6)

and thus neglect further possible dependence on 	p. From
numerical computations of ζ (p) at 	p �= 0 we found that this is
indeed a reasonable approximation for Im p0 = 0.

FIG. 16. (Color online) Fermion density distributions nψ ( 	p) as a
function of | 	p|k−1

F for density and mass balanced metastable mixtures
at aB = 0. In addition to the curves shown for the bosons in Fig. 15
at (akF )−1 = 1.608 [blue (dark gray) line], 1.647 [red (gray) line],
1.659 [green (light gray) line], we also show the density distributions
in the metastable symmetric phase for (akF )−1 = 5 (dotted orange)
and (akF )−1 = 20 (dashed brown).
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Finally, using the resulting expression in Eq. (8) and
adapting the parameter ν according to the discussion in Sec. III,
we find the following expression for the composite fermion
inverse propagator

G−1
ξ (p0, 	p)

h2
= − mr

2πa
+ mr

2π

√
χ (p) − ρ̄

G−1
ψ (p)

+�[μψ ]

{
mr

√
2mψμψ

π2

− mr

π2

√
χ (p) arctan

(√
2mψμψ

χ (p)

)}
, (A7)

which is valid in the regime 2λρ̄ − μφ � 0 and Im p0 − μψ −
μφ + 2λρ̄ > 0.

Following the same steps, it is straighforward to derive the
inverse composite propagator

G−1
ξ (p0, 	p)

h2
= − mr

2πa
+ mr

2π

√
χ (p) − ρ̄

G−1
ψ (p)

+�[μφ − 2λρ̄]

{
mr

√
2mφ(μφ − 2λρ̄)

π2

− mr

π2

√
χ (p) arctan

(√
2mφ(μφ − 2λρ̄)

χ (p)

)}
,

(A8)

valid in the domain 2λρ̄ − μφ < 0, μψ < 0 and Im p0 −
μψ − μφ + 2λρ̄ > 0.

APPENDIX B: DENSITY DISTRIBUTIONS

From the particle-density equations we can extract the
density distributions nφ( 	p) for bosons and nψ ( 	p) for fermions,
defined by

nφ = ρ̄0 +
∫

	p
nφ( 	p),

(B1)
nψ =

∫
	p
nψ ( 	p),

where the integrands are taken from Eqs. (17), (18). Our
results for density and mass balanced metastable mixtures with
aB = 0, presented in Figs. 15 and 16, show several interesting
features. These features are also visible in the dispersion curves
of fermion quasiparticles extracted from the poles of Eqs. (17)
and (18) and plotted in Fig. 17.

In the metastable symmetric phase (akF )−1 � (akF )−1
c , the

boson density distribution assumes the form of a Heaviside
step function. This is not unexpected, as bosons, to our level
of approximation, can either occupy the condensate or can
be bound into effective fermionic molecules [cf. Eq. (17)].
As ρ̄0 = 0 in the symmetric phase, all bosons need to be
absorbed into fermionic molecules such that their momentum
distribution assumes the form expected for an ideal fermi
gas of molecules. The fermion density distributions, on the
other hand, show two steps. The first step at small momentum
is due to the Fermi sphere of the elementary fermions
that give a contribution ∼ �[μψ − 	p2

2mψ
] for μψ > 0. The

FIG. 17. (Color online) Dispersion curves of fermion quasiparti-
cles at (akF )−1 = 1.652 (thick blue—metastable symmetry broken)
and (akF )−1 = 1.659 (red—metastable symmetric) for density and
mass balanced Bose-Fermi mixtures with vanishing boson-boson
interactions aB = 0. In the symmetric case, two curves are present,
one each due to elementary and composite fermions. The appearance
of the Bose-Einstein condensate, ρ̄0 > 0, leads to avoided crossing
of the dispersion curves, reflecting the mixing of composite and
elementary fermions due to interactions with the condensate.

fermionic composites give rise to another step function that
ends precisely at the fermi momentum kF . In the dispersion
curves (blue in Fig. 17), this feature becomes visible through
two zero crossings of the dispersion branches of the elementary
and composite fermions. Moving away from the critical point
deeper in the metastable symmetric phase, the elementary
fermion chemical potential μψ approaches zero (see Fig. 9).
The first step then moves to lower and lower momentum
until the fermion density distributions assume the form of
a single step identical to the boson occupation nφ( 	p). As
expected, in this regime all elementary bosons and fermions are
locked up into molecular composites, which form a free fermi
gas.

In the metastable symmetry broken phase, the kink in
the boson and fermion density distributions (Figs. 15, 16)
is due to the mixing of elementary and composite fermions
and can be understood by considering Fig. 3(a). Here, a
composite fermion supplies its boson to the condensate and
becomes an elementary fermion before absorbing a condensed
boson and becoming a composite once again. Alternatively, an
elementary fermion may take a boson from the condensate and
form a fermionic composite before returning the boson back
to the condensate. This mechanism is also visible from the
dispersion curves of fermion quasiparticles (Fig. 17), where
it leads to the avoided crossing of the dispersion lines as
one moves from the symmetric to the symmetry bro-
ken metastable phase. This feature was also observed
in Refs. [5,8,9].

We note here that the density distributions we obtained
do not reflect the relative movement of elementary particles
bound inside fermionic dimers. In this sense, Eq. (B1) does
not correspond to a proper definition of occupation numbers.
However, it is a rather convenient way to analyze and illustrate
the expressions for the integrated particle densities in Eqs. (17),
(18). This is also the reason why we do not encounter a smooth
decay of the density distributions n( 	p) ∼ | 	p|−4 for high values
of 	p as predicted by Tan [41]. The authors of Ref. [11]
computed the proper occupation numbers in momentum space
and did observe the expected tail.
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