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Ground state of a resonantly interacting Bose gas
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We show that a two-channel mean-field theory for a Bose gas near a Feshbach resonance allows for an analytic
computation of the chemical potential, and therefore the universal constant β, at unitarity. To improve on this
mean-field theory, which physically neglects condensate depletion, we study a variational Jastrow ansatz for the
ground-state wave function and use the hypernetted-chain approximation to minimize the energy for all positive
values of the scattering length. We also show that other important physical quantities such as Tan’s contact and
the condensate fraction can be directly obtained from this approach.
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I. INTRODUCTION

In recent years, ultracold Fermi gases have been extensively
studied near a Feshbach resonance, both theoretically and
experimentally. Only more recently, the strongly interacting
regime for an atomic Bose gas is beginning to be explored.
The reason for this is that experiments are troubled by strong
inelastic atom losses in this case. Nevertheless, a number
of groups are now starting to carry out experiments in
the strongly interacting regime near a Feshbach resonance
[1–3], and it is expected that significant results will soon be
obtained. Theoretically, these systems are also challenging and
some attempts toward an accurate description of the strong
interaction effects that play a role here have already been
made [4–6]. In this paper we discuss another approach to
study the ground state of resonantly interacting Bose gases.

As a first step and to discuss more transparently some of
the important physics involved, we start this paper in Sec. II
with a mean-field description of an atomic Bose gas near a
Feshbach resonance. This mean-field theory is based on a
two-channel description containing both atoms and molecules,
and has as a main approximation the neglect of depletion of the
condensate. Using a two-channel model gives a finite energy
for the Bose gas for all values of the scattering length a, also at
unitarity, where the scattering length diverges. Moreover, near
the Feshbach resonance the theory can be written in a universal
form, which no longer depends on the specific details of the
system. In this form it is even possible to find an analytic
solution for the chemical potential at resonance.

However, this mean-field theory is not qualitatively reliable
for large interaction strengths, since it neglects condensate
depletion, which has significant effects on the energy. There-
fore, we also study in Sec. III a variational Jastrow ground-
state wave function combined with the hypernetted-chain
approximation for the calculation of the ground-state energy.
This approach has had great success in the strongly coupled
helium liquids and we also show that, as desired, it reduces to
the Bogoliubov theory in the weakly interacting limit. After
a somewhat technical description in Secs. III A–III C on how
to implement this approach, we show in Secs. III D–III F that
it can be used to directly compute several important physical
quantities. For instance, using this approach, the condensate
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fraction and the contact can be derived directly from the
two-particle correlation function. As mentioned, the approach
is variational. The total energy of the gas can be determined
from the two-particle correlation function and the Jastrow
factor, which are related to each other via the hypernetted-
chain equation. The Jastrow factor, which determines the
many-body ground-state wave function, is ultimately found
by minimizing the energy. In Sec. IV we find that for the small
and intermediate scattering length regime na3 < 1, where n

is the atomic density, this approach works very well, and also
allows us to compute the contact and condensate fraction.
However, the parametrization of the two-particle correlation
function that we use here and that is inspired by the liquid
helium literature, does not appear to work properly for larger
scattering lengths and this remains a topic for future work.

II. MEAN-FIELD THEORY

In ultracold dilute Bose gases, the interactions are usually
completely determined by the s-wave scattering length a.
However, the two-atom scattering problem can also contain
bound states. In the case of a magnetic Feshbach resonance, the
energy of these bound states depends on the externally applied
magnetic field B. At certain values of this magnetic field, a new
bound state can cross into the continuum of scattering states.
At such a point there is a resonance in the scattering length, and
the interaction appears infinitely strong in the s-wave channel.

In order to describe the many-body physics in such a
system we start with an effective action for the atom field (φa)
and molecule field (φm) that describes the bound state. This
action can be derived from first principles [7] and ultimately
reads

Seff

h̄βV
= −μφ∗

a φa + φ∗
m[δ(B) − 2μ + h̄�m]φm

+ 1
2Tbgφ

∗
a φ∗

a φa φa + g[φ∗
mφa φa + φ∗

a φ∗
a φm], (1)

where μ is the chemical potential, V is the volume, and β =
1/kBT is the inverse temperature. For our purposes we can
restrict ourselves to the zero-momentum and zero-frequency
part. The atoms interact with each other in the so-called open
channel with a strength Tbg, proportional to the background
scattering length abg for the atoms, which is an experimen-
tally known property of the specific Feshbach resonance of
interest. The width of the resonance is determined by the
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atom-molecule coupling g and is also known experimentally.
The molecular energy depends on the external magnetic field
through the self-energy h̄�m and via the magnetic detuning
δ(B) ∝ B − B0 from the resonance at the magnetic field B0.
For very broad resonances the interaction strength g of the
atoms with the molecules can, in principle, also depend on the
magnetic field, but we neglect this feature here.

Minimizing the action gives rise to the following Gross-
Pitaevskii equations for the atoms and molecules,

μφa = Tbg|φa |2φa + 2gφ∗
a φm,

(2)
2μφm = [δ(B) + h̄�m(2μ − 2h̄�HF)]φm + gφ2

a ,

where we have introduced the Hartree-Fock self-energy of
the noncondensed atoms h̄�HF. Its precise form is given
below. The introduction of this self-energy is very important.
Without the shift of the self-energy of the noncondensed
atoms, the molecular condensate would always be unstable.
Incorporating the Hartree-Fock self-energy makes sure that a
condensate of molecules does not decay away immediately. In
other words, the Hartree-Fock contribution to the self-energy
makes sure that there exists a (metastable) equilibrium solution
of the mean-field equations. Note that by elimination of the
molecular field and considering the two-body limit, it is easy
to show that the effective T matrix of the atoms obeys the
standard relation for the scattering length; that is, the effective
scattering length a(B) is related to the magnetic field via

Tbg − 2g2

δ(B)
≡ 4πa(B)h̄2

m
. (3)

For the broad Feshbach resonances of interest to us here, the
molecular field and therefore the molecular density turn out to
be very small, and we are allowed to put the atom density na

equal to the total density n. As a consequence, the two-channel
model now reduces to a single-channel model. The mean-field
theory now reduces to solving the following three coupled
equations:

μ = nTbg + 2ng2

2μ − δ(B) − h̄�m(2μ − 2h̄�HF)
,

h̄�m(E) = −g2m3/2

2πh̄3

√−E

1 + |abg|
√

−mE/h̄2
,

(4)

h̄�HF = 2nTbg + 4ng2

h̄�HF + μ − δ(B) − h̄�m(μ − h̄�HF)
,

where abg is the background scattering length associated with
Tbg. The first equation follows from the Gross-Pitaevskii
equations in Eq. (2), the second equation is the standard form
of the molecule self-energy first derived in this context in
Ref. [8] and the third equation is the appropriate Hartree-Fock
self-energy.

In this paper we are especially interested in the unitarity
limit, which is the limit a(B) → ∞. The physical properties
of the atomic Bose gas are in this limit universal, which means
that these properties do not depend on the specific details of
the system, such as abg and g. This can be seen explicitly from
the equation above. In the limit that a → ∞ the background
scattering length abg is irrelevant. Thus, we are allowed to take
the limit abg → 0, while keeping g2/δ(B) constant and still

obeying Eq. (3). Furthermore, the experimentally interesting
case is a broad Feshbach resonance; we therefore take the
limit g → ∞ and δ(B) → ∞, while keeping the scattering
length a constant. In order to proceed further we introduce
the Fermi momentum kF and Fermi energy εF instead of the
density n = k3

F/6π2 and the mass m/h̄2 = k2
F/2εF. We then

end up with

μ = εF

3π

4kFa

1 + kFa
√

−(μ − h̄�HF)/εF

,

(5)

h̄�HF = εF

3π

8kFa

1 + kFa
√

−(μ − h̄�HF)/2εF

,

where we used the following universal relations for a(B) and
h̄�m(E):

2g2

δ(B)
= −8π (kFa)

εF

k3
F

,
h̄�m(E)

δ(B)
= kFa

√
− E

2εF
.

The former two equations give the chemical potential and the
Hartree-Fock self-energy in units of the Fermi energy.

The two equations in Eq. (5) can be solved (in practice
numerically) for any positive value of a. The result is
shown in Fig. 1. For small a, the relation for the chemical
potential simply reduces to μ = 4εFkFa/3π = nT (a), which
is the well known Gross-Pitaevskii expression for the small a

regime. As expected the Hartree-Fock self-energy then reduces
to h̄�HF = 2nT (a) = 2μ. We can also solve the chemical
potential explicitly in the unitarity limit. We then have

μ

εF
= 4

3π

1√
(h̄�HF − μ)/εF

,

(6)
h̄�HF

εF
= 8

3π

1√
(h̄�HF − μ)/2εF

.
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FIG. 1. (Color online) The chemical potential μ in units of the
Fermi energy εF as a function of the inverse scattering length 1/kFa.
The solid line shows the mean-field result from Eq. (5). The dashed
line shows the Bogoliubov result from Eq. (8) with LHY correction,
while the dotted line is without this correction. Our two-channel
mean-field approach stays finite in the unitarity limit, while the
Bogoliubov theory diverges in that limit.
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Here we notice immediately that h̄�HF = 2
√

2μ, from which
we can then easily solve for μ to obtain

μ = 3

√
42

(3π )2

1

2
√

2 − 1
εF � 0.4618εF. (7)

For fermions, there is a similar relation, which is usually
written as μ = (1 + β)εF. In the specific case of fermions,
the universal constant β contains all the interaction effects
and was found to be β � −0.58 [9–12]. It is customary to
define a similar β for bosons; the above mean-field theory
gives β � −0.54. This is just below an experimental lower
bound set at β > −0.56 [3]. Other theoretical analyses give
varying results, namely, β � −0.34 [6] and the upper bounds
β < 1.93 [4] and β < −0.20 [5]. It is remarkable that the
fermionic value of β is within these bounds; thus, it is not
excluded that there is for this quantity no difference between
fermions and bosons at unitarity. This might be anticipated in
a one-dimensional situation; however, for a three-dimensional
gas as considered here, this would be an interesting result
indeed.

Another well-known mean-field result for the Bose gas
energy is obtained from Bogoliubov theory, which is an
expansion in terms of the diluteness parameter na3. This was
already derived in the late 1950s in Ref. [13] and reads

e = 4πh̄2

ma2
na3

(
1 + 128

15
√

π

√
na3 + · · ·

)
, (8)

where e is the energy per particle. The first term is the Gross-
Pitaevskii (GP) result and the second term is known as the
Lee-Huang-Yang (LHY) correction and is due to condensate
depletion resulting from quantum fluctuations.

The energy in Bogoliubov theory diverges in the limit
a → ∞; this is shown in Fig. 1 as the dashed line, which
includes the LHY correction. The dotted line is the GP result
without this correction. However, the energy for the mean-field
theory of Eq. (5) stays finite, shown in Fig. 1 as the solid
line. Of course, the energy of the unitary Bose system must
be finite; thus the mean-field result of Eq. (5) describes this
behavior correctly. However, from Fig. 1 can be concluded
that quantum fluctuations, described by the LHY correction,
are not properly incorporated in this theory. Thus, although
qualitatively correct, the mean-field approach described in this
section is probably not very reliable quantitatively. To improve
on this we propose a different approach, based on a Jastrow
wave function and the hypernetted-chain approximation which
is discussed extensively in the rest of this paper.

III. JASTROW AND HYPERNETTED-CHAIN
APPROXIMATION

In the previous section we have shown that with a simple
mean-field theory, it is possible to capture the qualitative
behavior of a Bose gas, where the energy stays finite when the
scattering length diverges. However, this approach is probably
not able to predict the energy reliably, since it excludes
quantum fluctuations. We therefore propose an alternative
approach in which we make a Jastrow ansatz for the wave
function and use the hypernetted-chain approximation to

compute correlations. This method was applied with great
success in the field of strongly interacting helium [14,15].

Since the Jastrow ansatz in combination with the
hypernetted-chain approximation has been used successfully
for some time now, there exists a large amount of literature on
the subject. However, in the field of ultracold atom gases, it
is not used very often. We believe that these methods can be
important for this field and we therefore briefly summarize the
important relations and derivations in the sections below.

A. Jastrow ansatz

The many-particle wave function can be a very complicated
function of all the particle positions, but in the Jastrow
approximation it is argued that the dominant correlation
features are captured by the pair function or Jastrow factor
f (r1 − r2) ≡ f (r12). The wave function is then

�(r1, . . . ,rN ) =
N∏

i>j=1

f (r i − rj ). (9)

In a homogeneous system this Jastrow factor only depends on
the relative positions. This function goes to one on a length
scale larger than the interparticle distance.

An important function in this description is the two-particle
correlation function. It is defined as follows:

g(r12) = N (N − 1)

n2

∫
d R12|�(r1, . . . ,rN )|2∫
d R|�(r1, . . . ,rN )|2 . (10)

Here n is the density,
∫

d R = ∫
d r1 · · · d rN denotes the

integration over all spatial coordinates, while
∫

d R12 =∫
d r3 · · · d rN is the integration over all spatial coordinates

except r1 and r2.
The energy of a system with a Jastrow wave function can

be written in terms of the functions f and g. The potential
energy in terms of the Jastrow wave function is

〈V 〉 =
∫

d R�∗(r1, . . . ,rN )
∑N

i<j V (rij )�(r1, . . . ,rN )∫
d R|�(r1, . . . ,rN )|2 ,

where V (r) is the interparticle potential, which only depends
on the distance between the particles. Using the particle-
exchange symmetry of the wave function we can write this
in terms of g(r) as

〈V 〉 = 1

2
n2

∫
d r1d r2 V (r12)g(r12). (11)

The kinetic energy can be written as

〈T 〉 = − h̄2

2m

∫
d R�∗(r1, . . . ,rN )

∑N
i ∇2

i �(r1, . . . ,rN )∫
d R|�(r1, . . . ,rN )|2 ,

which can, again using the symmetry properties of the wave
function, be written in terms of f (r) and g(r),

〈T 〉 = −n2

2

h̄2

2m

∫
d r1d r2 g(r12)∇2

r lnf (r12). (12)
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Since we describe a homogeneous system, we can perform
one more spatial integral, which gives a volume factor V . The
total energy is now

e = 1

2
n

∫
d r g(r)

(
V (r) − h̄2

2m
∇2

r lnf (r)

)
, (13)

where e is again the energy per particle.
In this Jastrow ansatz for the wave function, everything

in the system is determined by the Jastrow factor f (r).
However, many quantities, like the energy, are directly related
to the two-body correlation function g(r), but unfortunately
the relation between g(r) and f (r) is very complicated. This
relation [Eq. (10)] contains as many integrals as there are
particles, which clearly is unsolvable analytically. There are
many approximation schemes to solve it, but many depend on
small interactions or correlation lengths. However, for bosons
near a Feshbach resonance, we need an approximation scheme
where these are large. The hypernetted-chain approximation,
which is a diagrammatic cluster expansion, has proven to work
also very well in the strongly interacting regime [15]. After we
have established the relation between f and g, we can solve
for f (or g) by minimizing the energy in Eq. (13).

B. Hypernetted-chain approximation

With the Jastrow wave function we have a direct relation
between the two-particle correlation function g(r) and the
Jastrow factor f (r), but this relation contains, in the thermo-
dynamic limit, an infinite number of integrals. These integrals
cannot be solved analytically, but using the hypernetted-chain
(HNC) approximation we can systematically evaluate them.
The precise details of HNC can be read elsewhere, for example,
in Ref. [16], but in the following we give a short derivation for
completeness’ sake to understand better the physics involved
and introduce some useful notation.

We start by defining the cluster function h(r) = f (r)2 − 1,
which goes to zero quickly for large r , since f (r) goes then
to one. The two-particle correlation function g can then in a
natural way be written as a cluster expansion in terms of h,

g(r12)

∝
∫

d R12
[
1 + ∑N

i<jh(rij ) + ∑N
i<j

∑N
k<l h(rij )h(rkl) + · · · ]∫

d R
[
1 + ∑N

i<j h(rij ) + ∑N
i<j

∑N
k<l h(rij )h(rkl) + · · · ] ,

(14)

where the normalization constant is irrelevant for the discus-
sion and is left out and the relative coordinates are defined as
rij = ri − rj . These integrals are now written as an infinite sum
of clusters of h, which each are a product of any number of h’s.
These in turn can have different levels of complexity in terms
of the integration variables. For example,

∫
dr3h(r13)h(r23) is

more complicated than
∫

dr3dr4h(r13)h(r24). The idea behind
hypernetted chain is to sum over an infinite amount of clusters
selected by their complexity. When all complexities are taken
into account, we end up with the exact result. However, in this
paper we stick to the simplest set of clusters or diagrams, called
nodal diagrams. This is referred to as HNC/0. Since this is still
a sum of an infinite amount of diagrams, the convergence of the
approximation does not depend on the density or interaction
strength to be small.

The nodal diagrams are all clusters of h where the
integral over a series of h’s only connects one h to the
next. Here “connect” means that we have an integral like∫

dr3h(r13)h(r32), where r3 connects the two cluster functions.
We can construct an infinite set of these with the following
recursion relation:

N (0,1)(rab) = n

∫
d r1h(ra1)N (0,1)(r1b)

+ n

∫
d r1h(ra1)h(r1b), (15)

where N (0,1) denotes the set of these simple nodal diagrams.
This set can, in turn, be used to generate an infinite amount

of composite diagrams, which is simply all possible products
between all the elements of N (0,1). This we can write as

1

2!
N (0,1)(rab)2 + 1

3!
N (0,1)(rab)3 + · · ·

= exp [N (0,1)(rab)] − N (0,1)(rab) − 1, (16)

where the numerical factors exactly cancel any double
counting. This set can be extended even further by adding
h(rab) exp[N (0,1)(rab)], leading to

X (0,1)(rab) = f 2(rab) exp [N (0,1)(rab)] − N (0,1)(rab) − 1,

(17)

where X (0,1) is a set of all composite diagrams we can make
with the set N (0,1).

A lot more diagrams can be constructed by defining a
set N (0,2) that obeys Eq. (15) but with h(rab) replaced by
X (0,1)(rab). We can proceed naturally and define a X (0,2)(rab)
that obeys Eq. (17) where N (0,1) is replaced by N (0,2). We can
continue doing this, and in the limit where this procedure is
followed an infinite number of times, we arrive at the following
recursion relations:

N (0)(rab) = n

∫
d r1X (0)(ra1)N (0)(r1b)

+ n

∫
d r1X (0)(ra1)X (0)(r1b), (18)

and

g(rab) = 1 + N (0)(rab) + X (0)(rab)

= f 2(rab) exp [N (0)(rab)], (19)

where limk→∞ N (0,k) = N (0) and limk→∞ X (0,k) = X (0). This
latter equation relates the two-particle correlation function g to
the Jastrow factor f , which is what we needed. This selected
set of diagrams used to compute g is called HNC/0. In order
to include more (all) contributing diagrams we would have
to include also more (all) elementary diagrams in Eq. (17),
in addition to the nodal diagrams. However, this HNC/0
approximation contains already a lot of important information,
as was shown by the calculations on strongly interacting
helium.

The relation between f and g in Eq. (19) can be solved for
f as

lnf 2(r) = lng(r) − N (0)(r). (20)

The usefulness of this equation follows from the fact that
the function N (0)(r) can also be related to the two-particle
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distribution function. To do this we first define the structure
factor S(k),

S(k) = 1 + n

∫
d r eik·r [g(r) − 1]. (21)

Note that from the definition of g in Eq. (10) it follows that
S(0) = 0. The integral relations in Eqs. (18) and (19) can be
written as algebraic equations after a Fourier transformation.
These equations are then easily solved and we get N (0)(k) in
terms of S(k),

N (0)(k) = [S(k) − 1]2

S(k)
, (22)

where N (0)(k) is the Fourier transform of N (0)(r). In the HNC
approximation, the Jastrow factor f (r) is thus completely
determined in terms of the two-particle correlation function
g(r).

In this paper, we will vary the function g and then calculate
the energy. For this we need f , which we can calculate using
the above equations. Since we need some complicated shape
for g, it is not possible to analytically perform the Fourier
transformations. Calculating the energy thus involves a few
steps. First, when we have a g, we calculate the structure factor
S(k) by numerically Fourier transforming this g. Second, we
calculate N (0)(k) and numerically inverse Fourier transform
back. Third, we calculate f with which we can compute the
energy.

C. Energy minimization

With the relations that follow from the HNC approximation,
we can write the energy of the system in terms of only the
two-body correlation function. To get the ground-state wave
function, we have to minimize this energy with respect to
this function. We first write down an analytic expression for
this minimization condition, but it turns out to be hard to
solve this relation in practice. It is much more convenient to
numerically minimize the energy.

We have a relation for the energy in terms of f and g in
Eq. (13), and in combination with Eq. (20) we can write this in
terms of g only. Taking the functional derivative of the energy
with respect to g(r), or more conveniently

√
g(r), and putting

that to zero gives the following differential equation for g{
− h̄2

2m
∇2 + [V (r) + ω0(r)]

}√
g(r) = 0, (23)

where ω0(r) is defined as the inverse Fourier transform of

ω0(k) = −h̄2k2

4m
[S(k) + 1]

(
1 − 1

S(k)

)2

. (24)

The minimization equation [Eq. (23)] has the form of a simple
Schrödinger equation for

√
g where ω0(r) acts as an effective

induced potential that takes the presence of the entire medium
into account. This may seem as a simple-to-solve equation,
but recall that ω0(r) contains g in a very nonlinear way.

Solving this differential equation for g numerically turns out
to be very hard. Small numerical errors in g trigger solutions
of the differential equation that are not physical; that is, these
solutions are not normalizable. By explicitly varying g to
minimize the energy, these problems can be circumvented.

D. Asymptotic behavior

Even without minimizing the energy we can say something
about the shape of the two-body correlation function g. Let
us first study the case for small scattering length kFa. In
this regime, the known Bogoliubov dispersion relation can
be related to the structure factor S(k). This relation follows
from the dispersion relation from Bijl-Feynman theory, which
reads

E(k) = h̄2k2

2mS(k)
. (25)

In Bogoliubov theory, the dispersion relation is given by

E(k) =
√

ε2
k + 2nT (a)εk. (26)

Here εk = h̄2k2/2m and T (a) = 4πh̄2a/m. When we combine
Eqs. (25) and (26) we get the following for S:

S(k) = k2

√
k4 + 16πank2

= k√
16πan

− k3

2(16πan)3/2
+ O(k5). (27)

Thus, for small k we have S(k) = h̄k/2mc with c = √
4πan

the speed of sound of the medium.
As was pointed out before, the structure factor is related

to the two-body correlation function g. Since we know the
behavior of S(k) for small k, we can deduce the large-r
behavior of g. Using the asymptotic Fourier transform we
get for large r that

g(r → ∞) = 1 − h̄2

2π2nmc

1

r4
. (28)

This result holds only for small a; however, for large a one
still expects to find a linear dispersion relation for small k.
This means that the 1/r4 tail will have a different prefactor,
but should still be there in the unitarity limit. The tail of the trial
functions for g, which we use in the variational calculation,
will therefore be of that form. From the prefactor we can
determine the speed of sound.

The Jastrow factor f is completely determined by g (and
S) and the large-r tail of this function is thus also known

f (r → ∞) = 1 − mc

π2nh̄

1

r2
. (29)

These limits also tell us something about the large-r behavior
of the effective induced potential in Eq. (24),

ω0(r → ∞) = − 3h̄2

4m
√

an3π5

1

r6
. (30)

This result is consistent with the analytic minimization
equation in Eq. (23), since (when we put V to zero) the two
limits for both g and ω0 exactly solve this differential equation.

E. Contact

The small-r behavior of the two-body correlation function
can be related to what is called the contact, denoted by C.
The contact was recently derived to be a general feature
in strongly interacting Fermi systems by Tan [17,18], in a
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sequence of papers published in 2008. Since Tan’s derivation
is not based on the statistics of the particles, it was pointed out
by Combescot et al. [19] that the relations also hold for Bose
statistics and are hence applicable to Bose gases as well. The
quantity C is part of a series of various exact and universal
relations which therefore also hold for strongly correlated
gases. When applied to Bose gases, Tan’s main theorem, which
he calls the “adiabatic sweep theorem,” states

− d (ne)

d (1/a)
= h̄2

m

C
8π

, (31)

here e is the energy per particle of the gas. It is striking that
this is such a simple, exact, and universal relation. The contact
C turns out to be independent of the short-range interactions,
except for the scattering length a. In general, it is a constant
which is expected to remain finite for all values of the scattering
length. Let us consider the well-known low-density expansion,
or Bogoliubov theory for the ground-state energy Eq. (8).
When we apply Tan’s theorem to this energy expression, we
find an approximation for the contact of a Bose gas for small
scattering length to first order,

C = (4πna)2

(
1 + 64

3
√

π

√
na3

)
. (32)

It was shown [20] that this equation for C can be derived
independently of Eq. (31), from which can be seen that Tan’s
relations agree with Bogoliubov theory.

The relation for the contact in Eq. (32) does not have a finite
limit at a Feshbach resonance when a goes to infinity, since
Bogoliubov is only valid for small na3. However, the method
proposed in this paper does have a finite limit. It is in general
possible to find C in terms of the two-particle distribution
function g(r), which in the context of HNC/0 is of great use.

For small r , the behavior of the two-particle distribution
function g(r) is dominated by the interaction of only two
particles, since in a dilute gas, the rest of the particles are
far away. The function

√
g is therefore proportional to the

two-particle wave function f2(r), which is the solution of the
two-particle Schödinger equation (see Sec. IV A). For small r ,
but outside the range of the interaction, this function behaves
as f2(r) � 1 − a

r
. The two-body distribution function g is thus

for small r proportional to f 2
2 , with a proportionality factor we

call Z. Thus, we have for small r ,

g(r) � Z|f2(r)|2 � Za2

(
1

r2
− 2

ar

)
. (33)

The proportionality constant Z is related to the contact through
Z = C/16π2n2a2. We thus have for the contact

C � 16π2n2a2 g(r)

|f2(r)|2 , (34)

which can be calculated directly from the HNC solutions. We
calculate the energy as a function of the scattering length, and
as a result, we are also able to use the original expression in
Eq. (31) to compute C, which we compare to the results from
Eq. (34).

In the experiments that a number of groups a trying to
perform, one of the biggest challenges is the severe losses
of the particles in the trap. An important consequence of the
wave function renormalization factor Z, which is related to the

contact, is that it also affects the three-body collision terms,
which is what determines the particle loss rate of the Bose gas
in a trap. This particle-loss is governed by the relation

dn

dt
= L n3, (35)

where L determines the loss rate and the power of n3 reflects
that three-body collisions are needed to obey the conservation
laws. Since the wave function amplitude changes with Z < 1
at small distances, the loss rate L is multiplied with Z3 due to
many-body effects. Since the contact, and hence Z, can change
significantly near the Feshbach resonance, this will have great
effect on the losses in experiments.

F. Condensate density

An important physical quantity is the condensate fraction,
denoted by n0. This is the density of particles which are in the
zero-momentum state and form a Bose-Einstein condensate.
Conversely, there is a density of particles which are not in
the condensate, due to (quantum) depletion. This density is
typically nonzero even at zero temperature, an effect which is
solely due to interactions. In this section, we follow the lines
of Ristig et al. (see Refs. [21–23]).

We first consider the one-body density matrix for the system
of N bosons, given by

n(r11′) = N

∫
d R1�

∗(r1, . . . ,rN )�(r ′
1, . . . ,rN )∫

d R1|�(r1, . . . ,rN )|2 , (36)

where � is the wave function for the system. This can be
written in a convenient notation as

n(r) = n0e
−Q(r). (37)

The one-body density matrix has the well-known properties
that n(0) = n and n(r → ∞) = n0, which in terms of Q means
Q(r → ∞) = 0 and n0 = neQ(0). Using a cluster expansion,
similar to HNC/0, this Q(r) can be computed. The details of
this computation can be found in Refs. [21–23], but in the
following we give a brief outline of it.

The most insightful approach to the calculation of Q(r)
is the method proposed by Feenberg [24]. The ground-state
Jastrow wave function, written in Eq. (9) is not necessarily
properly normalized. A trial wave function that can be properly
normalized, and was proposed by Feenberg, is given by

�(N)(r1, . . . ,rN ) = e− λN
2

( n

N

)N/2 N∏
i<j

f (rij ). (38)

Here λ is a dimensionless parameter which we need to
calculate. The one-body density matrix can be written in terms
of this new trial wave function as

n(r11′ ) = ne−λ

∫
d R1|�(N−1)(2, . . . ,N)|2

N∏
j=2

f (r1j )f (r1′j ).

(39)

The normalization parameter λ can be computed from
Eq. (38) by comparing a wave function for N and for N − 1
bosons (see Ref. [24] for details). From this comparison,
λ can be calculated in several orders of the previously discussed

033618-6



GROUND STATE OF A RESONANTLY INTERACTING BOSE GAS PHYSICAL REVIEW A 84, 033618 (2011)

cluster function h(r). Up to second order in the cluster function
we get

λ = D[1][h] + D[2][h] + · · · = D[h], (40)

where D[1][h] and D[2][h] are functionals of h of first and
second order, given by

D[1][h] = n

∫
d rh(r), (41)

D[2][h] = n2

2

∫
d r2d r3g(r23 − 1)h(r12)h(r13). (42)

The expression for the density matrix in Eq. (39) can be
expanded in a similar way. However, instead of the cluster
function h(r), the radial function ζ (r) = f (r) − 1 is used.
This function has the similar property that it goes (quickly)
to zero for large r , and hence we can also perform a cluster
expansion. Since the normalization was computed with four
copies of f , and thus second order in h, the density matrix is
also computed with four copies of f and thus to fourth order
in ζ .

Again, the precise details of this calculation can be found
in Ref. [23], but up to second order in f 2 the result is

n[2] = neλ[2]
exp{2D[1][ζ ] − Q[1](r)}

× exp{2D[2][ζ ] − Q[2](r)}, (43)

which, in general, can be written as

n(r) = n exp{2D[ζ ] − D[h] − Q(r)}, (44)

with Q[1](r) + Q[2](r) + · · · = Q(r). The function Q(r) con-
tains every term that still depends on |r1 − r ′

1|, all of which
go to zero for r → ∞. All constant terms turn out to have the
same functional form as the normalization terms and can be
expressed in the same functional D. If we compare Eq. (44)
with Eq. (37) we notice that it has exactly the same form. Thus,
when we take the limit r → ∞ we get for the condensate
density

n0 = n exp (2D[ζ ] − D[h]). (45)

When we insert the expression for D up to second order in f 2,
we get

n0 = n exp

{
− n

∫
d rζ (r)2

+ n

∫
dk

(2π )3
[S(k) − 1]

[
ζ (k)2 − 1

2
h(k)2

]}
, (46)

where we have used the Fourier transform of ζ and h in order
to get rid of double integrals over r . This expression for the
condensate density only depends on f and g and we are now
able to compute this for the minimized results below.

IV. VARIATIONAL SOLUTIONS

With the HNC approximation for the Jastrow wave function,
we have an expression for the energy in terms of the two-
particle distribution function. The ground-state g(r) minimizes
this energy. In the previous section we derived a differential
equation for g(r) in Eq. (23) that solves the minimization
equation. However, this is a very nonlinear equation in g(r),

since the effective potential ω0(r) in Eq. (24) depends on g(r)
in a complicated way. This makes solving the differential
equation very difficult. A variational approach, where we
directly vary g(r) to find an energy minimum, turns out to
work much better.

A. Potential with resonance

In the unitarity limit, it is expected that the system behaves
universally; this behavior does therefore not depend on the
exact shape of the interaction potential. This gives us the
possibility to choose a simple potential that is numerically
convenient and also contains a “Feshbach” resonance to go
to the unitarity limit. The potential we choose is a hard core
combined with an attractive 1/r6 tail. One of the advantages
of this potential is that the two-particle problem can be solved
exactly. From the two-particle solutions, the scattering length
can be determined, which diverges for certain values of the
interaction strength of the attractive tail.

The interaction potential has a hard core with radius Rc and
has the following form:

V (r) =
{

∞ r < Rc,

−C6
r6 r � Rc.

(47)

This potential is spherically symmetric and since we are
looking at dilute and ultracold gases, only the s-wave part
of the interaction is important. In the spherically symmetric
case it is convenient to define

f2(r) = u(r)

r
, (48)

where f2(r) is the two-particle wave function. The Schrödinger
equation for u(r) can be written as(

h̄2

m

d2

dr2
+ C6

r6

)
u(r) = 0. (49)

This differential equation is solved by

u(r) = √
r

[
c1J− 1

4

(√
mC6

2h̄r2

)
+ c2J 1

4

(√
mC6

2h̄r2

)]
, (50)

where J± 1
4
(r) is the Bessel function of the first kind. The hard

core is included with the boundary condition u(Rc) = 0 and
the normalization of the wave function demands that f2(r →
∞) = 1. These two relations fix the constants c1 and c2 and
we obtain

f2(r)

=
[
J− 1

4

(√
mC6

2h̄r2

)
J 1

4

(√
mC6

2h̄R2
c

) − J 1
4

(√
mC6

2h̄r2

)
J− 1

4

(√
mC6

2h̄R2
c

)]
√

2�
(

3
4

)−1
(mC6/h̄

2)−1/8
√

rJ 1
4

(√
mC6

2h̄R2
c

) .

(51)

From the two-particle wave function we can determine the
scattering length a,

a = 1

2

�
(

3
4

)
�

(
5
4

) J− 1
4

(√
mC6

2h̄R2
c

)
J 1

4

(√
mC6

2h̄R2
c

)
(

C6m

h̄2

)1/4

. (52)
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FIG. 2. (Color online) The scattering-length a in units of Rc as a
function of the dimensionless interaction strength C6/(h̄2R4

c /m). At
certain values of C6 the scattering length diverges and the system is
at a resonance.

In Fig. 2 the scattering length is plotted as a function of
the dimensionless interaction strength C6/(h̄2R4

c /m). There
clearly are resonances at certain values for C6. We have
checked that different shapes of the interaction potential give
the same results for the HNC calculation as long as the
scattering length is the same. This is due to the dilute limit
in which the interaction is governed by the scattering length,
and therefore the energy is only a function of a and, in that
sense, independent of C6.

B. Varying the radial distribution function

Within the Jastrow ansatz and the HNC approximation, the
energy of the system is completely determined by the two-
particle distribution function g(r). In the approach we propose
here, we start with an ansatz for g(r) that closely enough
resembles the expected functional form, but parametrize
enough freedom such that we can find, or get very close to, the
actual energy minimum.

The ansatz for g(r) can be constructed out of three parts.
The first part is the tail of g, that is, the power of r with which
g − 1 approaches zero. As we have seen in Eq. (28), g(r) goes
to one for large r as 1 − P4r

−4, where in the weak-coupling
limit we also know that P4 = h̄/2π2nmc. The second part of g

is the short-range regime. Since HNC incorporates the effects
of all particles onto each other, which in this dilute situation
is a long-range effect, it has little effect on the short-range
behavior of the system. It is therefore reasonable to assume that
for small r , g is proportional to the two-body function f2(r)2.
The proportionality constant between f 2

2 and g is related to the
contact as discussed in Sec. III E. The third part of g, which is
left over, is the intermediate-range regime. This is where the
short- and long-range parts are smoothly connected to each
other. More important for this regime is the normalization
condition of g. This normalization follows directly from the
definition of g(r) in Eq. (10) and can be written as∫

d r[1 − g(r)] = 1. (53)

To account for all of this, the middle part needs the most
variational freedom. The amount of parameters can be ex-
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FIG. 3. (Color online) (Top) The minimized radial distribution
function g (solid line) and f (r)2 (dashed line) as a function of the
radius in units of the interparticle distance Ri. (Bottom) The structure
factor S(k) (solid line) and the dispersion relation in units of εF

(dashed line) as a function of the momentum k/kF.

tended by adding a cosine oscillation to the middle part.
These oscillations can be expected to be important for the
strongly interacting regime, where liquid-like shell structures
may occur, although we have not observed this yet.

Since g(r) is a distribution function, it is always larger than
zero, and we are therefore able to write it as an exponent
of another function. Writing it this way has the advantage
that it cannot accidentally become negative when varying the
parameters. We split up the ansatz for g(r) in a short- (us), a
middle- (um), and a long-range (ul) part:

us = [2lnf2(r) + P8] exp (−P2r
P5 ), (54)

um = P3 cos [P10(r − P6)]

P3b + rP1
[1 − exp (−P9r

P7 )], (55)

ul = P4

P4b + r4
[1 − exp (−P11r

P12 )]. (56)

The radial distribution function g(r) is then given by

g(r) = exp (us + um + ul). (57)

This parametrization of the radial distribution function was
common practice in the field of liquid 4He, as for instance in
Ref. [14].

C. Results

In the previous sections we showed how a Jastrow wave
function, together with the HNC approximation, can be used
to compute several properties of a Bose gas toward a Feshbach
resonance. In this section we show the first promising results
for small and intermediate scattering lengths.
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FIG. 4. (Color online) The energy as a function of the inverse
scattering length 1/kFa calculated with the variational approach of
HNC/0 (solid line). The (red-shaded) area depicts the estimated
accuracy of the result, which shows the large error for large kFa.
The dash-dotted line shows the Gross-Pitaevskii energy while the
dashed line also includes the LHY correction in Eq. (8). This shows
that the HNC calculation correctly includes this term.

To find the energy minimum we vary the parameters in
the distribution function g in Eq. (57) and use the HNC
approximation to compute the energy. For the variation we
use a gradient algorithm which converges slowly toward the
energy minimum. For small kFa this goes relatively fast and
easy, but with increasing kFa it becomes increasingly difficult.
We therefore increased the scattering length step by step and
used the resulting parameter values of one minimization as a
starting point for the next.

In Fig. 3 we show in the top panel the result of a two-particle
distribution function for which the energy is minimized.
Notice the wiggle near r = 0, which shows that we are
actually dealing with a metastable many-body solution of
the used potential, that acts as the ground state in the HNC
approximation. We also show f (r)2. In the bottom panel the
structure factor is shown (solid line), which is zero for k = 0,
as it is supposed to be. It also starts linearly, and as a result, the
dispersion relation (dashed line) also starts linearly for small
k, but becomes of the usual quadratic shape for larger k.

This method works excellently for small and also for
intermediate scattering lengths. This can be seen in Fig. 4,
where the solid line shows the energy as a function of kFa. For
small kFa (kFa � 0.2), the energy agrees with the mean-field
result in Bogoliubov theory [see Eq. (8) (dash-dotted line)].
When we increase kFa (0.2 � kFa � 0.5) the energy also
includes the LHY correction (dashed line). When kFa becomes
even larger, it becomes increasingly harder to find a reliable
energy minimum. To indicate this, we have estimated the
accuracy of the energy.

Now that we have the two-particle distribution function as
a function of the scattering length that minimizes the energy,
we can calculate several other physical quantities. One such
quantity is the condensate fraction. In Eq. (46) we showed
how this condensate fraction can be calculated given the
radial distribution function. In Fig. 5 the condensate fraction is
plotted as a function of the inverse scattering length 1/kFa. The
blue solid line is the result from HNC/0 and the red dashed line
is the result from Bogoliubov theory. The result from HNC/0

0 2 4 6 8
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0.6

0.7

0.8

0.9

1.0

1/kFa

n
0
/
n

FIG. 5. (Color online) The condensate fraction as a function of
the inverse scattering length 1/kFa calculated with the variational
approach of HNC/0 (solid line). The (red) dashed line shows the
condensate fraction for Bogoliubov theory. The condensate fraction
for HNC/0 is comparable to the Bogoliubov result for small kFa, but
for larger scattering lengths it is significantly smaller.

is comparable to the Bogoliubov result for small scattering
lengths, but for larger values of kFa the depletion in the HNC/0
case is significantly higher than for Bogoliubov theory.

The contact, which was discussed in Sec. III E is also an
important physical quantity. We showed two ways to extract
the contact from the HNC/0 results : one directly from the
two-particle distribution function Eq. (34); the other as a
derivative of the energy Eq. (31). Since the energy follows
the Bogoliubov energy, the contact computed as the derivative
of the energy with respect to 1/a, is roughly the same as the
Bogoliubov contact in Eq. (32). However, since convergence is
not properly reached for some of the large-kFa points in Fig. 4,
the contact cannot be computed there either. Furthermore,
since one expects the energy to be finite at unitarity, the contact
should also be finite in that regime.

The second method, where we directly read off the contact
from g, might indicate already that the contact becomes
smaller than the Bogoliubov result, which is shown in Fig. 6.
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FIG. 6. (Color online) The contact as a function of the inverse
scattering length 1/kFa calculated with the variational approach of
HNC/0 (solid line). The (red) dashed line shows the contact for the
Bogoliubov theory in Eq. (32).
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Also, the slow convergence of the variational process prevents
us from computing the contact up to the unitarity limit, but
the results for intermediate kFa show a decrease in C. The fact
that the contact is smaller also indicates that the wave function
renormalization constant Z is smaller than one. This would
indicate that the three-body particle decay rate is suppressed
by many-body effects in the unitarity limit.

V. CONCLUSION

The unitary regime for bosons is still not completely
understood, both experimentally and theoretically. In this
paper we believe to have shown that the use of a Jastrow
ansatz with the HNC approximation gives promising results
that will help with the understanding.

In the first section we put forward a very elegant mean-field
theory which describes a Bose gas near a Feshbach resonance.
This theory shows the universal nature at a Feshbach resonance
and can be used to calculate numerically the chemical potential
as a function of the scattering length. Moreover, at unitarity
this theory gives an analytic result for the chemical potential.

This mean-field theory is probably, for large interaction
strengths, quantitatively not reliable, since it lacks the im-
portant contributions of quantum fluctuations. We therefore
propose to use a Jastrow ansatz together with the HNC
approximation to further investigate the strongly interacting
Bose gas. We have shown how to set up such an approach. From
the two-particle distribution function g, which is computed
with the hypernetted-chain relation, several important physical
quantities can be derived. Not only the energy, but also the
condensate fraction and the contact can be computed directly
from g.

The system of relations for f and g can be solved using a
variational approach. The two-particle distribution function is

varied, until the energy is minimized. This gives promising
results for small and intermediate values of the scattering
length kFa. For larger kFa, the chosen parametrization of
g does not converge in a stable manner. It is yet unclear
whether this is purely a numerical problem or if there are
real physical instabilities involved. Further work is needed to
fully understand this issue. However, for the regime where
convergence is reached, we were able to derive the energy, the
condensate fraction, and the contact.

The ultimate goal would obviously be to find the energy ex-
actly at unitarity. To give a first estimate, we show in Fig. 4 with
the dashed blue and red lines an extrapolation of the energy.
From the mean-field result in Sec. II, we notice that the energy
leaves linearly in 1/kFa from unitarity. This also corresponds
to a constant contact at unitarity, which is related to the slope
of the energy. When we assume this behavior to be correct, we
find an energy e � 0.5εF. At unitarity the chemical potential is
related to the energy via μ = 5e/3, which results in an estimate
of the universal number β � −0.2. This is higher than the
β = −0.54 found using a mean-field theory; however, since
the convergence for the higher kFa energy could not be reached
completely, we expect this β to be an upper bound. This is in
agreement with the current experiments and calculations [3–6].
For the contact we find at unitarity C � 10.3 n4/3, which is
remarkably close to the contact for unitary fermions, C �
11 n4/3 [18]. This poses again the interesting question whether
the universal behavior of fermions and bosons is identical at
unitarity.

ACKNOWLEDGMENTS

We would like to thank Misha Veldhoen, Erik van
der Bijl, and Randy Hulet for the interesting and fruitful
discussions.

[1] S. B. Papp, J. M. Pino, R. J. Wild, S. Ronen, C. E. Wieman,
D. S. Jin, and E. A. Cornell, Phys. Rev. Lett. 101, 135301 (2008).

[2] S. E. Pollack, D. Dries, M. Junker, Y. P. Chen, T. A. Corcovilos,
and R. G. Hulet, Phys. Rev. Lett. 102, 90402 (2009).

[3] N. Navon, S. Piatecki, K. J. Günter, B. Rem, T. C. Nguyen,
F. Chevy, W. Krauth, and C. Salomon, e-print arXiv:1103.4449.

[4] S. Cowell, H. Heiselberg, I. E. Mazets, J. Morales, V. R.
Pandharipande, and C. J. Pethick, Phys. Rev. Lett. 88, 210403
(2002).

[5] J. L. Song and F. Zhou, Phys. Rev. Lett. 103, 025302 (2009).
[6] Y.-L. Lee and Y.-W. Lee, Phys. Rev. A 81, 063613 (2010).
[7] R. A. Duine and H. T. C. Stoof, Phys. Rep. 396, 115 (2004).
[8] R. A. Duine and H. T. C. Stoof, New J. Phys. 5, 69 (2003).
[9] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini,

Phys. Rev. Lett. 93, 200404 (2004).
[10] J. Carlson and S. Reddy, Phys. Rev. Lett. 95, 060401 (2005).
[11] G. Partridge, W. Li, R. I. Kamar, Y. Liao, and R. G. Hulet,

Science 311, 503 (2006).
[12] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle,

Science 311, 492 (2006).

[13] T. Lee, K. Huang, and C. Yang, Phys. Rev. 106, 1117
(1957).

[14] R. A. Smith, A. Kallio, M. Puoskari, and P. Toropainen, Nucl.
Phys. A 10, 186 (1979).

[15] R. P. Feenberg, Theory of Quantum Fields (Academic Press,
San Diego, 1969).

[16] A. Polls and F. Mazzanti, Microscopic Description of Quantum
Liquids (World Scientific, Singapore, 2002), p. 49.

[17] S. Tan, Ann. Phys. 323, 2952 (2008).
[18] S. Tan, Ann. Phys. 323, 2971 (2008).
[19] R. Combescot, F. Alzetto, and X. Leyronas, Phys. Rev. A 79,

053640 (2009).
[20] A. M. J. Schakel, e-print arXiv:1007.3452v1.
[21] M. L. Ristig, P. M. Lam, and J. W. Clark, Phys. Lett. A 55, 101

(1975).
[22] M. L. Ristig and J. W. Clark, Phys. Rev. B 14, 2875

(1976).
[23] M. L. Ristig and P. M. Lam, Nucl. Phys. A 328, 267

(1979).
[24] E. Feenberg, Ann. Phys. 84, 128 (1974).

033618-10

http://dx.doi.org/10.1103/PhysRevLett.101.135301
http://dx.doi.org/10.1103/PhysRevLett.102.090402
http://arXiv.org/abs/arXiv:1103.4449
http://dx.doi.org/10.1103/PhysRevLett.88.210403
http://dx.doi.org/10.1103/PhysRevLett.88.210403
http://dx.doi.org/10.1103/PhysRevLett.103.025302
http://dx.doi.org/10.1103/PhysRevA.81.063613
http://dx.doi.org/10.1016/j.physrep.2004.03.003
http://dx.doi.org/10.1088/1367-2630/5/1/369
http://dx.doi.org/10.1103/PhysRevLett.93.200404
http://dx.doi.org/10.1103/PhysRevLett.95.060401
http://dx.doi.org/10.1126/science.1122876
http://dx.doi.org/10.1126/science.1122318
http://dx.doi.org/10.1103/PhysRev.106.1117
http://dx.doi.org/10.1103/PhysRev.106.1117
http://dx.doi.org/10.1016/0375-9474(79)90219-7
http://dx.doi.org/10.1016/0375-9474(79)90219-7
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://dx.doi.org/10.1016/j.aop.2008.03.005
http://dx.doi.org/10.1103/PhysRevA.79.053640
http://dx.doi.org/10.1103/PhysRevA.79.053640
http://arXiv.org/abs/arXiv:1007.3452v1
http://dx.doi.org/10.1016/0375-9601(75)90142-5
http://dx.doi.org/10.1016/0375-9601(75)90142-5
http://dx.doi.org/10.1103/PhysRevB.14.2875
http://dx.doi.org/10.1103/PhysRevB.14.2875
http://dx.doi.org/10.1016/0375-9474(79)90223-9
http://dx.doi.org/10.1016/0375-9474(79)90223-9
http://dx.doi.org/10.1016/0003-4916(74)90296-6

