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We study the real-time dynamics of the Bose-Hubbard model in the presence of time-dependent hopping,
allowing for a finite-temperature initial state. We use the Schwinger-Keldysh technique to find the real-time
strong coupling action for the problem at both zero and finite temperature. This action allows for the description
of both the superfluid and Mott-insulating phases. We use this action to obtain dynamical equations for the
superfluid order parameter as hopping is tuned in real time so that the system crosses the superfluid phase
boundary. We find that under a quench in the hopping, the system generically enters a metastable state in which
the superfluid order parameter has an oscillatory time dependence with a finite magnitude, but disappears when
averaged over a period. We relate our results to recent cold-atom experiments.
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I. INTRODUCTION

Ultracold atoms trapped in optical lattices [1–4] are highly
versatile systems in which parameters can be tuned over wide
ranges. The ability to tune these parameters in real time
has opened the possibility of studying the dynamic traversal
of quantum-phase transitions either in a “quantum quench”
or with a more general time dependence. This protocol has
received considerable interest [5–15] as the resulting systems
give examples of out-of-equilibrium dynamics in interacting
quantum systems, a class of problem that is still not fully
understood.

When bosons are cooled to lie in the lowest Bloch band of
the periodic potential, their behavior can be described using the
Bose-Hubbard model (BHM) [16]. The BHM displays a transi-
tion between Mott-insulator and superfluid phases as the ratio
of intersite hopping J to the on-site repulsion U is changed,
as has been observed experimentally [4,17–20]. This transition
has been studied extensively theoretically, and the equilibrium
mean-field solution is well known [21–24]. More accurate
determinations using quantum Monte Carlo [25–29] and series
expansions [30] verify the qualitative mean-field picture [31].
In addition to cold-atoms, there have also been proposals to
realize the BHM in photonic [32] and polaritonic systems [33].

Experimentally there have been investigations of the transi-
tion from superfluid to Mott insulator or vice versa by loading
a condensate (or localized atoms) into an optical lattice and
then increasing or decreasing the depth of the optical lattice
[17,34,35]. Both the hopping between sites and the on-site
interactions in the BHM used to describe this situation depend
on the strength of the optical lattice potential [16], but the
hopping is considerably more sensitive to the lattice depth
than the interactions.

Extensive theoretical effort has been expended on trying to
understand the effects of time-dependent J/U in the BHM
(which can allow for a traversal of the phase transition).
Both sweep from one phase to another, either gradually or
as a quench [36–53], and periodic modulations with time
[50,54–59] similar to experiments in Refs. [60,61] have been
considered. A number of predictions have been made for these
dynamics, including the time dependence of the decay of

the superfluid order parameter for different explicit forms of
the time dependence of J (t) [41,50] and of a wave-vector-
dependent time scale for freezing [41,44,50] upon entering the
Mott phase from the superfluid. Predictions for the transition
from the Mott phase to superfluid include the generation
of vortices via the Kibble-Zurek mechanism, and scaling of
time-dependent correlations with the quench time scale [42].
Such scaling (albeit with different exponents to those predicted
in Ref. [42]) was recently observed in experiments by Chen
et al. [34]. Studies of the extended BHM [62] and of quenches
in the BHM [14,43,54] suggest that nonequilibrium states
can persist for considerable times after a quench, especially
for final states with small values of J/U . In addition to the
ratio J/U , time dependence of other parameters, such as the
chemical potential [63], or even the lattice itself [64] have also
been investigated.

The generation of out-of-equilibrium states from sweeps
from the superfluid to the insulating phase (or vice versa)
of the BHM is generic to dynamical traversals of quantum
phase transitions [5–15] and not limited to the BHM. Exper-
imentally it is not possible to access zero-temperature phase
transitions, but as the effects of such transitions extend to finite
temperature, it is interesting to allow for thermal effects on
the quench dynamics. There has been considerable theoretical
work on the BHM for nonzero temperature [29,65–76], but
most has focused on the equilibrium properties of the model;
we allow for the effect of temperature in our out-of-equilibrium
calculation by assuming a thermal initial state.

The approach we take to study the out of equilibrium
dynamics of the BHM is to allow J to be a function of
time with U constant. Our approach is sufficiently general
to allow for the inclusion of a trapping potential and time
dependence in parameters other than J . We construct a
real-time effective action for the BHM using a strong coupling
approach that can describe physics in both the superfluid and
Mott-insulating phases. Various strong coupling approaches
have been proposed to allow description of both phases in
equilibrium [77–81], and we generalize the imaginary time
approach used in Ref. [77] to real time by using the Schwinger-
Keldysh formalism. Several authors have previously used
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Schwinger-Keldysh or closed-time-path [82–87] techniques
to study the BHM [88–94] but have not focused on out-of-
equilibrium dynamics.

Given the assumption of time dependent hopping, we obtain
the effective action within the Schwinger-Keldysh formalism.
We then obtain the saddle-point equations of motion, which
we are able to simplify to derive a mean-field equation for the
dynamics of the superfluid order parameter during a quantum
quench from the superfluid phase to the insulating phase of
the BHM at fixed chemical potential. We find that generically
the solutions we obtain correspond to a final metastable state
in which the superfluid order parameter oscillates with a finite
magnitude, but averages to zero over a period of oscillation.
We note that the form of the metastable state depends on
the value of the chemical potential, and we relate our results
to work showing that global mass redistribution is important
for the equilibration of cold-atoms in traps after a quantum
quench [95].

This paper is structured as follows. In Sec. II we derive
the effective action using the Schwinger-Keldysh or closed-
time-path technique, and in Sec. III we study the saddle-point
equations of motion for order parameter dynamics. In Sec. IV
we conclude and discuss our results.

II. EFFECTIVE ACTION

In this section we discuss the application of the Schwinger-
Keldysh technique to the BHM and derive a strong-coupling
effective action for the model. The Hamiltonian for the BHM
takes the form

ĤBH = −
∑
〈ij〉

Jij (â†
i âj + â

†
j âi)

+ U

2

∑
j

n̂j (n̂j − 1) − μ
∑

j

n̂j ,

= ĤJ + Ĥ0,

where âi and â
†
i are annihilation and creation operators for

bosons on site i, respectively, n̂i = â
†
i âi is the number operator,

U the interaction strength, and μ the chemical potential. The
Hamiltonian

Ĥ0 = ĤU − μN̂ = U

2

∑
i

n̂i(n̂i − 1) − μ
∑

i

n̂i

contains only single-site terms, and ĤJ contains all of the
hopping terms; we allow for the possibility that the hopping
amplitude Jij between sites i and j may be time dependent.

A. Schwinger-Keldysh technique

The Schwinger-Keldysh [82,83] or closed-time-path (CTP)
technique [84–87] is an approach that allows a description of
out-of-equilibrium or equilibrium quantum phenomena within
the same formalism. The usual approach to finite-temperature
calculations is to use the Matsubara formalism, which is
restricted to equilibrium, and requires analytic continuation
to obtain real-time dynamics. The advantage of CTP methods
is that the problem is formulated in real time so that
out-of-equilibrium problems can be tackled and no analytic
continuation is required; the price to pay is that the number of

-T - i σ

-T - i β

C1  

C2 

 C 3

C4 T - i σ

-T T

FIG. 1. Contour for the Schwinger-Keldysh technique for a
system with inverse temperature β. The value of σ is arbitrary in
the interval [0,β] [86].

fields in the theory doubles, and a second copy of each field
propagates backward in time. As discussed by, e.g., Niemi
and Semenoff [85], the notion of time ordering needs to be
replaced by that of contour ordering in order to calculate
Green’s functions.

For a thermal initial state, as we will assume here, the
generating functional Z factorizes [85]:

Z = ZC1∪C2ZC3∪C4 ,

with C1, C2, C3, and C4 contour segments as illustrated in
Fig. 1. The value of 0 � σ � β is arbitrary [86]; we work
with σ = 0 for simplicity.

B. Effective action for the Bose-Hubbard model

We may write a path integral for the generating functional
of the BHM:

Z =
∫

[Da∗][Da]eiSBHM[a∗,a], (1)

where a is a bosonic field, and we omit source fields and set
h̄ = 1. The action for the BHM has the form

SBHM =
∫ ∞

−∞
dt

[
a∗

ia(t)(i∂t )τ
3
abaib(t)

] + SJ + SU , (2)

where

SJ =
∫ ∞

−∞
dt

∑
〈ij〉

Jij

[
a∗

ia(t)τ 3
abajb(t) + a∗

ja(t)τ 3
abaib(t)

]
, (3)

and SU is the action associated with H0, where aia is the field
at site i on contour a, where a = 1 or 2. We use notation such
that τ i is the ith Pauli matrix, acting in Keldysh space rather
than spin space.

We perform a Keldysh rotation so that(
a1(t)
a2(t)

)
−→

(
ãq(t)
ãc(t)

)
= L̂

(
a1(t)
a2(t)

)
,

where aq and ac are the quantum and classical components of
the field, respectively [93,96–98], and

L̂ = 1√
2

(
1 −1

1 1

)
.

The effect of this on the action is that τ 3 in the 1, 2 basis
becomes τ 1 in the q, c basis, hence (dropping tildes)

SJ =
∑
〈ij〉

∫ ∞

−∞
Jij

[
a∗

ia(t)τ 1
abajb(t) + a∗

ja(t)τ 1
abaib(t)

]
.
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Unlike previous studies of the BHM using CTP techniques
[88–94], we are interested in the problem in which the hopping
varies as a function of time to cross from the superfluid to
the Mott-insulating phase. Hence we require a formalism that
allows for an adequate description of both phases. We thus
generalize to real time the strong coupling method used in
imaginary time by Sengupta and Dupuis [77]. The advantage
of this approach, as pointed out in Ref. [77], is that it leads to a
normalized spectral function, which allows for the calculation
of the excitation spectrum and momentum distribution in
the superfluid phase, while also giving a good description
of the Mott-insulating phase. A similar equilibrium effective
action based on the Keldysh approach was recently obtained
in Refs. [91–93].

The approach requires two Hubbard-Stratonovich transfor-
mations. The first of these decouples the hopping term. We
introduce a Hubbard-Stratonovich field ψ and make use of the

identity (derived in Appendix A)

e−i(ξ∗η+ξη∗) =
∫

D(ϕ1,ϕ
∗
1 )D(ϕ2,ϕ

∗
2 )ei(ϕ∗

2 ϕ1+ϕ∗
1 ϕ2)

× ei(ϕ∗
1 ξ+ϕ1ξ

∗+ϕ∗
2 η+ϕ2η

∗) (4)

to write

Z =
∫

[Dψ∗][Dψ]e− i
2

∫ ∞
−∞ dt

∑
ij ψ∗

ia (t)τ 1
abJ

−1
ij ψjb(t)eiW [ψ∗,ψ] (5)

with

eiW [ψ∗,ψ] = 〈e−i
∫

dt
∑

i ψ∗
ia (t)τ 1

abaib(t)+ψia (t)τ 1
aba

∗
ib(t)〉0,

where the average 〈· · ·〉0 is taken with respect to

S0 =
∫ ∞

−∞
dt

∑
i

[
a∗

ia(t)(i∂t )τ
1
abaib(t)

] + SU .

W [ψ∗,ψ] can be used to calculate the 2n point connected
Green’s functions Gnc for the bosonic field a via

Gnc
ia1...ana

′
1...a

′
n
(t1, . . . ,tn,t

′
1, . . . ,t

′
n) = e−iW [0]

{
(−1)nδ(2n)[eiW [ψ∗,ψ]]

δψ∗
ia1

(t1) . . . δψ∗
ian

(tn)δψia′
n
(t ′n)δψia′

1
(t ′1)

}∣∣∣∣∣
ψ∗=ψ=0

= i

{
(−1)nδ(2n)W [ψ∗,ψ]

δψ∗
ia1

(t1) . . . δψ∗
ian

(tn)δψia′
n
(t ′n)δψia′

1
(t ′1)

}∣∣∣∣∣
ψ∗=ψ=0

= i(−1)nτ 1
a1b1

. . . τ 1
anbn

τ 1
a′

1b
′
1
. . . τ 1

a′
nb

′
n

〈
aib1 (t1) . . . aibn

(tn)a∗
ib′

n
(t ′n) . . . a∗

ib′
1
(t ′1)

〉c
0, (6)

where the superscript c indicates a connected function. Note
that the connected Green’s function vanishes if not all sites are
identical. Thus, we may write (similarly to Ref. [77])

iW [ψ∗,ψ] = i
∑

i

∞∑
n=1

(−1)n

(n!)2

∫ ∞

−∞

[
n∏

l=1

dtldt ′l

]
ψ∗

ia1
(t1) . . .

×ψ∗
ian

(tn)ψia′
n
(t ′n) . . . ψia′

1
τ 1
a1b1

. . . τ 1
anbn

τ 1
a′

1b
′
1
. . .

× τ 1
a′

nb
′
n
Gnc

i,b1...bnb
′
1...b

′
n
(t1, . . . ,tn; t ′1, . . . ,t

′
n), (7)

and so

eiW [ψ∗,ψ] = ei
∑∞

n=1 Sn
int[ψ

∗,ψ],

where

Sn
int = (−1)n

(n!)2

∑
i

∫ ∞

−∞

[
n∏

l=1

dtl dt ′l

]
ψ∗

ia1
(t1) . . . ψ∗

ian
(tn)

×ψia′
n
(t ′n) . . . ψia′

1
(t ′1)τ 1

a1b1
. . . τ 1

anbn
τ 1
a′

1b
′
1
. . . τ 1

a′
nb

′
n

×Gnc
i,b1...bnb

′
1...b

′
n
(t1, . . . ,tn; t ′1, . . . ,t

′
n). (8)

Summarizing the effective action to quartic order after the
first Hubbard-Stratonovich transformation gives

SI
eff[ψ

∗,ψ]=−1

2

∫
dt

∑
ij

ψ∗
ia(t)(Jij )−1τ 1

abψib(t) −
∫

dt1dt2

×
∑

i

ψ∗
ia1

(t1)τ 1
a1b1

Gib1b2 (t1,t2)τ 1
b2a2

ψia2 (t2)

+ 1

4

∫
dt1dt2 dt3 dt4

∑
i

ψ∗
ia1

(t1)ψ∗
ia2

(t2)τ 1
a1b1

τ 1
a2b2

×G2c
ib1b2b3b4

(t1,t2,t3,t4)τ 1
a3b3

τ 1
a4b4

ψia3 (t3)ψia4 (t4).

(9)

We discuss how the mean-field phase boundary at zero
and finite temperature may be obtained from Eq. (9) in
Appendix B. Sengupta and Dupuis [77] observed that although
the equilibrium action of the form obtained in Eq. (9) leads
to the correct mean-field phase boundary, it leads to an
unphysical excitation spectrum in the superfluid phase. This
can be rectified by performing a second Hubbard-Stratonovich
transformation [77]. Starting from

Z=
∫

[Dψ∗][Dψ]e− i
2

∫ ∞
−∞ dt

∑
ij ψ∗

ia (t)τ 1
abJ

−1
ij ψjb(t)eiW [ψ∗,ψ], (10)

introduce a field z such that

e− i
2

∫ ∞
−∞ dt

∑
ij ψ∗

ia (t)τ 1
abJ

−1
ij ψjb(t)

=
∫

[Dz∗][Dz]ei
∫

dt
∑

ij (2Jij )z∗
ia (t)τ 1

abzjb(t)

× ei
∫

dt
∑

i[z∗
ia (t)τ 1

abψib(t)+ψ∗
ia (t)τ 1

abzib(t)], (11)

so we have

Z =
∫

[Dz∗][Dz]ei
∫

dt
∑

ij (2Jij )z∗
ia (t)τ 1

abzjb(t)
∫

[Dψ∗][Dψ]

× ei
∫

dt
∑

i [z
∗
ia (t)τ 1

abψib(t)+ψ∗
ia (t)τ 1

abzib(t)]eiW [ψ∗,ψ]. (12)
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As discussed earlier,

eiW [ψ∗,ψ] = ei
∑∞

n=1 Sn
int(ψ

∗,ψ) = eiSG+i
∑∞

n=2 Sn
int(ψ

∗,ψ),

where SG is the quadratic term

SG = −
∑

i

∫
dt1dt2ψ

∗
ia1

(t1)τ 1
a1b1

Gib1b2 (t1,t2)τ 1
b2a2

ψia2 (t2),

and let

eiW̃ (z∗,z) =
∫

[Dψ∗][Dψ]eiSG+i
∫

dt
∑

i [z
∗
ia (t)τ 1

abψib(t)+ψ∗
ia (t)τ 1

abzib(t)]

× ei
∑∞

n=2 Sn
int(ψ

∗,ψ)

= 〈ei
∫

dt
∑

i [z
∗
ia (t)τ 1

abψib(t)+ψ∗
ia (t)τ 1

abzib(t)]+i
∑∞

n=2 Sn
int(ψ

∗,ψ)〉SG
.

(13)

We next perform a cumulant expansion for W̃ (z∗,z) and keep
only terms in the action that are not “anomalous” (for further
discussion see Refs. [77,99]) to obtain

Z =
∫

[Dz∗][Dz]eiSII
eff [z∗,z],

where in calculating the effective action to quartic order in z,
we truncated i

∑∞
n=2 Sn

int → iS2
int, with

S2
int = 1

(2!)2

∑
i

∫
dt1 dt2 dt ′1 dt ′2ψ

∗
ia1

(t1)ψ∗
ia2

(t2)τ 1
a1b1

τ 1
a2b2

×G2c
ib1b2b

′
2b

′
1
(t1,t2,t

′
1,t

′
2)τ 1

b′
2a

′
2
τ 1
b′

1a
′
1
ψia′

2
(t ′2)ψia′

1
(t ′1).

The effective action to quartic order in the z fields is

SII
eff [z

∗,z] =
∫

dt
∑
ij

z∗
ia(t)(2Jij )τ 1

abzjb(t)

+
∫

dt1 dt2
∑

i

z∗
ia1

(t1)[Gia2a1 (t2,t1)]−1zia2 (t2)

+ 1

4

∫
dt1 dt2 dt3 dt4

∑
i

ua1a2a3a4 (t1,t2,t3,t4)

× z∗
ia1

(t1)z∗
ia2

(t2)zia3 (t3)zia4 (t4), (14)

where

ua1a2a3a4 (t1,t2,t3,t4) = 1

4

∫
dt5 dt6 dt ′5 dt ′6G

2c
ia5a6a

′
6a

′
5
(t5,t6,t

′
6,t

′
5){[Gia5a1 (t5,t1)]−1[Gia6a2 (t6,t2)]−1[Gia3a

′
5
(t3,t

′
5)]−1[Gia4a

′
6
(t4,t

′
6)]−1

+ [(a4,t4) ↔ (a3,t3)] + [(a6,t6) ↔ (a5,t5)] + [(a6,t6) ↔ (a5,t5); (a4,t4) ↔ (a3,t3)]}. (15)

Following the arguments presented in Appendix B of Ref. [99],
it can be shown that the Green’s functions for z are the same
as those for the original field a.

We note that the following symmetry relations hold for the
interaction kernel u from the definition above:

uabcd (t1,t2,t3,t4) = ubacd (t1,t2,t3,t4) = uabdc(t1,t2,t3,t4).

It can also be seen from the definition in Eq. (6) that

G2c
ia5a6a

′
6a

′
5
(t5,t6,t

′
6,t

′
5) = G2c

ia6a5a
′
6a

′
5
(t6,t5,t

′
6,t

′
5)

= G2c
ia5a6a

′
5a

′
6
(t5,t6,t

′
5,t

′
6).

Similar symmetry relations in the Keldysh structure of
four-point functions were noted in Refs. [92,93]. Hence
there are only eight independent components we need to
evaluate: G2c

qqqq , G2c
cqqq , G2c

qqqc, G2c
qqcc, G2c

ccqq , G2c
cqcq , G2c

qccc,
and G2c

cccq , and the remaining four-point function G2c
cccc = 0 by

causality [87]. Explicit expressions for each of the independent
nontrivial components are written in Appendix D. We will find
that for our study of the simplified equations of motion away
from the degeneracy points of the Mott lobes we will require
only G2c

cqqq , but the expressions we provide in Appendix D
allow for a more general study of the equations of motion than
we provide here.

The mean-field phase boundary can be determined from the
effective action Eq. (14) from the vanishing of the coefficient
of z∗

qzc by noting that

〈ψib1 (t1)ψ∗
ib2

(t2)〉 = −iτ 1
b1a1

τ 1
b2a2

[Gia2a1 (t2,t1)]−1,

and that the matrix Green’s function takes the form

Ĝ(t1,t2) =
(

0 GA
0 (t1,t2)

GR
0 (t1,t2) GK

0 (t1,t2)

)
,

whereGR
0 ,GK

0 , andGA
0 are the retarded, Keldysh, and advanced

Green’s functions determined using the single site Hamiltonian
Ĥ0, respectively. These Green’s functions are discussed in
more detail in Appendix B. We can thus obtain

Ĝ−1(t1,t2) =
( [

G−1
0

]K
(t1,t2)

[
G−1

0

]R
(t1,t2)[

G−1
0

]A
(t1,t2) 0

)
,

where

[
G−1

0

]R
(t1,t2) = [

GR
0 (t1,t2)

]−1
, (16)[

G−1
0

]A
(t1,t2) = [

GA
0 (t1,t2)

]−1
, (17)

[
G−1

0

]K
(t1,t2) = −

∫
dt ′ dt ′′

[
GR

0 (t1,t
′)
]−1

×GK
0 (t ′,t ′′)

[
GA

0 (t ′′,t2)
]−1

, (18)

which along with GR
0 (t1 − t2) = GA

0 (t2 − t1), allows one to
obtain the standard equation for the mean-field phase boundary
Eq. (B11).
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III. EQUATIONS OF MOTION

We can obtain the equations of motion for the order
parameter from the saddle-point conditions on the action:

δSeff

δz∗
iq(t)

= 0;
δSeff

δz∗
ic(t)

= 0.

It is helpful to note that

[Gcc(t1,t2)]−1 = 0; [Gqq(t1,t2)]−1 = [
G−1

0

]K
(t2,t1),

[Gqc(t1,t2)]−1 = [
GR

0 (t1,t2)
]−1 = [

GA
0 (t2,t1)

]−1
,

and

[Gcq(t1,t2)]−1 = [
GA

0 (t1,t2)
]−1 = [

GR
0 (t2,t1)

]−1
,

to obtain the equations of motion as

0 = 2Jij (t)zjc(t) +
∫ ∞

−∞
dt2

[
GR

0 (t,t2)
]−1

zic(t2)

+
∫ ∞

−∞
dt2

[
G−1

0

]K
(t,t2)ziq(t2) + 1

2

∫
dt2 dt3 dt4uqa2a3a4

× (t,t2,t3,t4)z∗
ia2

(t2)zia3 (t3)zia4 (t4), (19)

0 = 2Jij (t)zjq(t) +
∫ ∞

−∞
dt2

[
GA

0 (t,t2)
]−1

ziq(t2)

+ 1

2

∫
dt2 dt3 dt4uca2a3a4 (t,t2,t3,t4)z∗

ia2
(t2)zia3 (t3)zia4 (t4),

(20)

with implied summation over a2, a3, and a4. The solution of
these two equations is rather involved in the general case, but
the expressions above allow for the description of the spatial
and temporal evolution of the superfluid order parameter in
both the superfluid and Mott-insulating phases. By taking
appropriate variations of the effective action Eq. (14) one
may also obtain equations of motion for correlations of the z

fields. In order to gain some insight into the out-of-equilibrium
dynamics of the situation in which the hopping J is time
dependent and there is a sweep across the boundary of the
superfluid, we derive a simplified equation for the dynamics
of the superfluid order parameter and study its properties
numerically below.

A. Simplified equation of motion

To investigate the nature of the solutions of the equations
of motion, we make some simplifications to Eqs. (19) and
(20). We focus on low frequencies and long length scales to
determine an equation for the mean-field dynamics of the order
parameter.

We assume that in the limit t → −∞, the system is in
the superfluid phase and the hopping J (t) is not changing with
time. The initial conditions require z1 = z2, which implies that
initially zq = 0 and zc = √

2z1, where z = z1 is the superfluid
order parameter. If zq remains small under evolution with time,
then we can focus on only the equation of motion for zc:

Eq. (19). To see that this is indeed the case, we need to note
that (see Appendix B)

GK
0 (ω) = −2iπ

Z

∞∑
r=0

e−β(Er−μr){(r + 1) δ(ω + μ − Ur)

+ r δ[ω + μ − U (r − 1)]}.
Hence terms involving GK

0 will contribute to the low-
frequency dynamics only when μ ∼ Ur for some integer
r . These values of μ correspond to the values of chemical
potential, where for J = 0 there is degeneracy between
Mott-insulating states with r and r − 1 particles per site. We
restrict ourselves to values of the chemical potential away
from degeneracy, in which case we only need to retain terms
involving GR

0 and GA
0 . In order for zq to become appreciable,

the term ucccc(t,t2,t3,t4)z∗
c (t2)zc(t3)zc(t4) in Eq. (20) must be

appreciable. This term depends on the two-particle connected
Green’s function G2c

qqqq . Similarly to GK
0 , G2c

qqqq contributes
to low-frequency dynamics only when μ ∼ Ur for some
integer r . We can thus safely ignore zq and focus solely
on the dynamical equation for zc: Eq. (19). Taking into
account considerations about which terms are important for
low-frequency dynamics as we did above, it turns out that for
values of the chemical potential away from μ ∼ Ur , the only
connected function that we need to evaluate is G2c

cqqq , which
is specified in Appendix D. Writing z1 = z, we can obtain a
simplified form of Eq. (19) by first noting that∫ ∞

−∞
dt2

[
GR

0 (t,t2)
]−1

z(t2) =
∫ ∞

−∞

dω

2π
e−iωt

[
GR

0

]−1
(ω)z(ω),

(21)

which we can expand using

[
GR

0

]−1
(ω) = [

GR
0

]−1

ω=0 + ω
∂

∂ω

[
GR

0

]−1
∣∣∣∣
ω=0

+ 1

2
ω2 ∂2

∂ω2

[
GR

0

]−1
∣∣∣∣
ω=0

+ · · · ,

leading to∫ ∞

−∞

dω

2π
e−iωt

[
GR

0

]−1
(ω)z(ω) � νz(t) − iλ

∂z

∂t
− κ2 ∂2z

∂t2
,

(22)

where

ν = [
GR

0

]−1

ω=0 ; λ = − ∂

∂ω

[
GR

0

]−1
∣∣∣∣
ω=0

;

κ2 = 1

2

∂2

∂ω2

[
GR

0

]−1
∣∣∣∣
ω=0

.

Explicit expressions for ν, λ, and κ2 can be easily computed
from Eqs. (B3) and (B4) and are given in Appendix C.
The temperature and chemical potential dependence of these
quantities is displayed in Figs. 2(a)–2(c). The phase boundary
of the superfluid phase at finite temperature is shown for
reference in Fig. 2(d). We can see that the strongest temperature
dependence of the parameters is for values of μ/U close to an
integer (which we ignore), and that both λ and κ2 are relatively
insensitive to thermal effects over a wide range of μ/U values.
The interaction term u is most sensitive to temperature and
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FIG. 2. (Color online) Plots of (a) λ; (b) κ2; and (c) u as a function of μ/U and inverse temperature β. (d) The phase boundary of the
superfluid state is shown in as a function of μ/U and 2dJ/U at several temperatures for reference. The filling per site in the Mott-insulating
phase at zero temperature is indicated.

starts to deviate strongly from its zero temperature value by
temperatures as large as T � 0.2 U , which corresponds to the
temperature at which there is full melting of the insulating
phase [29,71].

Using a similar expansion to the one used to derive the
mean-field phase boundary, we can note that after a Fourier
transform in space,

2Jij (t)zjc(t) → 2J (t)
d∑

j=1

cos(kja) z(k,t)

� 2J (t)

(
d − 1

2
k2a2

)
z(k,t), (23)

for small ka. We will focus on the long-wavelength limit and
ignore terms of order ka.

We only retain the k = 0 part of the interaction term,
in keeping with our focus on long-wavelength physics, and
we take the low-frequency limit of the interaction term by
expanding the two-particle connected Green’s function and
the retarded and advanced Green’s functions about the ω = 0
limit. Recalling from above that |zc(t)|2 = 2|z(t)|2, we may
approximate the interaction term by −u|z|2z, where u is
stated in Appendix C and is in accord with the static value

calculated for equilibrium in Ref. [77]. Thus we have as our
approximation to the equation of motion:

[2dJ (t) + ν]z(t) − iλ
∂z(t)

∂t
− κ2 ∂2z(t)

∂t2
− u|z(t)|2z(t) = 0.

Take J (t) = J0 + j (t), where J0 is chosen so that

2dJ0 + ν = 0;

i.e., J0 is chosen to lie on the mean-field phase boundary for the
superfluid for a given μ. Hence we may write the approximate
mean-field equation of motion as

κ2 ∂2z

∂t2
+ iλ

∂z

∂t
+ δ(t)z + u|z|2z = 0, (24)

where δ(t) = −2dj (t). Even after the simplifications made
above, this equation for the dynamics of the order parameter
is a nonlinear second-order differential equation, for which
we are not able to find analytic solutions in general. Below
we discuss numerical solutions of this equation, along with an
analytic solution that can be determined in a special case that
illuminates the properties of the solutions of the equation.
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λ = 0

Mott
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symmetric case 
Particle hole

λ = 0

FIG. 3. (Color online) Two possibilities for quantum phase
transition at constant μ.

We study Eq. (24) for fixed μ and time-varying J . In
experiment, there is a confining potential so that there is a
position-dependent local chemical potential

μlocal(r) = μ − V (r),

where V (r) is the trapping potential. The solutions we obtain
for the dynamics at fixed μ should be compared to the
experimental situation in which one views the dynamics at
fixed radius in a symmetric trap. (This picture should be
reasonable at time scales shorter than the time scale for
global mass redistribution in the trap, which can be quite long
compared to microscopic time scales [95].)

If we fix μ, then there are two possibilities for the dynamics
that we should consider: (a) the particle-hole symmetric case,
in which case λ = 0, and (b) the generic case, in which λ 
= 0.
The particle-hole symmetric case corresponds to the transition
at the tip of the Mott lobe as illustrated in Fig. 3.

We consider traversal of the quantum critical region as δ(t)
varies with t . We demand that

lim
t→−∞ δ(t) = −δ0, and lim

t→∞ δ(t) = δ1.

In our numerical solutions we use the form

δ(t) =
(

δ0 + δ1

2

)
tanh

(
t

τQ

)
+ δ1 − δ0

2
, (25)

where, similarly to Cucchietti et al. [42], who studied the
transition from Mott insulator to superfluid in the one-
dimensional BHM, we assume that there is a time scale τQ,
which is the characteristic time for δ(t) to cross from −δ0 to
δ1. We chose the form in Eq. (25) as a smooth function that
satisfies the limits as t → ±∞, which in the vicinity of the
transition t = 0 is linear in t . Different functional forms of δ(t)
may lead to differing behavior in the long-time limit [7,41,50].

B. Particle-hole symmetric case

In the particle-hole symmetric case, λ = 0 and the saddle-
point equation takes the form

κ2 ∂2z

∂t2
+ δ(t)z + u|z|2z = 0. (26)

We can choose z(t) = ρ(t)eiθ(t), and then real and imaginary
parts of the equation give

0 = ρ̈ − ρ
(
θ̇
)2 + δ̄ρ + uρ3,

0 = 2θ̇ ρ̇ + θ̈ρ,

where we rescaled

t = κt̄, δ̄(t̄) = δ(κt̄) = δ(t),

and wrote the equations in terms of the rescaled time
coordinate t̄ . The second equation can be integrated to give

ln
(
θ̇
) = −2 ln ρ + c1,

i.e., θ̇ρ2 = c, so

ρ̈ − c2

ρ3
+ δ̄ρ + uρ3 = 0.

The initial condition that the system is deep in the superfluid
phase implies that as t → −∞, θ̇ → 0, and ρ̇ → 0, so ρ =√

δ0
u
, and c = 0 (we choose θ = 0 without loss of generality).

Thus

ρ̈ + δ̄ρ + uρ3 = 0.

Rescaling ρ → ρ̃/
√

u, then dropping the tilde and bar,

ρ̈ + δ(t)ρ + ρ3 = 0,

with ρ → √
δ0 as t → −∞. In the long-time limit, when

δ(t) = δ1, then we may rewrite the differential equation for
ρ as

d

dt

[
1

2
(ρ̇)2 + δ1

2
ρ2 + 1

4
ρ4

]
= 0.

Then

ρ̇2 + δ1ρ
2 + 1

2ρ4 = A,

and, writing ρ = ξy, t = ηx, we have(
dy

dx

)2

= (1 − k2) − (1 − 2k2)y2 − k2y4,

with

1 − k2 = η2A

ξ 3
, k2 = 1

2
ξ 2η2, 1 − 2k2 = δ1η

2,

and we can solve to get

k = 1√
2

1√
1 + δ1

ξ 2

,

which must satisfy 0 < k < 1. The solution to our equation as
t → ∞ is thus

ρ = ξcn

(
ξ t√
2k

; k

)
,

which in the original variables is

z(t) = ξ√
u

cn

(
ξ√
2k

t

κ
; k

)
.

In general we cannot determine the value of ξ analytically.
We can obtain an analytical solution if there is a jump in
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δ(t) from −δ0 to +δ1 at t = 0. [Note that this form of δ(t)
violates the assumption that we made in deriving the equation
that frequencies are low, but the solution in this case is still
instructive, as it shares many features with the solution for

more physical forms of δ(t).] We know z(t) =
√

δ0
u

for t < 0,

and recalling cn(0; k) = 1, we get ξ = √
δ0, which implies

k = 1√
2

1√
1 + δ1

δ0

,

and so we get

z(t) =
√

δ0

u
cn

⎛
⎝√

(δ0 + δ1)t

κ
;

1√
2

1√
1 + δ1

δ0

⎞
⎠ ,

which is periodic in time with average value 0 and period

4K

⎛
⎝ 1√

2

1√
1 + δ1

δ0

⎞
⎠ κ√

δ0 + δ1
,

where

K(k) =
∫ π

2

0

dθ√
1 − k2 sin2 θ

.

We obtain numerical solutions of Eq. (26) with δ(t) taking
the form given in Eq. (25) at the particle-hole symmetric point
in the first Mott lobe for several different values of τQ, as
displayed in Fig. 4. One can see that in each case, for large
values of t � τQ, the form of the solution is that z(t) oscillates
in a periodic manner with a magnitude that decreases with
increasing τQ. When averaged over a period T at times t � τQ,

〈z〉T = 1

T

∫ t+T

t

dt̃ z(t̃) = 0,
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FIG. 4. (Color online) Dynamics of z(t) normalized to unity in the
particle-hole symmetric case, for a variety of τQ. The parameters are
βU = 100, μ = 0.4142136, κ2 = 0.707107, and u = 0.1038, and
we take δ0 = 1.83, δ1 = 0.17 = J0(μ). This corresponds to a quench
from 2dJ/U = 2.0 to 2dJ/U = 0.0. The inset shows the value of
zmax(τQ) as a function of τQ.

as we would expect in the Mott-insulating state. Defining
zmax(τQ) = limt→∞ |z(t)| we can see that zmax(τQ) decreases
with increasing τQ without any indication of saturation, as
illustrated in the inset to Fig. 4. Note that in our numerical
simulations t is measured in units of U−1.

C. Generic case

In the generic case in which λ 
= 0, we start with Eq. (24)
and try for a solution of the form

z(t) = ρ(t)eiθ(t).

Taking real and imaginary parts of the equation after substitu-
tion gives

κ2[ρ̈ − ρ(θ̇ )2] − λρθ̇ + δ(t)ρ + uρ3 = 0,

κ2(2θ̇ ρ̇ + θ̈ρ) + λρ̇ = 0.

Integrating the second equation with respect to t leads to

θ̇ = c − λ
2 ρ2

κ2ρ2
. (27)

In the t → −∞ limit, ρ and θ are constant, so we can de-
termine c = λ

2 ρ2
0 = λδ0

2u
, and we obtain the following equation

for ρ:

κ2ρ̈ − λ2

4κ2ρ3

(
δ0

u

)
+ δ(t)ρ + uρ3 = 0. (28)

We solve Eq. (28) numerically for a variety of values
of τQ and display |z(t)| = ρ(t) for μ/U = 0.25 (well away
from both degeneracy and the particle-hole symmetric case)
in Fig. 5. In Fig. 4 there are oscillations about zero, and in
Fig. 5 there are oscillations about a finite value. It should
be emphasized that we are plotting different quantities in each
figure. In the particle-hole symmetric case plotted in Fig. 4, z(t)
can be chosen to be purely real, as noted in Sec. III B, whereas
in Fig. 5 we plot |z(t)|, because when λ 
= 0, both the real
and imaginary parts of z(t) oscillate about zero individually.

 0
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FIG. 5. (Color online) Dynamics of |z(t)| normalized to unity
in the generic case, for a variety of τQ. The parameters are βU =
100, μ = 0.25, λ = −0.28, κ2 = 1.55, u = 0.1277, and we take
δ0 = 1.85, δ1 = 0.15 = J0(μ). This corresponds to a quench from
2dJ/U = 2.0 to 2dJ/U = 0.0.
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FIG. 6. (Color online) Dynamics of |z(t)| normalized to unity in
the generic case, for a variety of τQ with time rescaled by τQ. The
parameters are as in Fig. 5.

The solution displays the similar feature to the particle-hole
symmetric case that the average of z over a period 〈z〉T = 0.
However, it is clear that as τQ increases, there does not seem to
be any decay in the values of |z(t)|. By rescaling the time with
τQ, we can see that in fact the different traces collapse onto
each other, as we display in Fig. 6. The nonzero amplitude of
z at long times illustrated in both Figs. 4 and 5 indicates that
there is memory of the nonzero value of ρ in the superfluid
phase, and that the final state is a metastable state rather than
the Mott insulator in which ρ = 0.

D. Chemical potential and temperature dependence
of dynamics

The traces of z(t) and |z(t)| that we displayed in Figs. 4–6
were for a particular value of the chemical potential in the
generic case and for a low temperature (βU = 100) in both
cases. It is of interest to see whether the observation that in the
nonparticle-hole symmetric case that there is a metastable state
after a quantum quench is robust to variations of chemical po-
tential and temperature. Defining zmax = limτQ→∞ zmax(τQ),
we calculated this for 0.1 < μ/U < 0.9 and temperatures
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FIG. 7. (Color online) Limit of zmax in the large τQ limit at several
temperatures.

ranging from βU = 100 to βU = 2. We focus only on the
first Mott lobe, but from perusal of the chemical potential
and temperature dependence of the parameters λ, κ2, and u

in Fig. 2, we expect that similar qualitative results should be
obtained for other Mott lobes. We find that apart from the
particle-hole symmetric point, where we believe the displayed
finite value of zmax is an artifact of our numerical calculations,
that the transition to a metastable state in which zmax 
= 0
is generic for a wide range of values of μ and persists to
temperatures comparable to the melting temperature of the
insulator as illustrated in Fig. 7. It should be noted that the
physics that we have left out of dynamical equation, namely,
spatial dependence of z and also higher-frequency components
of z, will presumably lead to equilibration of z at long enough
times, but as we argue in Sec. IV, it may well be reasonable to
expect that the behavior we identify at the mean-field level to
be experimentally relevant on appropriate time scales.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have derived a real-time effective action for
the BHM using the Schwinger-Keldysh technique, generaliz-
ing previous work that obtained an equilibrium effective action
[77]. This action allows for a description of the properties
of both the superfluid and Mott-insulating phases. Hence
we are able to study the out-of-equilibrium dynamics as
the parameters in the Hamiltonian are changed so that the
ground state is tuned from one phase to another. We obtain
the saddle-point equations of motion and by focusing on
low-frequency, long-wavelength dynamics are able to obtain
an equation of motion for the superfluid order parameter. We
have focused on this case as the simplest example of dynamics,
but we emphasize that our approach leads to equations of
motion that can be used to study high frequencies and spatial
variations of the order parameter and its correlations.

We study the equations of motion by varying the hopping
parameter J as a function of time at fixed chemical potential to
sweep from deep in the superfluid phase to deep in the Mott-
insulating phase over a time scale of order τQ. We study the τQ

dependence of the superfluid order parameter numerically and
find that in the long τQ limit the system generically reaches a
state in which the time-averaged value of the order parameter is
zero (as would be expected in equilibrium for a Mott insulator),
but the absolute value of the order parameter is nonzero. The
magnitude of the order parameter in the long τQ limit appears
to vanish only at the particle-hole symmetric value of the
chemical potential, and grows with distance from the particle-
hole symmetric value of μ. The generic final state is clearly
an out-of-equilibrium metastable state, with equilibration only
possibly for the particle-hole symmetric case. The generically
nonzero value of |z(t)| in the final state indicates that the
system retains memory of the initial superfluid state, a feature
that is observed in quantum revival experiments [100–102]
that indicate quantum coherence remains even after a quench
into the insulating phase.

There have been several other recent theoretical works on
the out-of-equilibrium dynamics of the BHM that see evidence
of the system entering a metastable state after a sweep from
the superfluid phase to the Mott-insulating state. Schützhold
et al. [41] studied the dynamics in the limit of large number
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of bosons per site and found a slow decay of the superfluid
fraction for a slow sweep from the superfluid phase to the
Mott-insulating phase. Kollath et al. [43] investigated the
one- and two-dimensional BHM numerically with the number
of bosons fixed to an average of one boson per site and
found that for small enough values of the final value of the
hopping, the system reached a nonthermal steady state that
was relatively insensitive to the details of the initial state.
These authors determined whether the system was thermal
or not by investigating real-space correlations, so it is not
possible to make a direct comparison with our results here.
Most recently Sciolla and Biroli [14] considered the infinite
dimensional BHM at integer filling and also found that the final
state after a quantum quench of U showed a nonzero superfluid
order parameter. Similar features have also been reported for
mean-field studies of fermions after a quantum quench [103].

While the emergence of a metastable state after a quench
from the superfluid to the insulating state is also seen in our
work, we study a different situation from the previous works.
We consider a spatially uniform BHM, as do Refs. [14,41,43],
but we consider fixed chemical potential rather than fixed
particle number. To compare theoretical descriptions of the
out-of-equilibrium dynamics of the BHM and experiments on
the quench dynamics of a fixed number of cold-atoms in an
optical lattice, the physical meaning of working with fixed
chemical potential needs to be discussed. The presence of a
spatially nonuniform trapping potential means that instead of
viewing the system as having a uniform chemical potential, it is
often more convenient to view the system as having a spatially
dependent local chemical potential: μlocal(r) = μ − V (r),
where V (r) is the trapping potential. For a symmetric trap, this
implies that a reasonable description of the phase the system is
in at radius r can be determined by using μlocal(r); this implies
the “wedding cake” structure seen in many experiments. Our
study of the equations of motion at fixed chemical potential
would then correspond to studying the dynamics of atoms
in a trap at fixed radius (albeit with radii corresponding to
certain values of the chemical potential excluded due to the
approximations we made in deriving the equation of motion).

This viewpoint appears to be borne out in recent ex-
periments [34,35,104,105] and theoretical work [95,106] on
quantum quenches for cold bosons. Natu et al. [95] argue
that the very large differences in relaxation times observed
in Refs. [35] (of order ms) and [104] (of order ∼1 s) can be
understood if one looks at mass transport during equilibration.
If the average number of particles per site remains the same in
crossing from the superfluid to an insulator, then equilibration
can be quick as in Ref. [35], but if the average number of
particles per site needs to change, then there must be mass
transport and the equilibration is slow as in Ref. [104]. The
results we find for the long-time limit of zmax illustrated in
Fig. 7 are in accord with this idea. For the chemical potential
associated with particle-hole symmetry, the value of zmax

decays to (close to) zero, whereas for other values of μ, zmax

can be an appreciable fraction of the value of |z| in the initial
state. At the particle-hole symmetric μ, the average number of
bosons per site does not change in crossing from the superfluid
to the Mott insulator [21], in accord with the condition for
local equilibration without mass transport [95]. Global mass
transport is not captured within our simplified equation of
motion, and there is no decay of the metastable state and
equilibration on a longer time scale.

The main results of our work and their connection to
existing experimental and theoretical work in the field of
cold-atoms are outlined above, but there are a number of
future directions that it might be interesting to pursue based
on what we have done here. First, a more thorough study of
the solutions of the equations of motion allowing for spatial
fluctuations and higher frequencies than we consider here
might lead to further insight into the dynamics of the BHM.
The inclusion of a trapping potential would also allow for
additional contact with experiment [107]. Second, it would be
interesting to add the effects of dissipation [56,108], which
has been shown to renormalize the phase boundaries in the
BHM. For cold-atoms the effects of dissipation can probably
be ignored, but in other realizations of the BHM this may not
be feasible [109].

Recent experimental advances which allow for high spatial
resolution in cold-atom experiments [35,105,110–113] sug-
gests that there will be advanced capabilities for probing the
out-of-equilibrium dynamics spatially as well as temporally,
suggesting that there are exciting times ahead for studies of
out-of-equilibrium dynamics of Bose-Hubbard systems.
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APPENDIX A: HUBBARD-STRATONOVICH
TRANSFORMATION

Starting from the identities (where z = x + iy)∫ ∞

−∞

∫ ∞

−∞

dx dy

iπ
ei|z|2 =

∫ ∞

−∞

∫ ∞

−∞

dx dy

(−iπ )
e−i|z|2 = 1,

it is easy to show that

e−ia∗a =
∫ ∞

−∞

∫ ∞

−∞

dx dy

iπ
ei|z|2+i(z∗a+za∗);

eia∗a =
∫ ∞

−∞

∫ ∞

−∞

dx dy

(−iπ )
e−i|z|2+i(z∗a+za∗).

Using these results we may write (with z1 = x1 + iy1, z2 =
x2 + iy2 and z3 = x3 + iy3)

e−i(ξ∗η+η∗ξ ) = e−i(ξ∗+η∗)(ξ+η)+iξ∗ξ+iη∗η =
∫

dx1 dy1

iπ

∫
dx2 dy2

(−iπ )

∫
dx3 dy3

(−iπ )
ei|z1|2−i|z2|2−i|z3|2ei(z1(ξ∗+η∗)+z∗

1(ξ+η)+z2ξ
∗+z∗

2ξ+z3η
∗+z∗

3η)

=
∫

dx̃1 dỹ1

iπ

dx̃2 dỹ2

(−iπ )

dx̃3 dỹ3

(−iπ )
ei|z̃1|2−i|z̃2−z̃1|2−i|z̃3−z̃1|2ei(z̃∗

2ξ+z̃2ξ
∗+z̃∗

3η+z̃3η
∗),
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where we change variables to z̃1 = z1, z̃2 = z1 + z2, and z̃3 =
z1 + z3. After integrating out z̃1, we get

e−i(ξ∗η+ξη∗)

=
∫

dx̃2 dỹ2

(−iπ )

dx̃3 dỹ3

iπ
e2i(x̃2x̃3+ỹ2ỹ3)ei(z̃∗

2ξ+z̃2ξ
∗+z̃3η

∗+z̃∗
3η)

=
∫

D(z2,z
∗
2)D(z3,z

∗
3)ei(z∗

2z3+z2z
∗
3)ei(z∗

2ξ+z2ξ
∗+z3η

∗+z3η),

(A1)

where

D(z,z∗) = dx dy

iπ
; D(z,z∗) = dx dy

(−iπ )
.

APPENDIX B: MEAN-FIELD PHASE BOUNDARY

One way to determine the mean-field phase boundary be-
tween the superfluid and Mott-insulating phases is to determine
when the coefficient of the quadratic term in the action Eq. (9)
vanishes. In order to do this it is helpful to note that

τ 1
a1b1

Gib1b2 (t1,t2)τ 1
b2a2

=
(GK

0 (t1,t2) GR
0 (t1,t2)

GA
0 (t1,t2) 0

)
, (B1)

where GR
0 , GA

0 , and GK
0 are the retarded, advanced, and

Keldysh propagators, respectively, with the subscript 0
indicating that these are the propagators associated with H0.
The definitions of the propagators are

iGK
0 (t − t ′) = iG<

0 (t,t ′) + iG>
0 (t,t ′),

iGR
0 (t − t ′) = θ (t − t ′)[iG>

0 (t,t ′) − iG<
0 (t,t ′)],

iGA
0 (t − t ′) = θ (t ′ − t)[iG<

0 (t,t ′) − iG>
0 (t,t ′)],

with

iG<
0 (t,t ′) = Tr[â†(t ′)â(t)ρ̂0]

Z
,

iG>
0 (t,t ′) = Tr[â(t)â†(t ′)ρ̂0]

Z
.

These expressions can be evaluated using the interaction
representation

â†(t ′) = ei(ĤU −μn̂)t ′ â†e−i(ĤU −μn̂)t ′ ,

â(t) = ei(ĤU −μn̂)t âe−i(ĤU −μn̂)t

we obtain

iG<
0 (t,t ′) = re−i(Er−μr)t ei(Er−1−μ(r−1))(t−t ′)ei(Er−μr)t ′ ,

where we recalled â|r〉 = √
r|r − 1〉 and â†|r〉 =√

r + 1|r + 1〉. At temperature T ,

iG<
0 (t,t ′) =

∑∞
r=0 rei[μ−U (r−1)](t−t ′)e−β(Er−μr)∑∞

r=0 e−β(Er−μr)
. (B2)

Hence we have that the retarded Green’s function takes the
form

GR
0 (t1,t2) = −iθ (t1 − t2)

1∑∞
r=0 e− 1

T
(Er−μr)

×
{ ∞∑

r=0

[(r + 1)ei(μ−Ur)(t1−t2)

− rei[μ−U (r−1)](t1−t2)]e− (Er −μr)
T

}
, (B3)

which simplifies at T = 0 to

GR
0 (t1,t2) = −iθ (t1 − t2)[(n0 + 1)ei(μ−Un0)(t1−t2)

− n0e
i[μ−U (n0−1)](t1−t2)]. (B4)

For future reference it will also be convenient to note that

GK
0 (t1,t2) = − i∑∞

r=0 e−β(Er−μr)

∞∑
r=0

e−β(Er−μr)

× [(r + 1)ei(μ−Ur)(t1−t2) + rei[μ−U (r−1)](t1−t2)],

(B5)

which simplifies at T = 0 to

GK
0 (t1,t2) = −i[(n0 + 1)ei(μ−Un0)(t1−t2) + n0e

i[μ−U (n0−1)](t1−t2)].

Recalling that we can treat this as a single-site problem we
have

ρ̂0 = e−β[ U
2 [n̂(n̂−1)−μn̂]]; Z = Tr{ρ̂0} =

∞∑
r=0

e−β(Er−μr),

and Er = U
2 r(r − 1). n = N/M , where N is the number of

bosons, and M, the number of sites μ, is determined implicitly
from

n =
∑∞

r=0 re−β(Er−μr)∑∞
r=0 e−β(Er−μr)

.

At T = 0, the value of μ/U sets the occupation number,
n0( μ

U
), which takes an integer value r for r − 1 < μ/U < r ,

with degeneracies at μ/U = 0,1,2, . . .

When we Fourier transform the quadratic part of SI
eff in

space and time we get

−
∫ ∞

−∞

dω

2π

∑
k

1

Jk
ψ∗

a (ω,k)τ 1
abψb(ω,k)

−
∫

dω

2π

∑
k

ψ∗
a1

(ω,k)τ 1
a1b1

Gb1b2 (ω)τ 1
b2a2

ψa2 (ω,k). (B6)

We choose the hopping amplitude Jij to take the form

Jij (t) =
{
J0 + j (t), i,j nearest neighbors
0, otherwise ,

for which (with a the lattice spacing)

Jk(t) = [J0 + j (t)]
d∑

j=1

cos(kja)

�
(

d − 1

2
k2a2

)
[J0 + j (t)] ,

assuming that ka � 1.
Setting j (t) = 0 for now, when we take the ω, k → 0

limit we can locate the phase boundary by noting when the
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coefficient of the ψ∗
q ψc term in the action vanishes:

1

2dJ0
+ GR

0 (ω = 0) = 0.

Note that the retarded propagator

GR
0 (ω) = 1∑∞

r=0 e− 1
T

(Er−μr)

∞∑
r=0

e− (Er −μr)
T

[
(r + 1)

μ − Ur + ω + i0

− r

μ − U (r − 1) + ω + i0

]
, (B7)

at finite T and for T = 0:

GR
0 (ω) = n0 + 1

μ − Un0 + ω + i0
− n0

μ − U (n0 − 1) + ω + i0
.

(B8)

The advanced propagator may be obtained from

GA
0 (ω) = [

GR
0 (ω)

]∗
,

and at T = 0 the Keldysh propagator is

GK
0 (ω) = −2iπ{(n0 + 1)δ(ω + μ − Un0)

+ n0δ[ω + μ − U (n0 − 1)]}. (B9)

At zero temperature we obtain the standard mean-field equa-
tion for the phase boundary between the Mott insulator and
superfluid phases:

1

2dJ0
+ (n0 + 1)

μ − Un0
− n0

μ − U (n0 − 1)
= 0.

This may also be expressed as

μ̃± = 1
2 [(2n0 + 1) − J̃ ±

√
1 − J̃ (2n0 + 1) + J̃ 2] (B10)

for n0 > 1 and μ̃+ = −J̃ if n0 = 0, where J̃ = 2dJ/U and
μ̃ = μ/U . This affirms that the effective action correctly

predicts the mean-field phase boundary at zero temperature.
At finite temperature the corresponding equation is

1

2dJ0
+ 1

Z

∞∑
r=0

e−β(Er−μr)

[
r + 1

μ− Ur
− r

μ− U (r − 1)

]
= 0.

(B11)

The phase boundary as determined from this equation for
a variety of β values is displayed in Fig. 2(d). This phase
boundary is the edge of the superfluid phase; the Mott insulator
is strictly defined only at T = 0, and at nonzero temperature
there can be a normal phase separating superfluid and insulator,
with full melting of the insulator for T ∗ � 0.2 U [29,71].

APPENDIX C: PARAMETERS IN THE EQUATION
OF MOTION

There are three parameters that enter the equation of motion:

ν = [
GR

0

]−1

ω=0 ; λ = − ∂

∂ω

[
GR

0

]−1
∣∣∣∣
ω=0

;

κ2 = 1

2

∂2

∂ω2

[
GR

0

]−1
∣∣∣∣
ω=0

.

These can be evaluated to give

ν = Z∑∞
r=0 e−β(Er−μr)

[
(r+1)
μ−Ur

− r
μ−U (r−1)

] , (C1)

λ = ν2

Z

∞∑
r=0

e−β(Er−μr)

{
(r + 1)

[μ − Ur]2
− r

[μ − U (r − 1)]2

}
,

(C2)

κ2 = λ2

ν
− ν2

Z

∞∑
r=0

e−β(Er−μr)

×
{

(r + 1)

[μ − Ur]3
− r

[μ − U (r − 1)]3

}
, (C3)

and

u = − ν4

2Z

∞∑
r=0

e−β(Er−μr )

{
4(p + 1)(p + 2)

[Up − μ]2[2μ − (2p + 1)U ]
+ 4p(p − 1)

[U (p − 1) − μ]2[U (2p − 3) − 2μ]
− 4(p + 1)2

[μ − Up]3

− 4p2

[U (p − 1) − μ]3
− 4p(p + 1)

[U (p − 1) − μ]2[μ − Up]
− 4p(p + 1)

[U (p − 1) − μ][μ − Up]2

}
. (C4)

The expressions for ν, λ and κ2 simplify somewhat in the zero-temperature limit:

ν = (μ − Un0)[μ − U (n0 − 1)]

μ + U
; λ = (2n0 − 1)U − 2μ

μ + U
+ (μ − Un0)[μ − U (n0 − 1)]

(μ + U )2

and

κ2 = 1

2

[
2n0U − μ

(μ + U )2
−

{[
Uμ(2n0 + 1) − U 2

(
2n2

0 − 1
)]

(μ + U )3

}]
. (C5)
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APPENDIX D: EVALUATION OF THE FOUR-POINT FUNCTION

To evaluate the four time correlation functions, there are several basic correlations we need

Baaa†a†
(t1,t2,t3,t4) = 1

Z
Tr{e−β(ĤU −μN̂ )a(t1)a(t2)a†(t3)a†(t4)}

= 1

Z

∞∑
p=0

(p + 1)(p + 2)ei(Ep−μp)(t1−t4+iβ)+i(Ep+1−μ(p+1))(t2+t4−t1−t3)+i(Ep+2−μ(p+2))(t3−t2), (D1)

Baa†aa†
(t1,t2,t3,t4) = 1

Z

∞∑
p=0

(p + 1)2ei(Ep−μp)(t1+t3−t2−t4+iβ)+i(Ep+1−μ(p+1))(t2+t4−t1−t3), (D2)

Baa†a†a(t1,t2,t3,t4) = 1

Z

∞∑
p=0

p(p + 1)ei(Ep−μp)(t1+t3−t2−t4+iβ)+i(Ep−1−μ(p−1))(t4−t3)+i(Ep+1−μ(p+1))(t2−t1), (D3)

Ba†aaa†
(t1,t2,t3,t4) = 1

Z

∞∑
p=0

p(p + 1)ei(Ep−μp)(t1+t3−t2−t4+iβ)+i(Ep+1−μ(p+1))(t4−t3)+i(Ep−1−μ(p−1))(t2−t1), (D4)

Ba†aa†a(t1,t2,t3,t4) = 1

Z

∞∑
p=0

p2ei(Ep−μp)(t1+t3−t2−t4+iβ)+i(Ep−1−μ(p−1))(t2+t4−t1−t3), (D5)

Ba†a†aa(t1,t2,t3,t4) = 1

Z

∞∑
p=0

p(p − 1)ei(Ep−μp)(t1−t4+iβ)+i(Ep−1−μ(p−1))(t2+t4−t1−t3)+i(Ep−2−μ(p−2))(t3−t2). (D6)

In addition we require the two-point correlations:

Caa†
(t1,t2) = 1

Z
Tr{e−β(ĤU −μN̂ )a(t1)a†(t2)} = 1

Z

∞∑
p=0

(p + 1)ei(Ep−μp)(t1−t2+iβ)+i(Ep+1−μ(p+1))(t2−t1) = iG>
0 (t1,t2), (D7)

Ca†a(t1,t2) = 1

Z

∞∑
p=0

pei(Ep−μp)(t1−t2+iβ)+i(Ep−1−μ(p−1))(t2−t1) = iG<
0 (t2,t1). (D8)

The actual expressions are rather tiresome to derive but are given here for completeness, where we use the notation
θij = θ (ti − tj ):

G2c
qqqq (t1,t2,t3,t4) = i

2
{[θ12θ23 + θ21θ14][Ba†aaa†

(t3,t2,t1,t4) + Ba†aaa†
(t4,t1,t2,t3)]

+ [θ12θ24 + θ21θ13][Ba†aaa†
(t3,t1,t2,t4) + Ba†aaa†

(t4,t2,t1,t3)]

+ [θ13θ32 + θ31θ14][Baa†aa†
(t2,t3,t1,t4) + Ba†aa†a(t4,t1,t3,t2)]

+ [θ13θ34 + θ31θ12][Baaa†a†
(t2,t1,t3,t4) + Ba†aaa†

(t4,t3,t1,t2)]

+ [θ14θ42 + θ41θ13][Baa†aa†
(t2,t4,t1,t3) + Ba†aa†a(t3,t1,t4,t2)]

+ [θ14θ43 + θ41θ12][Baaa†a†
(t2,t1,t4,t3) + Ba†a†aa(t3,t4,t1,t2)]

+ [θ32θ21 + θ23θ34][Baaa†a†
(t1,t2,t3,t4) + Ba†a†aa(t4,t3,t2,t1)]

+ [θ42θ21 + θ24θ43][Baaa†a†
(t1,t2,t4,t3) + Ba†a†aa(t3,t4,t2,t1)]

+ [θ23θ31 + θ32θ24][Baa†aa†
(t1,t3,t2,t4) + Ba†aa†a(t4,t2,t3,t1)]

+ [θ43θ31 + θ34θ42][Baa†a†a(t1,t3,t4,t2) + Baa†a†a(t2,t4,t3,t1)]

+ [θ24θ41 + θ42θ23][Baa†aa†
(t1,t4,t2,t3) + Ba†aa†a(t3,t2,t4,t1)]

+ [θ34θ41 + θ43θ32][Baa†a†a(t1,t4,t3,t2) + Baa†a†a(t2,t3,t4,t1)]}
− i{[Caa†

(t1,t3) + Ca†a(t3,t1)][Caa†
(t2,t4) + Ca†a(t4,t2)]

+ [Caa†
(t1,t4) + Ca†a(t4,t1)][Caa†

(t2,t3) + Ca†a(t3,t2)]}, (D9)
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G2c
cqqq (t1,t2,t3,t4) = i

2
{−θ21[θ32 + θ23θ34][Baaa†a†

(t1,t2,t3,t4) − Ba†a†aa(t4,t3,t2,t1)]

− θ21[θ42 + θ24θ43][Baaa†a†
(t1,t2,t4,t3) − Ba†a†aa(t3,t4,t2,t1)]

− θ31[θ23 + θ32θ24][Baa†aa†
(t1,t3,t2,t4) − Ba†aa†a(t4,t2,t3,t1)]

− θ31[θ43 + θ34θ42][Baa†a†a(t1,t3,t4,t2) − Baa†a†a(t2,t4,t3,t1)]

− θ41[θ24 + θ42θ23][Baa†aa†
(t1,t4,t2,t3) − Ba†aa†a(t3,t2,t4,t1)]

− θ41[θ34 + θ43θ32][Baa†a†a(t1,t4,t3,t2) − Baa†a†a(t2,t3,t4,t1)]

− [θ21θ13 − θ31θ12θ24][Ba†aaa†
(t3,t1,t2,t4) − Ba†aaa†

(t4,t2,t1,t3)]

+ [θ21θ14 − θ41θ12θ23][Ba†aaa†
(t3,t2,t1,t4) − Ba†aaa†

(t4,t1,t2,t3)]

− [θ31θ12 − θ21θ13θ34][Baaa†a†
(t2,t1,t3,t4) − Ba†a†aa(t4,t3,t1,t2)]

+ [θ31θ14 − θ41θ13θ32][Baa†aa†
(t2,t3,t1,t4) − Ba†aa†a(t4,t1,t3,t2)]

− [θ41θ12 − θ21θ14θ43][Baaa†a†
(t2,t1,t4,t3) − Ba†a†aa(t3,t4,t1,t2)]

+ [θ41θ13 − θ31θ14θ42][Baa†aa†
(t2,t4,t1,t3) − Ba†aa†a(t3,t1,t4,t2)]}

− i{θ31[Ca†a(t3,t1) − Caa†
(t1,t3)][Caa†

(t2,t4) + Ca†a(t4,t2)]

+ θ41[Ca†a(t4,t1) − Caa†
(t1,t4)][Caa†

(t2,t3) + Ca†a(t3,t2)]}, (D10)

G2c
ccqq (t1,t2,t3,t4) = i

2
{θ32θ21[Baaa†a†

(t1,t2,t3,t4) + Ba†a†aa(t4,t3,t2,t1)]

+ θ42θ21[Baaa†a†
(t1,t2,t4,t3) + Ba†a†aa(t3,t4,t2,t1)]

+ θ31[θ42θ23 − θ32θ24][Baa†aa†
(t1,t3,t2,t4) + Ba†aa†a(t4,t2,t3,t1)]

+ θ41[θ32θ24 − θ42θ23)][Baa†aa†
(t1,t4,t2,t3) + Ba†aa†a(t3,t2,t4,t1)]

− θ31θ42[Baa†a†a(t1,t3,t4,t2) + Baa†a†a(t2,t4,t3,t1)]

− θ41θ32[Baa†a†a(t1,t4,t3,t2) + Baa†a†a(t2,t3,t4,t1)]

+ θ31θ12[Baaa†a†
(t2,t1,t3,t4) + Ba†a†aa(t4,t3,t1,t2)]

+ θ41θ12[Baaa†a†
(t2,t1,t4,t3) + Ba†a†aa(t3,t4,t1,t2)]

+ θ32[θ41θ13 − θ31θ14][Baa†aa†
(t2,t3,t1,t4) + Ba†aa†a(t4,t1,t3,t2)]

+ θ42[θ31θ14 − θ41θ13][Baa†aa†
(t2,t4,t1,t3) + Ba†aa†a(t3,t1,t4,t2)]

+ [θ31θ12θ24 + θ42θ21θ13][Ba†aaa†
(t3,t1,t2,t4) + Ba†aaa†

(t4,t2,t1,t3)]

+ [θ41θ12θ23 + θ32θ21θ14][Ba†aaa†
(t3,t2,t1,t4) + Ba†aaa†

(t4,t1,t2,t3)]}
− i{θ31θ42[Caa†

(t2,t4) − Ca†a(t4,t2)][Ca†a(t3,t1) − Caa†
(t1,t3)]

+ θ41θ32[Caa†
(t2,t3) − Ca†a(t3,t2)][Ca†a(t4,t1) − Caa†

(t1,t4)]}, (D11)

G2c
cqcq (t1,t2,t3,t4) = i

2
{θ21[θ43θ32 − θ23θ34][Baaa†a†

(t1,t2,t3,t4) + Ba†a†aa(t4,t3,t2,t1)]

+ θ41[θ23θ34 − θ43θ32][Baaa†a†
(t1,t4,t3,t2) + Baa†a†a(t2,t3,t4,t1)]

+ θ43[θ21θ14 − θ41θ12][Baaa†a†
(t2,t1,t4,t3) + Ba†a†aa(t3,t4,t1,t2)]

+ θ23[θ41θ12 − θ21θ14][Ba†aaa†
(t3,t2,t1,t4) + Ba†aaa†

(t4,t1,t2,t3)]

− θ21θ43[Baaa†a†
(t1,t2,t4,t3) + Ba†a†aa(t3,t4,t2,t1)]

+ θ23θ31[Baa†aa†
(t1,t3,t2,t4) + Ba†aa†a(t4,t2,t3,t1)]

+ θ43θ31[Baa†a†a(t1,t3,t4,t2) + Baa†a†a(t2,t4,t3,t1)]

− θ23θ41[Baa†aa†
(t1,t4,t2,t3) + Ba†aa†a(t3,t2,t4,t1)]

+ θ41θ13[Baa†aa†
(t2,t4,t1,t3) + Ba†aa†a(t3,t1,t4,t2)]

+ θ21θ13[Ba†aaa†
(t3,t1,t2,t4) + Ba†aaa†

(t4,t2,t1,t3)]

+ [θ21θ13θ34 + θ43θ31θ12][Baaa†a†
(t2,t1,t3,t4) + Ba†a†aa(t4,t3,t1,t2)]
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+ [θ23θ31θ14 + θ41θ13θ32][Baa†aa†
(t2,t3,t1,t4) + Ba†aa†a(t4,t1,t3,t2)]}

− iθ23θ41[Ca†a(t4,t1) − Caa†
(t1,t4)][Caa†

(t2,t3) − Ca†a(t3,t2)], (D12)

G2c
cccq (t1,t2,t3,t4) = i

2
{θ43θ32θ21[Ba†a†aa(t4,t3,t2,t1) − Baaa†a†

(t1,t2,t3,t4)]

+ θ43θ42θ21[Baaa†a†
(t1,t2,t4,t3) − Ba†a†aa(t3,t4,t2,t1)]

− θ42θ23θ31[Baa†aa†
(t1,t3,t2,t4) − Ba†aa†a(t4,t2,t3,t1)]

+ θ43θ31θ42[Baa†a†a(t1,t3,t4,t2) − Baa†a†a(t2,t4,t3,t1)]

− θ41θ42θ23[Baa†aa†
(t1,t4,t2,t3) − Ba†aa†a(t3,t2,t4,t1)]

− θ43θ32θ41[Baa†a†a(t1,t4,t3,t2) − Baa†a†a(t2,t3,t4,t1)]

− θ43θ31θ12[Baaa†a†
(t2,t1,t3,t4) − Ba†a†aa(t4,t3,t1,t2)]

+ θ41θ12θ43[Baaa†a†
(t2,t1,t4,t3) − Ba†a†aa(t3,t4,t1,t2)]

+ θ41θ13θ32[Baa†aa†
(t2,t3,t1,t4) − Ba†aa†a(t4,t1,t3,t2)]

− θ41θ13θ42[Baa†aa†
(t2,t4,t1,t3) − Ba†aa†a(t3,t1,t4,t2)]

− θ42θ21θ13[Ba†aaa†
(t3,t1,t2,t4) − Ba†aaa†

(t4,t2,t1,t3)]

− θ41θ12θ23[Ba†aaa†
(t3,t2,t1,t4) − Ba†aaa†

(t4,t1,t2,t3)]}, (D13)

G2c
qqqc(t1,t2,t3,t4) = i

2
{θ34[θ23 + θ32θ21][Baaa†a†

(t1,t2,t3,t4) − Ba†a†aa(t4,t3,t2,t1)]

+ [θ24θ43 − θ34θ42θ21][Baaa†a†
(t1,t2,t4,t3) − Ba†a†aa(t3,t4,t2,t1)]

+ θ24[θ32 + θ23θ31][Baa†aa†
(t1,t3,t2,t4) − Ba†aa†a(t4,t2,t3,t1)]

+ [θ34θ42 − θ24θ43θ31][Baa†a†a(t1,t3,t4,t2) − Baa†a†a(t2,t4,t3,t1)]

+ [θ14θ42θ23 − θ24θ41][Baa†aa†
(t1,t4,t2,t3) − Ba†aa†a(t3,t2,t4,t1)]

+ [θ14θ43θ32 − θ34θ41][Baa†a†a(t1,t4,t3,t2) − Baa†a†a(t2,t3,t4,1)]

+ θ34[θ13 + θ31θ12][Baaa†a†
(t2,t1,t3,t4) − Ba†a†aa(t4,t3,t1,t2)]

+ [θ14θ43 − θ34θ41θ12][Baaa†a†
(t2,t1,t4,t3) − Ba†a†aa(t3,t4,t1,t2)]

+ θ14[θ31 + θ13θ32][Baa†aa†
(t2,t3,t1,t4) − Ba†aa†a(t4,t1,t3,t2)]

+ [θ24θ41θ13 − θ14θ42][Baa†aa†
(t2,t4,t1,t3) − Ba†aa†a(t3,t1,t4,t2)]

+ θ24[θ12 + θ21θ13][Ba†aaa†
(t3,t1,t2,t4) − Ba†aaa†

(t4,t2,t1,t3)]

+ θ14[θ21 + θ12θ23][Ba†aaa†
(t3,t2,t1,t4) − Ba†aaa†

(t4,t1,t2,t3)]}
− i{θ24[Caa†

(t1,t3) + Ca†a(t3,t1)][Caa†
(t2,t4) − Ca†a(t4,t2)]

+ θ14[Caa†
(t2,t3) + Ca†a(t3,t2)][Caa†

(t1,t4) − Ca†a(t4,t1)]}, (D14)

G2c
qqcc(t1,t2,t3,t4) = i

2
{θ23θ34[Baaa†a†

(t1,t2,t3,t4) + Ba†a†aa(t4,t3,t2,t1)]

+ θ24θ43[Baaa†a†
(t1,t2,t4,t3) + Ba†a†aa(t3,t4,t1,t2)]

+ θ24[θ13θ32 − θ23θ31][Baa†aa†
(t1,t3,t2,t4) + Ba†aa†a(t4,t2,t3,t1)]

+ [θ13θ34θ42 + θ24θ43θ31][Baa†a†a(t1,t3,t4,t2) + Baa†a†a(t2,t4,t3,t1)]

+ θ23[θ14θ42 − θ24θ41][Baa†aa†
(t1,t4,t2,t3) + Ba†aa†a(t3,t2,t4,t1)]

+ [θ14θ43θ32 + θ23θ34θ41][Baa†aa†
(t1,t4,t3,t2) + Baa†a†a(t2,t3,t4,t1)]

+ θ13θ34[Baaa†a†
(t2,t1,t3,t4) + Ba†a†aa(t4,t3,t1,t2)]

+ θ14θ43[Baaa†a†
(t2,t1,t4,t3) + Ba†a†aa(t3,t4,t1,t2)]

+ θ14[θ23θ31 − θ13θ32][Baa†aa†
(t2,t3,t1,t4) + Ba†aa†a(t4,t1,t3,t2)]

+ θ13[θ24θ41 − θ14θ42][Baa†aa†
(t2,t4,t1,t3) + Ba†aa†a(t3,t1,t4,t2)]

− θ13θ24[Ba†aaa†
(t3,t1,t2,t4) + Ba†aaa†

(t4,t2,t1,t3)]
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− θ14θ23[Ba†aaa†
(t3,t2,t1,t4) + Ba†aaa†

(t4,t1,t2,t3)]}
+ i{θ13θ24[Ca†a(t3,t1) − Caa†

(t1,t3)][Ca†a(t4,t2) − Caa†
(t2,t4)]

+ θ14θ23[Ca†a(t4,t1) − Caa†
(t1,t4)][Ca†a(t3,t2) − Caa†

(t2,t3)]}, (D15)

G2c
qccc(t1,t2,t3,t4) = i

2
{θ12θ23θ34[Baaa†a†

(t1,t2,t3,t4) − Ba†a†aa(t4,t3,t2,t1)]

+ θ12θ24θ43[Baaa†a†
(t1,t2,t4,t3) − Ba†a†aa(t3,t4,t2,t1)]

+ θ13θ32θ24[Baa†aa†
(t1,t3,t2,t4) − Ba†aa†a(t4,t2,t3,t1)]

+ θ13θ34θ42[Baa†a†a(t1,t3,t4,t2) − Baa†a†a(t2,t4,t3,t1)]

+ θ14θ42θ23[Baa†aa†
(t1,t4,t2,t3) − Ba†aa†a(t3,t2,t4,t1)]

+ θ14θ43θ32[Baa†a†a(t1,t4,t3,t2) − Baa†a†a(t2,t3,t4,t1)]

− θ12θ13θ34[Baaa†a†
(t2,t1,t3,t4) − Ba†a†aa(t4,t3,t1,t2)]

− θ12θ14θ43[Baaa†a†
(t2,t1,t4,t3) − Ba†a†aa(t3,t4,t1,t2)]

− θ14θ13θ32[Baa†aa†
(t2,t3,t1,t4) − Ba†aa†a(t4,t1,t3,t2)]

+ θ13θ14θ42[Baa†aa†
(t2,t4,t1,t3) − Ba†aa†a(t3,t4,t1,t2)]

− θ13θ12θ24[Ba†aaa†
(t3,t1,t2,t4) − Ba†aaa†

(t4,t2,t1,t3)]

+ θ14θ12θ23[Ba†aaa†
(t3,t2,t1,t4) − Ba†aaa†

(t4,t1,t2,t3)]}. (D16)
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