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Rate of runaway evaporative cooling
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Evaporative cooling is a process that is essential in creating Bose-Einstein condensates in dilute atomic gasses.
This process has often been simulated based on a model using a truncated Boltzmann distribution. This model
assumes that the energy distribution up to the threshold energy can still be described by a Boltzmann distribution:
it assumes detailed balance up to the threshold energy. However, the evolution of the distribution function in time
is not taken into account. Here we solve the kinetic Boltzmann equation for a gas undergoing evaporative cooling
in a harmonic and linear trap in order to determine the evolution of the energy distribution. The magnitude of
the discrepancy with the truncated Boltzmannmodel is calculated by including a polynomial expansion of the
distribution function. We find that up to 35% fewer particles are found in the high-energy tail of the distribution
with respect to the truncated Boltzmann distribution and up to 15% more collisions are needed to reach quantum
degeneracy. Supported by a detailed investigation of the particle loss rate at different energies, we conclude that
the limited occupation of high-energy states during the evaporation process causes the lowering of the evaporation
speed and efficiency.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) can be obtained by
cooling down a bosonic gas to an extremely low temperature,
of the order of a few hundred nK [1–3]. The first part of
the cooling of atoms at room temperature is in most cases
performed by laser cooling which can cool down to typical
ranges of mK [4]. The last part of the cooling process is
performed by evaporative cooling.

Evaporative cooling is based on the selective removal
of high-energy particles from a gas of atoms [5–7]. This
can be summarized in two steps: the evaporation step,
in which the particles with a total energy that is higher
than a certain threshold energy εT are removed, and the
rethermalization step, in which the kinetic energy is redis-
tributed among the remaining particles using elastic colli-
sions. The theory of evaporative cooling is complex and,
so far, not fully understood. Although models are available
describing the general characteristics of the cloud of atoms
during the evaporation process [8,9], such as the temperature
and the typical particle loss rate, the time evolution of the
energy distribution is not fully described. These models are
based on the assumption that the energy distribution is shaped
as a truncated Boltzmann (tB) distribution up to the energy
threshold and, thus, that detailed balance occurs up to the
threshold energy. However, the validity of this assumption
has, to our knowledge, never been verified.

Knowing the evolution of the energy distribution during
evaporative cooling is of particular importance for an exciting
new field of research: the realization of a continuous atom laser.
The first atom lasers were created more than 10 years ago,
where atoms are coupled out from a Bose-Einstein condensate
to form a coherent atomic beam [10–13]. Since the condensate
is depleted quickly, the outcoupling can only be continued
after the creation of a new condensate and such an atom laser
can only be considered a “pulsed” atom laser. A continuous
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atom laser can be achieved by cooling an atomic beam
down to degeneracy, leading to a “truly” continuous beam of
coherent atoms, which can be used for interferometry and atom
optics [14]. Intensive research has been performed in this field
[15–24]. To achieve a continuous atom laser, evaporative cool-
ing is performed on a beam propagating through a magnetic
guide. The time it takes to achieve degeneracy determines the
required length of the magnetic guide. It is therefore important
that the time evolution of the energy distribution is well
understood.

The tB model is based on detailed balance between the
elastic collisions taking place inside the cloud of atoms in
order to reach thermalization. For the cloud of atoms to
follow this distribution up to the threshold energy, detailed
balance must therefore be fulfilled up to the threshold energy.
Figure 1 shows why this condition is not fulfilled for all
energies. In Fig. 1(a) particles 1 and 2, with energies below εT ,
collide, resulting in a high-energy particle (4) and a low-energy
particle (3). The reverse process is possible and is equally
probable, such that detailed balance is fulfilled. Figure 1(b)
shows what happens with energies close to εT . Here one
of the particles gains enough energy from the collision
to exceed εT and to be evaporated. Therefore the reverse
process is not possible and detailed balance is broken. This
changes the dynamics of the evaporation process and slows it
down.

The goal of this research is to accurately determine the
evolution of the energy distribution in order to calculate the
evaporation efficiency and the time it takes to reach quantum
degeneracy. In order to determine the evolution of the energy
distribution, the Boltzmann equation is solved. A polynomial
expansion of the Boltzmann distribution for the energy of the
atoms is used in order to take into account deviations from
this distribution. Thus the actual energy distribution can be
described accurately and is used to determine how long it
takes for quantum degeneracy to occur. The calculation is
performed for a monatomic gas in a harmonic and a linear
magnetic trap but is applicable to any trapping potential.
The method also provides the possibility to determine the
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FIG. 1. Elastic collisions in energy space. Left: Detailed balance
for particles with energies below the threshold energy εT , assuming
a truncated Boltzmann model. Each collision process throughout the
distribution function has equal probability of occurring in the opposite
direction. Right: How detailed balance is broken near the threshold;
the reverse process is not possible because particle 4 is evaporated,
as indicated by the cross.

deviations quantitatively and to allow for evaporation schemes
using a varying threshold energy.

II. THEORY

A. Evaporative cooling

As mentioned in the introduction, evaporative cooling
is based on two steps. The first step is evaporating the
high-energy particles. This can be done by using adjustable
potential barriers that only capture particles with a total energy
lower than a threshold energy εT . Removing the high-energy
tail causes the distribution to be out of equilibrium. The
second step is restoring equilibrium by redistributing the
kinetic energy among the remaining particles by the use of
elastic collisions. For simplicity, only elastic two-body s-wave
collisions are included. Losses due to vacuum and three-
body collisions are neglected. This simplifies the collision
integral, which is discussed later. After this process—called
rethermalization—the average energy per particle has been
lowered, which results in a lower average temperature. We
assume that all particles with an energy higher than εT are
immediately evaporated. This is called full evaporation. For
further cooling, the potential barriers can be lowered. In
our calculations an evaporation scheme based on a constant
evaporation parameter η = εT /kBT is used. This indicates that
η is an indicator of the potential trap depth.

Experimentally, evaporative cooling is performed by using
radio-frequency (rf) antennas to induce an rf transition from
a trapped state into a nontrapped state [25]. This so-called
“radio-frequency-induced evaporation” was first introduced
by the Walraven group [26] and the Pritchard group [27]. For
Rb and Na, typical evaporation schemes lower the rf from 60
to ∼0.8 MHz in a time interval between 15 and 40 s [28].

One of the most important characteristics of evaporative
cooling is the particle loss rate, which is determined by the
evaporation scheme. Calculations on the particle loss rate
usually focus only on the number of particles exceeding εT ,
since the tB model assumes detailed balance up to the energy
threshold. However, as shown in Fig. 1, detailed balance breaks
down near εT since the reverse process cannot occur. This
results in a lower occupation of energy states just below εT .
The tB model assumes the filling rate of these high-energy
states—governed by collisions at lower energy that fulfill

detailed balance—to be fast enough to maintain equilibrium up
to the threshold. Therefore the detailed shape of the distribution
below εT is often neglected in calculations. However, it is not
clear whether this assumption is always fulfilled. During the
refilling time the high-energy states are less occupied, causing
a “hole” in the distribution function. The result is that the
evaporation process is less likely to occur. This gives rise to
the argument that the limited availability of high-energy states
slows down the evaporation process. In our calculations, the
particles with an energy lower than εT are included in order to
find the actual shape of the distribution function and thereby
to check the validity of the tB model.

B. Boltzmann equation

The time evolution of the evaporation process is described
by the Boltzmann equation. The Boltzmann equation is used
to describe the phase-space distribution f (r,p) of a classical
gas and the Boltzmann distribution is the solution, when no
evaporation takes place. We assume that the gas can be treated
classically, namely, that n�3 � 1. Here, n is the density
and � = h/

√
2πmkBT is the deBroglie wavelength. This

assumption is valid for most of the evaporation time. The
advantage of this assumption is that the Boltzmann statistics
can be used instead of the Bose-Einstein statistics and that we
can use the Boltzmann equation to determine the evolution of
the energy distribution.

The Boltzmann equation is given by(
p
m

· ∇r − ∇rU · ∇p + ∂

∂t

)
f (r,p) = �(r,p), (1)

with the collision integral � given by

�(r,p)= σ

(2πh̄)32πm

∫∫
|prel|δ(p3 + p4 − p2 − p)

×[f (r,p3)f (r,p4)−f (r,p2)f (r,p)]dp2dp3dp4d	.

(2)

Here, U is the trapping potential, m is the mass of the particles,
∇r is the spatial gradient, and ∇p is the momentum gradient.
The collision integral �(r,p) on the right side of the equation
describes the effects of the various collisions on the atoms
with momentum p. Furthermore, p and p2 are the momenta
of the two colliding atoms before the collision, and p3 and p4
after the collision, σ is the collisional cross section, and 	 is
the collision angle. The first term in brackets on the right side
of Eq. (2) represents the “production” process of particles
with momentum p, and the second term the “destruction”
process. Note that our model does not allow for inelastic losses,
which, for certain systems, may be important. However, in the
comparison between the tB model and our model these losses
contribute to both models equally and thus do not change the
conclusions from our analysis.

III. METHOD

A. Building the Boltzmann equation

To determine the time evolution of the distribution function
the Boltzmann equation of Eq. (1) must be solved. This can
be done analytically by using a Boltzmann distribution with
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a polynomial expansion and an energy-dependent approach,
which is based on the work of Luiten et al. [9]. They use the
density of states and the energy-dependent distribution func-
tion instead of the momentum-dependent distribution function.
To convert from the momentum- to the energy-dependent
distribution function, we assume that the distribution of the
particles in phase space depends only on their energy. This is
referred to as “sufficient ergodicity” and it greatly simplifies
the calculations [9]. This assumption is valid if the trap
frequencies are much higher than the mean collision rate.
An advantage of this approach is that it can be used for
different trapping potentials, since only the density of states
ρ(ε) depends on the external trapping potential. Using the
assumption of sufficient ergodicity the density of states is given
by [9]:

ρ(ε) = (2πh̄)−3
∫∫

δ

(
ε − U (r) − p2

2m

)
drdp. (3)

Here, the Dirac δ function ensures energy conservation.
Evaluating the momentum integral yields

ρ(ε) = 2π (2m)3/2

(2πh̄)3

∫
U (r)�ε

√
ε − U (r)dr. (4)

The density of states can be calculated by inserting the specific
external trapping potential U (r) and integrating over space.

The assumption of ergodicity simplifies the Boltzmann
equation since the system can be treated locally homogeneous
[9]. It allows the distribution function to be written in terms of
energy:

f (r,p) =
∫

δ

(
U (r) + p2

2m
− ε

)
f (ε)dε. (5)

The result is that all terms of the Boltzmann equation drop
out except for the time derivative of the distribution function.
Combined with Eq. (3), the Boltzmann equation can be written
as [9]

ρ(ε)
∂f (ε)

∂t
= mσ

π2h̄3

∫∫
δ(ε3 + ε4 − ε2 − ε)ρ(min(ε,ε2,ε3,ε4))

× [f (ε3)f (ε4) − f (ε2)f (ε)]dε2dε3dε4, (6)

where εi is the energy of particle i (i = 2,4):

εi = pi2

2m
+ U (r). (7)

This equation can be used to calculate the time evolution of
the distribution function and is referred to as the (kinetic)
Boltzmann equation. Note that this equation monitors the time
evolution of the energy state occupied by a particle with energy
ε and that it can be used for different trapping potentials.
Instead of numerical integration to solve the Boltzmann
equation [9], we use a polynomial expansion of the distribution
function to calculate the time evolution.

To calculate the actual shape of the distribution function
during the evaporation process, the distribution function
is extended with a polynomial expansion. The polynomial
expansion will correct for the deviations from the tB model
and will thus be a direct measure of discrepancies. The
discrepancies are expected to be a function of energy since
detailed balance breaks down close to εT . Therefore, the

polynomial expansion consists of various orders of ε:

f (ε,t) =
{
NAP (ε)e−ε/kBT , ε < εT ,

0, ε > εT ,
(8)

with

P (ε) = 1 +
∞∑
i=2

pi

(
ε

kBT

)i

. (9)

Here, A is a normalization constant that depends on
the trapping potential due to the normalization condition∫ ∞

0 ρ(ε)f (ε,t)dε = N . Note that the normalization is per-
formed without the polynomial expansion [P (ε) ≡ 1], so that
A does not depend on pi . The dimensionless constants pi are
time dependent, but we show that under certain conditions
they are constant. Furthermore, f (ε > εT ,t) = 0 due to
the evaporation knife at ε = εT . Note that the equilibrium
Boltzmann distribution can be obtained by setting pi = 0 and
εT = ∞. The polynomial expansion is determined by pi that
need to be determined. Since a distribution function is mainly
characterized by the density and the temperature, two degrees
of freedom should be eliminated by setting p0 ≡ 1 for the
zeroth order and p1 ≡ 0 for the first order (ε1). This guarantees
that the system is not under-determined. The polynomial
expansion is expanded at least up to the fourth order in ε.

B. Time-independent scaling

The purpose of the model is to determine how long it
takes to reach quantum degeneracy. This can be done by
monitoring the evolution of the collision rate, density, and
temperature. However, we can exploit the behavior of the
distribution function throughout the evaporation process to
scale out the time dependence. As described below, during the
evaporation process the distribution function is characterized
by self-similarity. The distribution function will be cast
through the thermalization process into a shape that is identical
for all times. Although the particles individually continuously
change their energy and thereby their location inside the
distribution function, the overall shape will remain the same.
For instance, by introducing the reduced energy εi/kBT the
collision integral on the right side of Eq. (6) is scaled in such
a way that it becomes time-independent.

Our analysis starts with the notion that the rate of the
evaporation process is determined by the number of collisions.
After a finite number of collisions all relevant quantities for the
evaporation process have increased or decreased with a certain
fraction. For the collision rate γ this means that the time deriva-
tive depends quadratically on γ , since if the rate increases, not
only does γ increase, but also the time decreases, in which the
number of collisions takes place. Thus dγ /dt = αγ 2, with α

a proportionality constant. Its solution is γ = γ0(1 − t/t0)−1,
where t0 is a constant determining the time scale of the process,
γ0 = 〈n0〉σ 〈vrel〉 is the initial mean collision rate, 〈n0〉 is
the initial average density, and 〈vrel〉 = √

16kBT0/πm is the
average relative velocity between two colliding particles. In
a similar way we can express the time dependence of the
temperature T and number of particles N as [29]

T (t) = T0

(
1 − t

t0

)αT

, N (t) = N0

(
1 − t

t0

)αN

, (10)
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where T0 and N0 are the initial temperature and number of par-
ticles, respectively, and αT and αN are constants that need to be
determined. Note that Eqs. (10) show the typical time behavior
for runaway evaporative cooling, where the temperature and
number of particles progressively go to 0 for t approaching t0.
Since both parameters change over many orders of magnitude
during the evaporation process and degeneracy is reached close
to this point, we use t0 in our model as the time it takes to reach
degeneracy. Clearly, for t0 > 0 the collision rate in our model
asymptotically goes to infinity at t0, and in that case degeneracy
is always reached just before t0, whatever the initial conditions
are for the temperature and the number of particles.

Using the reduced energy εi/kBT and Eqs. (10) for N (t)
and T (t), both sides of the kinetic Boltzmann equation have
the same time dependence, if αN is given by

αN = αT

(
δ − 1

2

) − 1, (11)

where δ = 3/s is the exponent of the potential V = λrs . For a
harmonic trap δ = 3/2 and αN = αT − 1, whereas for a linear
trap δ = 3 and αN = 5αT /2 − 1.

The Boltzmann equation is made dimensionless by intro-
ducing the critical number of collisions Nc, which is defined
as

Nc ≡ γ0t0 = 〈n0〉σ
√

16kBT

πm
t0. (12)

Here γ0 is calculated at t = 0 using the untruncated Boltzmann
distribution function and 〈n0〉 is the average density in the
trap at t = 0. The resulting Boltzmann equation is both time
independent and dimensionless. The solution determines the
distribution function irrespective of the temperature and/or
time, and thus the values of pi are time independent. This is the
direct proof that the energy distribution function has become
self-similar. Note that Nc is the number of collisions that will
take place between t = 0 and t = t0, in case the evaporation
process does not change the collision rate. However, in our
model the collision rate increases as a function of time, and in
fact the number of collisions between t = 0 and t = t0 in our
model becomes infinite. The critical number of collisions Nc

is the crucial parameter to be determined in our model.

C. Solving the Boltzmann equation

Using the method in Sec. III B the variables of interest
are Nc, αT , and pi . In order to solve for these variables,
the method of moments is used. This method “projects”
the kinetic Boltzmann equation onto functions of energy

�(ε) = 1,ε,ε2, . . . and is integrated over energy to obtain
the moment equations. The zeroth order corresponds to
the conservation of particles, and the first order to the
conservation of energy. Using this method, sufficient equations
are generated to obtain a closed system of equations. If the
polynomial expansion is extended with an extra term, only
the next order moment needs to be included. Note that if
P (ε) = 1, we have detailed balance up to εT and obtain the
tB model. In that case only Nc and αT are unknown and
the conservation of particles and energy provides sufficient
information.

The method of moments can only be used if the integrals
over energy space can be performed. The left side of the
Boltzmann equation is linear in f (ε) and thus in pi . The right
side of Eq. (6) is bilinear in pi since it consists of two linear
terms. The integrals over the distribution functions can be
done independently and analytically, leading to the moment
equations for pi .

Evaluating the integrals in Eq. (6) is complicated due to the
fact that the limits of integration are related to each other. Also,
the right side of the Boltzmann equation uses the minimum
energy of all four particles to determine the density of states
and the integration area needs to be divided into separate
regions with different limits. First, we replace ε2 = ε3 + ε4 −
ε on the right side of Eq. (6) due to energy conservation. Next,
we integrate over ε4 and ε3, where the limits depend on ε.
Finally, we integrate ε over the entire range of 0 � ε � εT . The
limits of the regions with different minimum energies can be
determined using the condition that all energies must be higher
than 0.

The different regions and their limits are determined using
Fig. 2. After combining the regions with equal minimum
energies, four regions remain. Since in each region we have
a production term [f (ε3) · f (ε4)] and a destruction term
[f (ε2) · f (ε)], we end up with eight integrals. Finally, one
of these must be split up into two separate regions (integrals
6 and 7) in order to ascertain that ε2 = ε3 + ε4 − ε, given the
order in which the integration over ε4 and ε3 is performed. This
yields nine integrals that can now be solved analytically. A
summary of all integrals, the distribution functions involved,
the local minimum energy, and the limits of integration is
reported in Table I.

After performing the integrals there are various parameters
in the equations such as σ , T0, N0, and parameters charac-
terizing the trap. However, the only relevant parameter in the
scaled Boltzmann equation is Nc, which only depends on η

and is thus independent of these parameters. However, t0 is
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TABLE I. Limits for integration and the minimum energy for each
integral. The range for ε is in each integral [0,εT ].

Range
Functions Minimum

Integral involved energy ε3 ε4

1 f (ε3)f (ε4) ε2 [0,ε] [ε − ε3,ε]
2 f (ε2)f (ε) ε2 [0,ε] [ε − ε3,ε]
3 f (ε3)f (ε4) ε3 [0,ε] [ε,εT ]
4 f (ε2)f (ε) ε3 [0,ε] [ε,ε + εT − ε3]
5 f (ε3)f (ε4) ε4 [ε,εT ] [0,ε]
6 f (ε2)f (ε) ε4 [ε,εT ] [0,ε]
7 f (ε2)f (ε) ε4 [εT ,εT + ε] [0,εT − ε3 + ε]
8 f (ε3)f (ε4) ε [ε,εT ] [ε,εT ]
9 f (ε2)f (ε) ε [ε,εT ] [ε,εT − ε3 + ε]

determined by Eq. (12) and therefore does depend on these
parameters. This indicates that the critical number of collisions
Nc is constant: only the time it takes for these collisions to
take place is determined by the initial conditions and the
trap. The critical number of collisions Nc is thus independent
of the initial phase space density. Note that if t0 < 0, the
exponents of the density and temperature also switch sign
(αT < 0, αN < 0). Under these conditions the evaporation is
no longer runaway and the temperature still decreases, but
the collision rate also decreases and T = 0 will never be
reached.

The results obtained from the Boltzmann equation show
the dependence of Nc on the evaporation parameter η and are
used to determine the most efficient evaporation parameter, for
which Nc is at a minimum. However, η represents the location
of the evaporation knife, thereby reflecting the lower bound
of energy that is evaporated by cutting away the high-energy
particles. Since including the polynomial expansion changes
the energy distribution of the particles, this also changes the
average energy per evaporated particle. We therefore introduce
the effective evaporation efficiency ηeff , which reflects the

TABLE II. Parameters defining the harmonic and linear potential
trap. Here ω is given by the geometrical mean of the different trap
dimensions: ω = (ωxωyωz)1/3. A is calculated using P (ε) = 1 and
εT = ∞.

Property Harmonic trap Linear trap

Trap potential U (r) 1
2 mω2r2 λr

Density of states ρ(ε) ε2

2(h̄ω)3
32

√
2

105π

ε7/2

(h̄2λ2/m)3/2

Norm. constant A
(

h̄ω

kBT

)3 (
π1/3h̄2λ2

2mk3
B

T 3

)3/2

Average density 〈n0〉 N

8

(
mω2

πkBT0

)3/2 N

π

(
λ

4kBT0

)3

Collision rate γ0
Nσmω3

2π2kBT0

Nσλ3

16
√

π3m(kBT0)5

Energy per particle E 3nkBT 9
2 nkBT

Evap. efficiency ηeff
6αT −3
αT −1

63αT −18
10αT −4

effective amount of energy that is removed per evaporated
particle:

kBT ηeff ≡ dE

dN
= dE/dt

dN/dt
. (13)

Since the amount of energy removed per particle is higher than
η, it shows that ηeff rather than η describes the evaporation
efficiency. Furthermore, Eq. (13) allows us to write ηeff in
terms of αT , as reported in Table II.

The method to solve the Boltzmann equation has now
been described. In Sec. IV we apply this method to both
a harmonic and a linear potential trap. For both traps the
effect of the polynomial expansion is calculated together
with Nc as a function of η and ηeff . These calculations are
performed by substituting the potential in Eq. (4) and using
the result to find A, the average density 〈n〉, Nc, and ηeff . The
effective efficiency ηeff is obtained by inserting Eq. (10) in
Eq. (13) and applying the product rule for the derivatives. The
trap-dependent parameters are summarized in Table II.
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FIG. 3. (a) The critical number of collisions Nc as a function of η for our model (solid line) and the tB model (dashed line) for a harmonic
trap. The horizontal shift of the two lines with respect to each other is a result of the difference in the average energy per evaporated particle.
(b) The critical number of collisions Nc (scale on the left) as a function of ηeff for our model (solid line) and the tB model (dashed line). The
corresponding values of αT are shown at the top of the graph. The ratio (scale on the right) between our model and the tB model exceeds 1
over the entire range of ηeff .
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FIG. 4. Effect of polynomial expansion P (ε) on the distribution
function for η = 6. The discrepancy increases with energy up to 35%
at the evaporation knife located at ε/kBT = 6.

IV. RESULTS AND DISCUSSION

Here we discuss the results for the harmonic trap, followed
in Sec. IV B by the results for the linear trap.

A. Harmonic trap

The distribution function in Eq. (8) is used to calculate
Nc as a function of η, as shown in Fig. 3(a). The results are
obtained by expanding the polynomial expansion up to the
sixth order and compared with the tB model. From Fig. 3(a),
one observes that in our model the minimum of Nc is 162.1
for η = 5.48, whereas for the tB model the minimum of Nc

is 140.8 for η = 5.8. Thus Nc calculated using the tB model
is 15.1% lower and the corresponding value for η is higher.
A better comparison is made when Nc is plotted as a function
of ηeff [Eq. (13)], as shown in Fig. 3(b). We observe that the
minimum of Nc now occurs at the same ηeff for both models
and that the tB model underestimates Nc over the entire range
of ηeff . The discrepancy at the minimum of Nc is 15.1% and is
more than 10% over the entire range. Figure 3 shows that the
evaporation process is most efficient when η ≈ 6.

The discrepancy of the distribution from the tB model can
be calculated directly by the use of the polynomial expansion.

In Fig. 4 the effect of the polynomial expansion (expanded
up to p6) as a function of energy is shown for η = 6. This
figure clearly shows that there are up to 35% fewer particles
in the high-energy range of the distribution than assumed in
the tB model. The calculation not only shows that there is a
large discrepancy, but also directly indicates the origin of the
reduced evaporation efficiency.

The difference between the distribution function in our
model and that in the tB model can be further investigated by
determining the particle loss rate. The zeroth-order moment
equation corresponds to the conservation of particles. This
equation is obtained by projecting both sides of the Boltzmann
equation (6) onto �(ε) = 1 and integrating over energy.
However, by determining the integrands of both sides one
obtains insight into the particle loss rate at different energies.
Figure 5(a) shows the particle loss rate as a function of
energy calculated using the tB model for η = 6. The solid
line corresponds to the left side of the Boltzmann equation
and represents the time evolution of the distribution function.
The dashed line corresponds to the right side of the Boltz-
mann equation and refers to the collision integral. Note that
integration of both curves over ε yields the total particle loss
rate and they are therefore equal. The general trend of both
curves indicates how the evaporation process works: negative
values at high energies (high-energy particles are evaporated)
and positive values at low energies (low-energy particles
are formed through rethermalization). However, Fig. 5(a)
shows that the tB model fails to describe the evaporation
process in detail: the curves do not overlap. The negative
value in the residual error around ε/kBT ∼ 3 indicates that
the tB model underestimates the particle loss rate at this
energy. Furthermore, the positive values near the threshold
energy (ε/kBT ∼ 6) indicate that the model overestimates the
evaporation of high-energy particles. This means that the tB
model overestimates the evaporation efficiency and therefore
underestimates Nc. This is consistent with the results in Fig. 4,
since there are fewer particles in the high-energy tail of the
distribution and the loss rate of these particles is also lower.

The results for our model are shown in Fig. 5(b). The
two lines almost completely overlap and the residual error is
reduced by 4 orders of magnitude compared to the tB model.
The small error indicates that the results are nearly converged.
The results show that the polynomial expansion in our model
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is able to describe the evolution of the distribution function
in detail and that the results calculated using our model are
reliable.

B. Comparing linear trap with harmonic trap

The shape of the trap influences the evaporation process
by changing the spatial particle distribution in the trap. The
results for the linear trap are discussed in comparison with the
results for the harmonic trap.

In Fig. 6(a), Nc is shown as a function of η. A trend similar
to that in Fig. 3 is observed: the minimum in our model lies
higher than that in the tB model and is shifted horizontally.
A detailed comparison shows three issues: (1) Nc is smaller
compared to the harmonic trap (20, compared to 140), (2) the
corresponding value for η is lower (4.3, compared to 5.5),
and (3) the difference between the two lines is smaller (9%,
compared to 15.1% for the harmonic trap). The difference in Nc

can be attributed to the stronger confinement of the linear trap
with respect to the harmonic trap. In Fig. 6(b) Nc is plotted as a
function of ηeff . As for the harmonic trap the figure shows that
the tB model always underestimates Nc. The discrepancy is
smaller than for the harmonic trap but is always larger than 6%.
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FIG. 7. Effect of polynomial expansion P (ε) on the distribution
function for η = 5. The evaporation knife is located at ε/kBT = 5 .

The discrepancy from the tB model as shown in Fig. 7
shows a similar trend as for the harmonic trap, although
the discrepancies are smaller. The discrepancy increases with
energy up to 17.6% at the threshold, compared to 35% for the
harmonic trap. This indicates that primarily the high-energy
states within the distribution are less occupied than determined
by the tB model.

The particle loss rate as a function of energy is used to
investigate the origin of the discrepancies, as discussed in
Sec. IV A. Figure 8(a) shows the results for the tB model,
and Fig. 8(b) the results for our model. Comparing Fig. 8(a)
to the harmonic case [Fig. 5(a)] shows that although the
residual error is 1 order of magnitude smaller (∼10−5), the
trend is identical. The tB model overestimates the evaporation
rate of high-energy particles near the threshold energy and
underestimates the loss rate of particles with energies around
ε/kBT ∼ 3.5. The smaller residual error directly explains the
smaller discrepancies with respect to the harmonic trap, as
shown in Figs. 6(a) and 7. Figure 8(b) shows a result similar
to that for the harmonic trap in Fig. 5(b): in our model both
lines almost completely overlap, indicating that the collision
integral is modeled accurately to reduce the residual error by
3 orders of magnitude.

C. Discussion

The results for the harmonic and linear trap show that the
discrepancy of the time evolution of the distribution function
in the tB model is present for different trapping potentials.
Furthermore, the origin of the discrepancies is similar in both
cases, as determined by the particle loss rates for different
energies. The magnitude of the discrepancy is reduced in the
case of the linear trap with respect to the harmonic trap. The
results thus clearly show that the tB model does not describe
the evaporation process accurately. For both the harmonic and
the linear trap a discrepancy is found for the distribution,
which increases with energy as shown in Figs. 4 and 7,
respectively.

The discrepancies between the two models that we find
are significant and it is surprising that these discrepancies did
not show up in the work of Luiten et al. [9]. We attribute the
differences mainly to the rapidly changing value for η in their
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work, due to which specific differences did not have enough
time to establish. Specifically, discrepancies at low η might
partially cancel discrepancies at high η.

Our formalism is easily extendable to allow for time-
dependent η by allowing explicit time dependencies of A, pi ,
and η. This allows simulation of the same physical situation
as the simulation in Ref. [9]. Such a detailed comparison
is beyond the scope of this paper. Moreover, our formalism
allows for a correct description of the spilling process,
including the reduction by depletion of high-energy states.

This model is based on several important assumptions.
The assumption of sufficient ergodicity may, for example, not
always be fulfilled. In the case of a cylindrical or spherical
trap, not all particles with an energy above εT will be
evaporated, thereby reducing the efficiency. Even in the tB
approach this can lead to large discrepancies, for example, in
one-dimensional cooling [29]. In future research we focus on
an extended model that does not rely on these assumptions and
includes different trapping potentials.

Finally, the results have implications for experiments
implementing evaporative cooling on a propagating beam [18].
Due to a lower evaporation efficiency than expected based
on the tB model, the magnetic guide needs to be 10%–15%
longer in order to reach degeneracy, depending on the trapping
potential that is used. Furthermore, these results will have
no direct consequence for BEC experiments using trapped
samples. The small increase in time that is needed to obtain
BEC can simply be accounted for in the evaporation scheme.

V. CONCLUSION

We solve the Boltzmann equation to find the number of
collisions required to reach runaway evaporative cooling and
degeneracy. For both a harmonic and a linear trapping potential
it is found that the high-energy states of the distribution
function are less occupied during the evaporation process as
assumed in the tB model. This lower occupation is caused by
the fact that the refilling rate of these high-energy states is
slow, resulting in a “hole” in the distribution function. Due
to this hole the evaporation process is less likely to occur
and thereby its efficiency is lowered. This is confirmed by
an increase in the calculated number of collisions needed to
reach BEC. Also, detailed investigation of the particle loss
rate shows how the tB model overestimates the evaporation
efficiency. We find that a reduction of particles in high-
energy states with respect to the tB distribution is a limiting
factor for evaporative cooling leading to a decrease in the
evaporation efficiency. It can therefore be concluded that
the evaporation efficiency is lower than expected based on
the tB model due to the low occupancy of the high-energy
states.
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