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A mesoscopic system of dipolar bosons trapped by a harmonic potential is considered. The system has a
number of physical realizations including dipole excitons, atoms with large dipolar moment, polar molecules,
and Rydberg atoms in inhomogeneous electric field. We carry out a diffusion Monte Carlo simulation to define
the quantum properties of a two-dimensional system of trapped dipoles at zero temperature. In dimensionless
units the system is described by two control parameters, namely, the number of particles and the strength of the
interparticle interaction. We have shown that when the interparticle interaction is strong enough a mesoscopic
crystal is formed. As the strength of interactions is decreased a multistage melting takes place. Off-diagonal order
in the system is tested using natural-orbitals analysis. We have found that the system might be Bose condensed
even in the case of strong interparticle interactions. There is a set of parameters for which a spatially ordered
structure is formed while simultaneously the fraction of Bose-condensed particles is nonzero. This might be
considered as a realization of a mesoscopic supersolid.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) is a phenomenon that
has been attracting great attention since its prediction in
1924 [1,2]. Theoretical description of condensate properties is
commonly based on the mean-field Gross-Pitaevskii equation
[3] which applies to a dilute Bose gas. This assumption is not
fulfilled in systems with strong correlations.

This is the case of a two-dimensional rather dense dipole
system of indirect excitons in coupled quantum wells or in a
single quantum well in strong electric field [4]. At densities
much smaller than a−2 (with a being the characteristic
exciton size) exchange effects are greatly suppressed by the
dipole-dipole repulsion, so dipole excitons can be treated as
Bose particles. The exciton confinement can be created by
inhomogeneous electric field or inhomogeneous deformation
of semiconductors. The inhomogeneous electric field can
be generated, for example, by a tip a of scanning probe
microscope or by a profiled controlling gate (see [5] and
references therein).

The dipolar interactions are also important in atomic gases
with a large dipolar moment. The Bose-Einstein condensation
has been achieved in 52Cr atoms possessing a large permanent
dipolar moment [6]. In this system there is a competition be-
tween short-range interactions and long-range dipolar forces.
Strong dipolar effects have been experimentally observed in
trapped chromium atoms; see Refs. [7–10]. A large dipolar
moment can be induced in polar molecules by applying
an external electric field. Recently the quantum regime of
40K87Rb fermionic polar molecules has been reached and
dipolar collisions in such systems has been experimentally
studied [11,12]. A Rydberg atom (an atom with one electron
excited to a very high principal quantum number [13]) has
a very large size and a very large polarizability; i.e., a large
dipole moment can be inducted in moderate electric field. An
electric field aligns dipolar moments so that the interaction in
a 2D system has a dipolar 1/r3 form. An optical trapping can
be used to confine the system of Rydberg atoms [14].

A close relation between two quantum phenomena, BEC
and superfluidity, suggests that a system might be superfluid if
a part of it is Bose condensed. Moreover, at the same time the
system can possess a crystal order, i.e., can be a supersolid.
A finite superfluid signal was reported in a number of recent
experiments with cold helium in solids (see [15–22]). It is
probable that the superfluid signal observed in experiments
is due to the presence of defects. We note that mesoscopic
trapped systems are good candidates for being supersolids as
no perfect commensurate crystalline structure can be formed
and defects are intrinsically present in the system. We perform
numerical simulations of a trapped system of excitons with
dipolar interaction, to obtain structure properties and to study
how the crystal-like order is formed in the system.

In the regime when dipole-dipole repulsions are weak,
analytical approaches based on the mean-field approximation
provide a good description of the system, but fail when
the density is large. Instead Monte Carlo methods have no
such limitations and can be successfully applied to strongly
interacting systems. In Ref. [23] properties of a classical
dipolar system in a harmonic trap at low finite temperature
were studied. Path-integral Monte Carlo (PIMC) simulation of
trapped clusters was performed in works by Lozovik et al. [24]
and Pupillo et al. [14] for dipolar interaction, and for Coulomb
interaction by Filinov et al. [25]. The PIMC technique is
useful for simulation of the properties of quantum systems at
a finite temperature, while the smaller the temperature is, the
more difficult it is to obtain accurate results, which makes the
simulation of the ground state of the system extremely difficult.
Instead, the diffusion Monte Carlo method is well suited
for studying ground-state properties. In references [26–29]
two-dimensional (2D) systems of dipoles in the absence of
an external potential were studied. It was shown that at large
density a crystal is formed. Nonzero superfluid and condensate
fractions have been found in finite-size crystals and in crystals
with vacancies.

In the present work we study the effects of a harmonic
confinement in a 2D geometry. Our motivation for expecting
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a coexistence of a finite condensate fraction and broken
rotational symmetry (i.e., “supersolidity”) in trapped systems
is twofold: (i) Small trapped systems are mesoscopic, and
(ii) inherent incommensurability between the spherical geom-
etry of the trap and the triangular geometry of a 2D triangular
lattice leads to an effective introduction of defects in the lattice,
which might lead to the appearance of superfluidity. To the
best of our knowledge quantum systems of two-dimensional
trapped dipoles at zero temperature so far were not well
studied.

This work is organized as follows. In Sec. II we outline
the model Hamiltonian and describe the methods used in the
simulation. In Sec. III we describe the method of natural
orbitals used for studying coherence in the system; in this
section we generalize the method used in 3D systems (see
[30,31]) to the case of 2D. In Sec. IV we present the obtained
results, and in Sec. V we draw conclusions.

II. MODEL SYSTEM AND NUMERICAL APPROACH

We consider a two-dimensional system of N dipolar bosons
in a harmonic trap with frequency ω. Such a system is
described by the Hamiltonian

Ĥ =
N∑
i

− h̄2

2m
∇2

i +
N∑
i

1

2
mω2r2

i +
N∑

i<j

d2
dip

r3
ij

. (1)

The second term in the Hamiltonian (1) is associated with
harmonic confinement potential, the third term describes the
dipolar interaction between particles, m is the mass of a
particle, and ddip is its dipole moment. It is convenient to
use oscillator units in the problem, that is, to measure length
in units of oscillator length a0 = √

h̄/mω and energy in units
of h̄ω. The dimensionless Hamiltonian is then

Ĥ = 1

2

N∑
i

( − ∇2
i + r2

i

) +
N∑

i<j

d

r3
ij

, (2)

where d = d2
dip/a

3
0h̄ω is a dimensionless coupling parameter,

which can be interpreted as the ratio of the typical energy of the
dipolar interaction energy Eint = d2

dip/a
3
0 and the characteristic

energy of a harmonic oscillator confinement Etrap = h̄ω.
In order to study system properties we use Monte Carlo

(MC) methods. A number of MC methods may be employed
for simulation of quantum systems: variational Monte Carlo
(VMC), diffusion Monte Carlo (DMC), path-integral Monte
Carlo (PIMC), path-integral ground state, etc. In the present
work we are interested in ground-state (zero temperature)
properties and we investigate them by means of VMC and
DMC techniques.

In the VMC method one samples particle distribution
according to a chosen trial wave function. By doing that it is
possible to obtain mean values of an observable by averaging
its value over the chain of realizations of particles coordinates.
The method proposed by Metropolis et al. [32] is used to
generate such a chain.

Although we do not know the many-body wave function
exactly, a physically sound ansatz may be used for the trial
wave function so that it depends on particle coordinates and
a set of additional parameters. Those parameters, referred

to as variational parameters, are used to minimize energy
corresponding to this wave function. A variational principle
applies; that is, the variational energy calculated in this way
is always larger than the ground-state energy and equal to it
when the trial wave function coincides with the ground-state
wave function.

The main idea of the DMC technique is to solve the
Schrödinger equation in the imaginary time. For sufficiently
long evolution of an arbitrary wave function in the imaginary
time its projection to the excited states is exponentially
suppressed compared to its projection to the ground state.
The problem is that one would rather prefer to sample the
square of the absolute value of the wave function (probability
density) than the wave function itself, because average values
of an observable with diagonal operator is defined as an
integral where the observable is integrated with weight equal
to the absolute value of the wave function squared. But it is
impossible to introduce a closed real-valued equation defining
the time evolution of the probability density. A common
choice is to calculate mixed estimators for observables where
the observable is integrated with weight equal to f (R,t) =
ψT (R)ψ0(R,t), with ψT (R) being the trial wave function and
ψ0(R,t) the ground-state wave function. A mixed estimator
introduces some bias due to a particular choice of the trial
wave function, unless the observable commutes with the
Hamiltonian. An important example of a mixed estimator
being exact is in the evaluation of the ground-state energy.

For other observables one can reduce this bias by extrapo-
lating the mixed estimator to the exact one,

Aextr = 2Amixed − Atrial. (3)

Here Amixed = ∫
ψT Aψ0 is the mixed estimator of an observ-

able A and Atrial = ∫
ψ∗

T AψT is a variational estimator. This
extrapolation is accurate to the second order of difference
between the trial wave function and the exact one. We applied
the extrapolation for all observables that do not commute with
the Hamiltonian.

To reduce the extrapolation error it is important that the
projection of the trial wave function to the ground state is as
large as possible. We construct the trial wave function in the
Nosanow-Jastrow form

�T (R) =
N∏
i

f (ri)
N∏

i<j

g(rij ), (4)

where R = {r1,r2, . . . ,rN } stands for a point in 2N -
dimensional phase space, and f (r) and g(r) are one- and
two-body correlation terms. The first term in �T (R) takes
into account one-body physics and describes the effects of
the harmonic oscillator, while the second term introduces
interparticle correlations. For different values of the interaction
strength d we have used several forms of f (r) and g(r).

A. Gas of dipoles

An exact expression for the one-body terms f (ri) of the
wave function (4) is known in the limit of an ideal Bose gas
d → 0 and is given by Gaussians fho(ri) = exp (−r2

i /2a2
0).
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We keep this functional dependence form for finite values of
the interaction strength d:

f (r) = exp (−αr2), (5)

with a single variational parameter α, which value is fixed by
minimizing the variational energy.

The long-distance physics are dominated by the Gaussian
dependence in f (r), so the main requirement for the two-body
Jastrow term is to describe correctly short-range physics. When
two particles come close to each other the influence of other
particles can be neglected and the two-body Jastrow term in
the trial wave function (4) can be well approximated by the
zero-energy scattering solution of the two-body problem [27],

g(r) = K0(2
√

d/r). (6)

The resulting trial wave function is

ψ(R) =
N∏
i

exp
( − αr2

i

) N∏
i �=j

K0(2
√

d/rij ). (7)

This wave function preserves rotational symmetry and is a trap
analog of the wave function of a homogeneous gas.

B. Crystal of dipoles

When a crystal is formed the system loses the translational
symmetry. To take this into account one has to use a proper
symmetry in the trial wave function. We introduce a localizing
“crystal” term in the trial wave function (TWF),

u(R) =
Nc∏
j

N∑
i

exp
[ − β

(
ri − rc

j

)2]
, (8)

where β is a variational parameter. Each Gaussian term
describes particle localization close to sites rc

j , the total number
of sites in the crystal being denoted by Nc. We have used
the classical Monte Carlo method combined with gradient
descent optimization to obtain the position of sites rc

j for
a given particle number Nc. In a quantum system the zero-
point fluctuations effectively delocalize particle positions; this
increases the potential energy due to dipolar repulsion. In order
to diminish the effect of the interparticle repulsion the system
size increases. We take this effect into account by scaling the
classical positions as rc

j → γ rc
j with the factor γ optimized by

minimizing the energy in variational Monte Carlo calculations.
Combining Eq. (8) with the trial wave function of gas

Eq. (7) we obtain the final expression for the crystal trial wave
function:

ψ(R) =
[

N∏
i

exp
( − αr2

i

) N∏
i �=j

K0(2
√

d/rij )

]

×
Nc∏
j

N∑
i

exp
[ − β

(
ri − rc

j

)2]
. (9)

Such a wave function breaks the rotational symmetry and is
analogous to the crystal wave function in the absence of a trap,
where the particles are localized close to lattice sites.

The typical dependence of the variational energy on
parameter β is shown in Fig. 1. There are two minima. The first
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FIG. 1. Variational energy as a function of the variational pa-
rameter β in a cluster of N = 32 particles with interaction strength
d = 100.

one at β = 0 corresponds to a delocalized system or a gas state.
The second minimum is located at β �= 0 and corresponds to
a localized system or a crystal.

C. Gas of strongly correlated dipoles

Crystal and gas wave functions provide a good description
in corresponding limits, but their use for intermediate values
of the interaction strength produces a large error in mixed
estimators. The smaller the difference between the trial and
ground state and wave functions is, the smaller is the error. To
reduce this difference in the region of intermediate interaction
strength, we introduce a shell term in the trial wave function,

s(r) =
⎡
⎣ Np∑

i=1

ai exp
[ − (

r − rs
i

)2/
σ 2

i

]⎤⎦
γ

, (10)

where rs
i is the separation of the ith shell from the center of

trap, σi is the width of the ith shell and ai is its amplitude, and
γ is a variational parameter. The parameters of the shells are
optimized so that s(r) (for γ = 1) is the best approximation of
the ratio of variational and diffusion radial distributions. The
variational result for the radial distribution calculated with
s(r) reproduces closely the DMC mixed estimator calculated
by using the “gas wave function,” Eq. (7), and it means that the
trial wave function is better when the shell term s(r) is used.
The resulting trial wave function for this case is

ψ(R) =
N∏
i

⎛
⎝exp

( − αr2
i

)⎡⎣Np∑
i=1

ai exp
[− (

r − rs
i

)2/
σ 2

i

]⎤⎦
γ ⎞
⎠

×
N∏

i �=j

K0(2
√

d/r). (11)

This trial wave function does not break the rotation symmetry
while it supports radial ordering of the particles (i.e., for-
mation of shells). Similar symmetries were encountered in a
multistage melting of trapped clusters where at intermediate
temperatures the shells start to rotate and are “orientationally
disordered” [23,33].
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III. BOSE-EINSTEIN CONDENSATE

To test the coherence in the system and to calculate the
condensate fraction we study the spectral properties of the
one-body density matrix (OBDM). The OBDM is defined as

ρ(r,r′) = 〈�̂†(r′)�̂(r)〉, (12)

where �̂(r) is the field operator that annihilates a particle at
the point r. Using single-particle states φi(r), we expand the
field operator,

�̂(r) =
∑

i

φi(r)âi , (13)

where âi is the bosonic annihilation operator that annihilates a
particle in the state |i〉. Substituting (13) into (12) one obtains
the spectral decomposition

ρ(r,r′) =
∑
ij

φ∗
i (r)φj (r′)Niδij . (14)

The OBDM is diagonal in the single-particle state basis,
and natural orbitals φi(r) (occupation numbers Ni) are its
eigenvectors (eigenvalues). The condensate is described by
the orbital φ0(r) with the macroscopic occupation number,
and the condensate fraction is n0 = N0/N .

In two dimensions the OBDM is a function of four
arguments, and eigenfunctions φ(r) are functions of two
arguments. The problem for the eigenvalues can be simplified
if there is a cylindrical symmetry of the problem. In this case
the OBDM depends on angle θ = φ − φ′ between vectors r
and r′, rather than on two angles φ and φ′. Furthermore OBDM
can be expanded in a series of angular momentum components:

ρ(r,r′) = 1√
2π

∑
l

ρl(r,r
′) exp (ilθ ) (15)

with the projection of the OBDM to the state with angular
momentum l, l = 0, ± 1 . . . given by

ρl(r,r
′) =

∫
dθdr2 . . . drN�∗(r,r2, . . . ,rN )

× exp (−ilθ )�(r,r2, . . . ,rN ). (16)

Further, the one-body orbitals can be expanded in terms of the
angular momentum

φk(r) = Rnl(r)�l(ϕ),
(17)

�l(ϕ) = 1√
2π

exp (ilϕ),

where compound index k consists of two indexes l,n. Substi-
tuting Eq. (17) into Eq. (14) we obtain the representation of
the lth OBDM in terms of natural orbitals,

ρl(r,r
′) =

∑
i

φ∗
il(r)φil(r

′)Nil. (18)

Matrices ρl(r,r ′) can be sampled in a Monte Carlo simulation
according to Eq. (16) and are “usual” algebraic matrices
understood as functions of two scalar arguments, which
can be readily diagonalized using standard matrix methods.
For condensate study we consider only components with

angular moment l = 0. To solve this equation numerically we
introduce regularized functions

uil(r) = φil(r)
√

r. (19)

These functions uil(r) are better than φil(r) in calculations,
because they are well behaved near r = 0. In terms of uil(r),
the relation Eq. (18) reads as

√
rρl(r,r

′)
√

r ′ =
∑

i

u∗
il(r)uil(r

′)Nil. (20)

We solve this equation and obtain the condensate wave
function

φ0(r) = u00(r)/
√

r. (21)

IV. RESULTS

In this section we present the results of DMC and VMC
simulations of the system. In the first part of the section we
discuss structural properties of the system and in the second
part we study properties of the condensate.

A. Structural properties

We perform a Monte Carlo study of structural and energetic
properties of dipolar clusters by doing calculations with
different trial wave functions. We have tested the quality
of different trial wave functions for a cluster of N = 32
particles in the strongly interacting regime d = 200. The
results obtained for the energy are summarized in Table I.

One can see that the best variational energy of the cluster
with strong interactions d = 200 is the one obtained using the
crystal trial wave function (8). The energy of a crystal in the
DMC calculation is larger than both the DMC energy of a gas
and the DMC energy of a strongly correlated gas with formed
shells. The best DMC energy of the system is given by the
wave function shell structured gas (11).

DMC calculations of the energy of the cluster with different
interaction strengths showed that the gas phase is energetically
preferable for values of interaction strength smaller than
∼100; in the region of 100 � d � 400 strong correlated
gas is energetically preferable and for values of d larger
than ∼400 a full crystal is formed. Figure 2 shows the
radial distribution of particles R(r) for different values of
d obtained with a gas trial wave function. One finds that
R(r) becomes nonmonotonic as the interaction increases and

TABLE I. Ground-state energy per particle for N = 32 particles
for d = 200; energy is measured in units of h̄ω. Number in
parentheses shows the error on the last digit.

Method and Trial Wave Function Energy per Particle

VMC, gas TWF 44.9584(9)
DMC, gas TWF 44.4201(6)
VMC, crystal TWF 44.848(1)
DMC, crystal TWF 44.4491(5)
VMC, TWF with shell term 44.8523(7)
DMC, TWF with shell term 44.4145(8)
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FIG. 2. (Color online) Radial distribution (main plot) and width
of the shells (inset) for different values of interaction strength d in a
system of N = 32 particles. All distribution profiles are normalized
to the total number of particles; i.e.,

∫
n(r)2πr dr = N .

a shell structure is formed. We find that the shells can be
well approximated by a set of Gaussians. The width of
the Gaussians (see inset in Fig. 2) saturates to a constant
value when d is large enough. This fact can be explained if we
assume that dipoles are moving around crystal sites in the mean
field associated with other particles and consider a generalized
interaction law 1/rα , where α > 1. In a homogeneous crystal
the first nondisappearing term of the mean field is a quadratic
one with frequency ωmf ∼ V ′′

real(r)|r=r0 = α(α − 1)V (r0)/r2
0 ,

where r0 is the mean interparticle distance. In the presence of
the external confinement the size of the cloud is proportional
to the interparticle distance r0 and is such that characteristic
trapping energy is of the same order as the interparticle energy;
that is, V (r0) ∼ ωtrapr

2. Taking this into account, one finds
that the particle displacement in the mean-field � is constant
for given trap frequency, � ∼ α(α − 1)ωtrap, with α = 3 for
dipoles. The results of the VMC and DMC calculations
for radial distribution differ for large values of d ∼ 100,
which means that the gas trial wave function provides an
inadequate description of the system in the regime of strong
interactions. We repeated our calculation for the trial wave
function with shell terms and obtained that radial ordering
decreases the energy, but the lowest energy corresponds
to both radial and angular localization, i.e., to a crystal
phase.

A contour plot of the density profile of particles is shown in
Fig. 3. Darker color corresponds to lower density of particles.
The internal structure of the shells is not resolved in Fig. 3,
as the system can freely rotate due to rotational symmetry. In
order to extract information on the shell ordering we introduce
the inter- and intra-shell order parameter 〈αiαj 〉

with values αi defined according to

αj = 1

Nj

∑
k

exp (iNjφk), (22)

where φk is the angle of the kth particle in the jth shell
containing Nj particles. Each angle φk is multiplied by a factor
of Nj ; in this way all contributions are in phase for perfect
ordering inside a shell (that is, when φk = φ0 + 2πk/L)
and the parameter reaches the maximal value of αj = 1. In

y/
a 0

-20

-10

0

10

20

x/a0

-20 -10 0 10 20

FIG. 3. (x,y) density profile for N = 32 particles in the trap for
the interaction strength d = 500.

the opposite limit of no correlations between particles, this
parameter averages to zero. For i = j the function 〈αiαj 〉 is
the intra-shell order parameter and the larger its value is, the
stronger are the internal correlations inside the shell. For i �= j

the function 〈αiαj 〉 is the inter-shell order parameter and it
measures the correlation strength between shells i and j . The
results of DMC simulation for a cluster of N = 32 particles
with a gas trial wave function (7) are presented in Fig. 4.
One finds that the intra-shell order parameter is significantly
different from zero for interaction strength larger than d ∼ 100
and that the inter-shell order parameter is significantly different
from zero only for shells 2 and 3 for interaction strength larger
than d ∼ 300. Since we have used the gas trial wave function
these correlations are not caused by the symmetry of the trial
wave function.

FIG. 4. (Color online) Diagonal (main graph) and nondiagonal
(inset) components of the orientational order parameter 〈αiαj 〉 with
αi defined as in Eq. (22) for cluster with N = 32 particles. Shells
are labeled as follows: single particle in the center, first shell, second
shell, third shell (see Fig. 3).
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To summarize, we suggest the following scenario of T = 0
quantum crystallization. When d is small the gas state is
energetically favorable; starting from d ∼ 10 shells are formed
in the system, then up to d ∼ 300 shells solidify and become
ordered inside. From d ∼ 200 shells start to order between
each other and around d ∼ 400 a complete crystal is formed.
The central part of a large crystal will show a triangular
structure, similar to the one of triangular lattices in untrapped
two-dimensional systems [27,28].

B. Bose-Einstein condensation and mesoscopic supersolid

We applied the technique of natural orbitals described in
Sec. III, to obtain the fraction of Bose-condensed particles
in a cluster of N = 32 particles with the interaction strength
varying from infinitely small (d = 0) to intermediately strong
(d ∼ 100) values.

To test the method used to estimate the condensate fraction
we checked that for noninteracting systems all particles
are condensed and the condensate wave function coincides
with the ground state of the harmonic oscillator. For weak
repulsion the density profile monotonically decreases from
the maximum in the center of the trap to vanishing density
at the borders. Only one orbital is largely occupied and the
condensate wave function is monotonous. Strong repulsions
create a shell structure in the density profile; see Fig. 5. The
condensate wave function is “pushed out” to the border. A
similar effect has been found in liquid-helium drops [34]
and in trapped gases interacting with hard-core interaction
potential [30]. We find that the first few orbitals can be mainly
localized in different shells; see Fig. 5. In this situation particles
are coherent within a single shell while there is little coherence
between different shells.

We find that the condensate is expelled to the regions of
low density which is in agreement with slave-boson theory for
hard-core gases [35]. This effect can be as well explained
within the local density approximation (LDA), that is, by
comparing the condensate density n0(r) = N0|φ0(r)|2 with the
condensate occupation nhom

0 [n(r)] in a homogeneous system
taken for the local density n(r) in the trap. In a homogeneous
system the condensate fraction decreases when the density

n
(r

) 
a 0

2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

r/a0

0 2 4 6 8

 Radial Distribution
 Zeroth Natural Orbital
 First Natural Orbital
 Second Natural Orbital

FIG. 5. (Color online) Total density profile n(r) (solid line)
compared to densities of the first three orbitals, nk(r) = Nk|φk(r)|2
(squares, circles, and triangles). The density profile is normalized to
the total number of particles N , orbital densities to corresponding
eigenvalues Nk,k = 0,1,2. All lengths are in units of harmonic
oscillator length a0.

FIG. 6. Fraction of condensed particles N0/N as a function of the
interaction strength d; number of particles in cluster N = 32.

is increased. As a result LDA applied to the strong regime
results in decrease of the condensate density in the center of
the trap. We note, however, that the reasoning based on LDA
fails in one-dimensional geometry where lower density means
stronger correlations and would wrongly result in condensate
density being pushed into the center.

The dependence of the condensate fraction on the interac-
tion strength is presented in Fig. 6. Our calculations show that
even in the region of intermediate-strong interactions d ∼ 100
the fraction of condensed particles significantly differs from
zero and is of order 40%. At the same time the shell structure
is already formed. The simultaneous coexistence of broken
rotational symmetry (shells) and a Bose condensate can be
referred to as a mesoscopic supersolid.

V. CONCLUSIONS

In the present work a two-dimensional system of bosonic
dipoles in a harmonic trap is studied. Dipoles are assumed
to be oriented perpendicularly to the two-dimensional plane
and to interact according to repulsive dipole-dipole potential.
We found that the cluster undergoes a quantum crystallization
for a large value of dipole interaction strength (d ∼ 400).
In the process of zero-temperature transition interaction
strength plays the role of a control parameter. We found that
crystallization consists of three stages: formation of shells,
in-shell ordering, and ordering between shells.

We found that quantum Bose-Einstein condensation occurs
in the system. We investigate dependence of the fraction
of condensed particles on interaction strength up to the
intermediate-strong interaction strengths, and find that the
number of particles in the condensate can be sufficiently
different from zero. In this regime spatial ordering (shell struc-
ture) coexists with Bose condensation, and thus a mesoscopic
supersolid is formed.
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