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Spectroscopy of the soliton lattice formation in quasi-one-dimensional fermionic superfluids with
population imbalance
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Motivated by recent experiments in low-dimensional trapped fermionic superfluids, we study a quasi-one-
dimensional (quasi-1D) superfluid with a population imbalance between two hyperfine states using an exact
mean-field solution for the order parameter. When an effective “magnetic field” exceeds a critical value, the
superfluid order parameter develops spatial inhomogeneity in the form of a soliton lattice. The soliton lattice
generates a band of quasiparticle states inside the energy gap, which originate from the Andreev bound states
localized at the solitons. Emergence of the soliton lattice is accompanied by formation of a spin-density wave,
with the majority fermions residing at the points in space where the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
order parameter vanishes. We discuss possibilities for experimental detection of the quasi-1D FFLO state using
elastic and inelastic optical Bragg scattering and radiofrequency spectroscopy. We show that these measurements
can provide necessary information for unambiguous identification of the spatially inhomogeneous quasi-1D
FFLO state and the soliton lattice formation.
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I. INTRODUCTION

Superconducting pairing in a system with an imbalanced
population of two fermion species (typically associated with
the spin-up and spin-down projections) has been studied
for a long time. Fulde and Ferrell [1], as well as Larkin
and Ovchinnikov [2], proposed theoretically that the super-
conducting order parameter in such a system is spatially
inhomogeneous. Although several candidates for this exotic
superconducting state (dubbed in the literature as the FFLO
state) have been identified since then [3–8], still there is no
conclusive experimental evidence for the existence of this state
in crystalline materials (see review in Ref. [9]).

Recently, great progress has been made in studying
Bardeen-Cooper-Schrieffer- (BCS) like pairing between
fermionic neutral cold atoms. In these systems, it is possible to
engineer a suitable attractive interaction and control population
imbalance of the spin-up and -down states. Thus, cold atoms
have attracted a lot of attention for experimental [10–12] and
theoretical [13–38] investigations of the FFLO state.

The FFLO state is expected to be more stable in one
dimension (1D) than in three dimensions. Thus, considerable
experimental effort was made to realize trapping potentials in
the form of an array of 1D tubes [11,12], as shown in Fig. 1(a).
Although such systems have a strong 1D anisotropy, it is
important to realize that they are not strictly one-dimensional
because of a nonzero tunneling amplitude t⊥ between the
tubes. In the quasi-1D case t⊥ � EF , where EF is the Fermi
energy of 1D motion along the tubes, the system has an open,
warped Fermi surface shown in Fig. 1(b). Experimental results
recently reported by the Rice group [12] were obtained for
t⊥ � T , where T is the temperature. This regime, essentially,
corresponds to an incoherent mixture of 1D tubes, where each
tube behaves independently. If, however, the strength of the
inter-tube tunneling is increased by lowering the confining
optical-lattice potential in the transverse directions so t⊥ � T ,
the system would cross over into the quasi-1D regime, where

the superfluid phases on multiple tubes are locked together.
Such a system represents a quasi-1D fermionic superfluid.
Similar quasi-1D electronic systems have been studied ex-
tensively in solid-state physics, particularly among organic
conductors and superconductors [39,40]. Quasi-1D superfluid
states can be also realized in two and three-dimensional optical
lattices using p-orbital bands [38].

Many theoretical papers studied strictly 1D fermionic sys-
tems with population imbalance using analytical approaches
based on the Luttinger liquid [15,18] and the Bethe ansatz [19–
23,41–43]. Numerical methods based on the density-matrix
renormalization group and time-evolving block decimation
[24–26,28–30], as well as quantum Monte Carlo [31,32],
were also employed. Most of these approaches start from
the 1D Luttinger liquid fixed point and take into account
the inter-tube tunneling amplitude t⊥ perturbatively. This is
justified as long as t⊥ is much smaller than the superfluid
transition temperature Tc; see, e.g., Ref. [44]. However, in the
opposite regime t⊥ � Tc considered in our paper, the strictly
1D approaches are not applicable, because the quasiparticle
dispersion substantially deviates from the 1D form. In this
domain, the quasi-1D system is more appropriately described
within a Fermi-liquid picture and a mean-field theory of
superfluid pairing.

The FFLO state in cold atoms has been recently studied
in the quasi-1D geometry within a mean-field theory in
Ref. [16]. It has been known in the solid-state literature that,
within a mean-field Bogoliubov–de Gennes (BdG) theory, an
exact self-consistent inhomogeneous pairing potential for a
quasi-1D system with population imbalance has the form
of a soliton lattice. The soliton-lattice solution was first
obtained in the context of the Peierls model for charge-density
waves in Refs. [45–48] (see the reviews in Refs. [49,50]).
Subsequently, this model was mapped via a particle-hole
transformation onto the FFLO pairing problem in quasi-1D
superconductors [51–53]. Machida and Nakanishi [52] applied
these results to the superconducting material ErRh4B4 where
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FIG. 1. (Color online) (a) An array of 1D tubes confining cold
atoms, where n is the tube number and t⊥ is the tunneling matrix
element between adjacent tubes. (b) Fermi surfaces for the majority
(↑) and minority (↓) atoms in the quasi-1D limit t⊥ � EF (where EF

is the Fermi energy of 1D motion along the tube). The momentum
components p and p⊥ are parallel and perpendicular to the tubes,
respectively.

a strong molecular ferromagnetic field is present. Buzdin
and Polonskii [53] studied a similar problem for organic
superconductors, where imbalance between the spin-up and
spin-down electrons can be induced by an external magnetic
field. An important result found in Refs. [52,53] is the existence
of the second-order phase transition between the uniform
and spatially inhomogeneous superconducting states with an
increase of the effective magnetic field h, which represents the
difference between the chemical potentials of the spin-up and
spin-down electrons. When h exceeds a critical value hc, the
superconducting order parameter develops a spatially periodic
modulation in the form of a soliton lattice.

In the present paper, we first summarize the self-consistent
soliton-lattice solution of the BdG equations in the context
of cold atoms and then focus on the observable physical
properties of the soliton-lattice state. In particular, we dis-
cuss three different spectroscopic methods for experimental
detection and investigation of the soliton lattice in cold atoms.
Optical spectroscopy of a soliton lattice for charge-density
waves in conducting polymers was studied theoretically by
Brazovskii and Matveenko [54]. However, because of the
difference in coherence factors between charge-density waves
and superconductors, there results are not directly applica-
ble to the quasi-1D fermionic superfluids. Recently, there
have been several numerical studies discussing properties
of the FFLO state in 1D geometry [21,25,33,34]. However,
these approaches are, strictly speaking, not applicable to the
quasi-1D situation of our interest where t⊥ � Tc. Signatures
of the FFLO phase have been recently studied numerically
for three-dimensional and quasi-1D optical lattices in Refs.
[35,36], which have some overlap with our results.

The paper is organized as follows. In Sec. II, we qualita-
tively discuss a relationship between the FFLO state and the
soliton lattice. In Sec. III, we introduce the model Hamiltonian
and review basic properties of the exact solution of the BdG
equations for the quasi-1D case. In Sec. IV, we propose and
theoretically analyze several experiments for detection of the
soliton lattice in cold-atom settings. Finally, we conclude
in Sec. V. Technical details of mathematical derivations are
relegated to the appendices.

II. QUALITATIVE DISCUSSION

Consider a fermionic atom, e.g., 6Li, with two hyperfine
states |1〉 and |2〉, e.g., F = 1

2 , mF = 1
2 and F = 1

2 , mF = − 1
2 ,

where F and mF are the total spin and its projection along
the quantization axis. The energies of these two states differ
by Zeeman splitting ω12 due to an applied magnetic field,
which will be not further discussed in this paper. (The Planck
constant h̄ is set to unity everywhere.) We denote these
two states as the spin-up |1〉 ≡ |↑〉 and spin-down |2〉 ≡ |↓〉
states. The atoms are loaded into the quasi-1D trap shown
in Fig. 1(a), where they have a parabolic dispersion along
the tubes and are confined in the transverse directions. The
energy dispersion of the states |1〉 and |2〉 is shown in Fig. 2
versus the longitudinal momentum p along the tubes for a fixed
transverse momentum p⊥. By applying radiofrequency (rf)
radiation with the frequency ω = ω12, it is possible to induce
transitions between the states |1〉 and |2〉 and, thus, control
their relative populations. These states are long lived, so, after
initialization of the system, the populations of the states |1〉
and |2〉 are fixed during the time of the experiment. The states
are characterized by the different chemical potentials μ↑ and
μ↓, the 1D Fermi momenta p

↑
F and p

↓
F , and the densities

of atoms per unit length ρ↑ = p↑/π and ρ↓ = p↓/π . For
concreteness, we assume that ρ↑ > ρ↓ and refer to the |↑〉
and |↓〉 states as majority and minority. The difference of the
chemical potentials is 2h = μ↑ − μ↓, where h is referred to
as the effective magnetic field. The difference of the Fermi
momenta Q = p

↑
F − p

↓
F results in the spin density per unit

FIG. 2. (Color online) The 1D energy dispersion E(p) of the
fermionic atoms in the hyperfine states |1〉 and |2〉 with a population
imbalance described by the chemical potentials μ↑ and μ↓ and the
Fermi momenta p

↑
F and p

↓
F . The third, unpopulated state |3〉 can be

used for detection purposes. The atomic energy differences between
the states |2〉 and |1〉 and the states |3〉 and |2〉 are denoted as ω12 and
ω23, respectively.
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FIG. 3. (Color online) Schematic plot of the quasiparticle energy
dispersion E(p) in the inhomogeneous superfluid phase. Here ξ (p)
is the normal-state dispersion, 2μ = μ↑ + μ↓, and Q = p

↑
F − p

↓
F .

length ns = ρ↑ − ρ↓ = Q/π . It is also useful to define the
dimensionless spin polarization

P = ρ↑ − ρ↓
ρ↑ + ρ↓

. (1)

An attractive s-wave interaction between the atoms results
in the Cooper pairing of the fermionic atoms in the states
| ↑〉 and | ↓〉. It is convenient to subtract the energy ω12

from the energy of the state |2〉 and, thus, align the bottoms
of the two bands, as shown in Fig. 3. In order to discuss
the superconducting pairing, let us make the particle-hole
transformation for the minority atoms, so their dispersion
relation becomes represented by the inverted parabola in
Fig. 3. Because of the mismatch of the Fermi momenta due to
population imbalance, the conventional spatially uniform BCS
pairing potential is not favorable, since it would open an energy
gap away from the chemical potentials of the atoms. Larkin
and Ovchinikov (LO) [2] proposed that the pairing potential
should be nonuniform and have the spatial dependence �(x) ∝
sin(Qx) [55]. This order parameter couples fermions having
the difference ±Q of the momenta |p↑| and |p↓|, so it opens
energy gaps at the chemical potentials for both majority and
minority atoms, as shown in Fig. 3. Then, the lower band is
populated by the Bogoliubov quasiparticles with both spin-up
and spin-down, the middle band is populated only by the
quasiparticles with spin-up, and the upper band is empty.

Figure 3 illustrates only the 1D dependence of the quasi-
particle energy E(p) on the longitudinal momentum p in the
LO state. However, even for a nonzero t⊥, the LO order
parameter �(x) ∝ sin(Qx) still opens a gap on the whole
quasi-1D Fermi surface, as illustrated in Fig. 4 and explained
below. For simplicity, let us consider the tunneling amplitude
t⊥ between the tubes only in one transverse direction, as shown
in Fig. 1(a), and denote the corresponding momentum p⊥.
Then, the normal-state quasi-1D energy dispersion is

εσ (p,p⊥) = p2

2m
− 2t⊥ cos(p⊥d) − μ − σh, (2)

where m is the mass of an atom, d is the intertube spacing,
and σh = ±h for σ =↑ , ↓. In the case where t⊥, h � μ,

(a) (b)

FIG. 4. (Color online) Schematic plot of the superfluid pairing
for the LO order parameter. In each panel, the centers of the three
pairs of arrows, representing pairs of atoms on the Fermi surface,
are located at the point with the momentum either +Q/2 or −Q/2,
which is a half of the Cooper pair momentum in the LO phase.

we can linearize the energy dispersion relation along the tube
direction and obtain

εσ (p,p⊥) ≈ ±vF

(
p ∓ pσ

F

) − 2t⊥ cos(p⊥d), (3)

where vF = pF /m is the Fermi velocity, pσ
F = pF + σQ/2,

and Q = 2h/vF . The Fermi surfaces εσ (p,p⊥) = 0 obtained
from Eq. (3) are shown in Fig. 1(b).

As illustrated in Fig. 4, the majority and minority fermions
on the +p

↑
F and −p

↓
F branches of the Fermi surface pair in

such a manner that the total momentum of each pair is +Q

and does not dependent of the transverse momenta ±p⊥ of
the paired fermions. Correspondingly, the total momentum is
−Q for each pair on the −p

↑
F and +p

↓
F branches. So, the

LO order parameter with the two momentum components
�(x) ∝ (eiQx − e−iQx) opens an energy gap on the whole
Fermi surface for all values of p⊥. Thus, one expects to have
a stable LO phase in the quasi-1D geometry. However, this
result is valid only for the linearized energy dispersion (3) and
does not apply for a generic three-dimensional dispersion, e.g.,
for a spherical Fermi surface.

The linearized dispersion (3) can be rewritten in the form

εσ ≈ ±vF (p ∓ p̃F ) − σh, (4)

where

p̃F (p⊥) = pF + 2t⊥
vF

cos(p⊥d) (5)

is the longitudinal Fermi momentum as a function the
transverse momentum p⊥ at h = 0. As will be shown in
Sec. III, it is possible to make a gauge transformation of the
fermion operators and eliminate p̃F along with any explicit
dependence on p⊥ and t⊥ from the Hamiltonian of the
problem. Physically, this gauge transformation corresponds
to measuring the longitudinal momentum p from the local
Fermi momentum p̃F (p⊥) at each point on the quasi-1D Fermi
surface. After this transformation, the mathematical problem
formally becomes one-dimensional, and an exact solution of
the mean-field equations can be obtained, which reduces to the
LO order parameter and the soliton lattice in different limits.
Nevertheless, it is important to remember that, although t⊥ can
be formally eliminated from the mean-field Hamiltonian, the
physical problem remains quasi-1D, and the presence of t⊥
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FIG. 5. (Color online) Schematic plots of the density of states (top
row), superconducting order parameter �(x) (middle row), and the
spin density ρs(x) (bottom row) for different values of the effective
magnetic field h. (a) For h < hc, the ground state of the system
is uniform, as in the BCS theory. (b) For one unpaired atom h =
hc + δh, �(x) has a kink soliton. (c) For a small spin imbalance
h > hc, �(x) forms a soliton lattice. (d) For a large imbalance h � hc

corresponding to the LO limit, �(x) is sinusoidal. Note that ρs(x)
peaks at the points in space where �(x) vanishes.

stabilizes fluctuations of the order parameter and makes the
mean-field approach applicable.

Figure 3 illustrates the case where h � �. When � and
h are comparable, the two energy gaps in Fig. 3 are coupled
and cannot be treated independently. The problem becomes
mathematically complicated in this case. Fortunately, an exact
self-consistent solution of the BdG equation in the quasi-1D
case can be obtained [45,52,53]. The exact solution shows
that, in general, �(x) is given by a periodic Jacobi elliptic
function, such that it reduces to sin(Qx) in the limit h � �.
The exact �(x) represents the so-called finite-zone potential,
which opens only two gaps in Fig. 3 at the chemical potentials
μ↑,↓ and nowhere else. The exact solution shows that there
is a critical value hc = 2�0/π such that the order parameter
is uniform �(x) = const = �0 for h < hc, where �0 is the
value of the BCS superconducting gap for h = 0.

For h slightly above hc, the order parameter develops a
series of kink solitons, where �(x) changes sign across each
kink soliton. In order to explain soliton formation qualitatively,
let us consider the sequence of states shown in Fig. 5. In this
figure, the middle row shows the spatial dependence of �(x),
the top row shows the density of quasiparticle states, and the
bottom row shows the spatial dependence of the local spin
density ρs(x). Figure 5(a) shows that, for h < hc, the system
has the conventional BCS order parameter with the uniform
�(x) = �0, a single gap in the density of states, and zero
spin density ρs = 0, i.e., no spin imbalance. Now, suppose we
add one extra majority atom to the system. Because this atom
cannot form a pair, it would have to populate an energy level
above the gap, which would cost the energy �0. However, if the
system develops a kink, i.e., a sign change of �(x), as shown in

Fig. 5(b), this configuration has an Andreev bound state in the
middle of the gap, which can be occupied by the extra atom.
The total energy cost for creation of the soliton and occupation
of the midgap state is (2/π )�0, which is lower than �0 for the
uniform configuration. Thus, the system spontaneous creates
the kink soliton shown in Fig. 5(b). The spin density ρs(x)
of the extra atom is concentrated near the soliton. Soliton
creation has been discussed in the literature for charge-density
waves [45,46], for mesoscopic superconducting wires [56],
and in the cold-atom context [57].

When a few atoms with spins up are added to the system,
each atom creates a kink soliton. The solitons repel each
other and form a periodically spaced soliton lattice shown in
Fig. 5(c). The order parameter �(x) experiences a series of sign
changes. The midgap states from different solitons hybridize
and form a band in the middle of the main energy gap. The
spin density ρs(x) consists of a series of spikes originating from
each soliton. When many atoms with spins up are added, �(x)
becomes sinusoidal, corresponding to the LO limit, as shown in
Fig. 5(d). The midgap band expands and occupies most of the
former energy gap, leaving two small gaps above and below, in
agreement with Fig. 3. The spin density ρs(x) is sinusoidally
modulated with a small amplitude and the wavelength a half
of that for �(x).

In the next section, we present a detailed mathematical
derivation of the results qualitatively discussed above. Then,
in Sec. IV, we discuss three spectroscopic techniques for
experimental detection of the soliton lattice.

III. THEORETICAL MODEL AND EXACT SOLUTION

Let us consider a two-dimensional (2D) array of parallel
1D tubes in the x direction with the intertube spacings dy and
dz in the y and z directions, as sketched in Fig. 1(a). In the
second-quantized formalism, the single-particle Hamiltonian
for this quasi-1D system is

Ĥ0 =
∑
n,σ

∫
dx ψ̂†

n,σ (x)

(
− ∂2

x

2m
− μσ

)
ψ̂n,σ (x)

+
∑

〈n,n′〉,σ

∫
dx t⊥[ψ̂†

n,σ (x)ψ̂n′,σ (x) + H.c.], (6)

where ψn,σ (x) is the fermion annihilation operator for an atom
in the state σ =↑ , ↓ on the tube n, where n = (ny,nz) is
the 2D index of the tube, and t⊥ the amplitude of tunneling
between adjacent tubes. An attractive interaction between the
atoms leads to the BCS pairing, which, at the mean-field level,
is described by the Hamiltonian

ĤSC =−
∑

n

∫
dx[�n(x)ψ̂†

n,↑(x)ψ̂†
n,↓(x) + H.c.], (7)

where the pairing potential is determined self-consistently

�n(x) = g 〈ψ̂n,↓(x)ψ̂n,↑(x)〉 (8)

with the s-wave interaction amplitude g. We assume that
pairing is local in the real space, and the intertube pairing
potential can be neglected. Given that we consider identical
tubes, we take the pairing potential to be independent of n,
i.e., �n(x) = �(x). We study the problem at zero temperature
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T = 0, so the brackets in Eq. (8) represent averaging with
respect to the ground state.

After the Fourier transform ψσ (x, p⊥) =∑
n e−i p⊥·ρnψn,σ (x), where p⊥ = (py,pz) is the transverse

momentum, and ρn = (nydy,nzdz) is the 2D vector in the
(y,z) plane, the full Hamiltonian Ĥ = Ĥ0 + ĤSC becomes

Ĥ =
∑
p⊥,σ

∫
dx ψ̂†

σ (x, p⊥)[− ∂2
x

2m
+ξ ( p⊥)−μ−σh]ψ̂σ (x, p⊥)

+
∑

p⊥

∫
dx[�(x) ψ̂

†
↑(x, p⊥)ψ̂†

↓(x, − p⊥) + H.c.]. (9)

Here ξ ( p⊥) = −2t⊥[cos(pydy) + cos(pzdz)] is the transverse
dispersion, and the sum over the transverse momenta means∑

p⊥ = dydz

∫ 2π/dy

0 dpy

∫ 2π/dz

0 dpz/(2π )2. The Hamiltonian

(9) is the sum Ĥ = ∑
p⊥ Ĥ1D( p⊥) of 1D Hamiltonians H1D

with fixed values of p⊥

Ĥ1D =
∑

σ

∫
dx ψ̂†

σ (x)

[
− ∂2

x

2m
− μ̃ − σh

]
ψ̂σ (x)

+
∫

dx[�(x) ψ̂
†
↑(x) ψ̂

†
↓(x) + H.c.], (10)

where μ̃( p⊥) = μ − ξ ( p⊥) is the renormalized chemical
potential, and the argument p⊥ in ψ̂σ (x) is implied. The
self-consistency condition (8) has the form

�(x) = g
∑

p⊥

〈ψ̂↓(x, p⊥) ψ̂↑(x, − p⊥)〉. (11)

The integrand in the Hamiltonian (10) can be written in the
matrix form as[

ψ̂
†
↑(x)

ψ̂↓(x)

]T (
− ∂2

x

2m
− μ̃ − h �(x)

�(x) ∂2
x

2m
+ μ̃ − h

)[
ψ̂↑(x)

ψ̂
†
↓(x)

]
, (12)

where the overline in � denotes complex conjugation. The
Hamiltonian Ĥ1D also acquires a constant term

∑
p(p2/2m −

μ̃ + h) originating from the fermion commutation relation
ψ̂

†
↓ψ̂↓ = 1 − ψ̂↓ψ̂

†
↓. The matrix (12) can be diagonalized by

the Bogoliubov transformation

ψ̂↑(x) =
∑

λ

[Uλ(x) γ̂λ,↑ − V λ(x) γ̂
†
λ,↓],

(13)
ψ̂

†
↓(x) =

∑
λ

[Uλ(x) γ̂
†
λ,↓ + Vλ(x) γ̂λ,↑],

where the sums are taken over the eigenstates λ specified
below. The coefficients Uλ(x) and Vλ(x) are selected so the
Nambu spinor �λ(x) = [Uλ(x),Vλ(x)]T is an eigenstate of the
BdG equation with an eigenvalue Eλ(

− ∂2
x

2m
− μ̃ �(x)

�(x) ∂2
x

2m
+ μ̃

)
�λ(x) = Eλ�λ(x). (14)

We also impose the normalization condition∫ L

−L

dx[|Uλ(x)|2 + |Vλ(x)|2] = 1, (15)

where 2L is the length of the system. The BdG equation
(14) has the particle-hole symmetry: if [Uλ(x),Vλ(x)] is an

eigenstate with the energy Eλ, then [−V λ(x),Uλ(x),] is also
an eigenstate with the energy −Eλ:[

Uλ(x)

Vλ(x)

]
→

[
−V λ(x)

Uλ(x)

]
, Eλ → −Eλ. (16)

This property allows us to restrict summations over eigenen-
ergies in subsequent calculations only to the positive values
Eλ > 0.

Substituting Eq. (13) into Eq. (12) and utilizing the
properties of Uλ(x) and Vλ(x) outlined above, we diagonalize
the Hamiltonian Ĥ1D

Ĥ1D =
∑
Eλ>0

∑
σ=↑,↓

(Eλ − σh) γ̂
†
λ,σ γ̂λ,σ + E0. (17)

Here E0 is the reference energy given by [52,56]

E0 = −
∑
Eλ>0

Eλ +
∑

p

ξp, (18)

where the first sum originates from the fermion commutation
relation γ̂λ,↓γ̂

†
λ,↓ = 1 − γ̂

†
λ,↓γ̂λ,↓, and

ξp = p2

2m
− μ̃ (19)

is the normal-state dispersion relation. The occupation num-
bers of the single-particle states for the Hamiltonian (17) are

〈γ †
λ,σ γλ,σ 〉 = nF (Eλ − σh), (20)

where nF (E) is the Fermi distribution function, which reduces
to the step function nF (E) = θ (−E) at T = 0. The ground-
state energy of the system is [52,56]

F0 = E0 +
∑

Eλ>0,σ

(Eλ − σh)nF (Eλ − σh) +
∫ L

−L

�2(x)

|g| dx,

(21)

where the last term originates from the Hubbard-Stratonovich
transformation of the interaction between the fermions.

The pairing potential �(x) in Eq. (14) can be selected
to be real. We now linearize the dispersion relation in the
longitudinal direction near the Fermi surface and use the
approximation similar to Eq. (4) in the BdG equation(

vF [i(−1)α∂x − p̃F ] �(x)

�(x) −vF [i(−1)α∂x − p̃F ]

)
�

(α)
λ (x)

= Eλ�
(α)
λ (x), (22)

where

p̃F =
√

2mμ̃ ≈ pF − ξ ( p⊥)/vF (23)

is the renormalized Fermi momentum, and the index α =
1,2 corresponds to the right- and left-moving atoms. We
seek solutions of the BdG equation in the form �λ(x) =∑

α �
(α)
λ (x) with

�
(α=1)
λ (x) ≡

(
Uλ,1(x)

Vλ,1(x)

)
=

(
uλ(x)

vλ(x)

)
eip̃F x,

(24)

�
(α=2)
λ (x) ≡

(
Uλ,2(x)

Vλ,2(x)

)
=

(
vλ(x)

uλ(x)

)
e−ip̃F x .
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In Eq. (24), we used the symmetry between the α = 1
and 2 components: uλ ≡ uλ,1 = vλ,2 and vλ ≡ vλ,1 = uλ,2.
Substituting Eq. (24) into Eq. (22), we eliminate p̃F ( p⊥) from
the BdG equation and obtain the 1D equation for the slowly
varying envelope functions uλ(x) and vλ(x)

(−ivF ∂x �(x)

�(x) ivF ∂x

)(
uλ(x)

vλ(x)

)
= Eλ

(
uλ(x)

vλ(x)

)
. (25)

In terms of the amplitudes uλ and vλ, the self-consistency
condition (11) now reads

�(x) = g
∑

λ

[uλ(x)vλ(x) + uλ(x)vλ(x)]

× [1 − nF (Eλ + h) − nF (Eλ − h)]. (26)

Summation over p⊥ in Eq. (26) is omitted, because solutions
of Eq. (25) do not depend on p⊥, and the phase factors
from Eq. (24) containing p̃F ( p⊥) cancel out in Eq. (26).
Thus, as a result of the linearization approximation, we
managed to eliminate the transverse attributes t⊥ and p⊥
from the BdG equation (25) and the self-consistency condition
(26) and reduce the ground-state mean-field problem to a
purely 1D formulation, effectively corresponding to a single
tube. Deviations of the actual dispersion relation from the
linearization approximation are of the order of t2

⊥/EF , so
the approximation employed in this paper is applicable when
t2
⊥/EF � Tc � t⊥ � EF .

Although t⊥ has been eliminated from calculation of the
mean-field ground state, a nonzero value of t⊥ is crucially
important when considering fluctuations of the order param-
eter near the ground-state configuration. While the ground
state �(x) depends only on the coordinate x, the fluctuating
order parameter depends on all three coordinates �(x,y,z).
A nonzero tunneling amplitude t⊥ produces transverse phase
stiffness in the effective action, which is proportional to
t2
⊥[(∂y�)2 + (∂z�)2] with � being the phase of the super-

conducting order parameter. As a result, phase fluctuations are
suppressed due to the three-dimensional anisotropic stiffness
(as opposed to 1D stiffness for uncoupled chains), so the true
long-range order is stabilized at low enough temperatures,
and the mean-field approximation is justified. Stability of the
FFLO phase in quasi-1D geometry was recently confirmed
numerically in Ref. [36].

A self-consistent solution of Eqs. (25) and (26) was first
derived in Refs. [45,46] in the context of charge-density
waves and than subsequently extended to various other systems
[47,48], including inhomogeneous superconductors [51–53].
To keep our discussion self-contained, we outline the prop-
erties of the solution and refer the reader to the literature for
further details. Let us introduce the functions

f ±
λ = 1√

2
(uλ ± ivλ) (27)

and rewrite Eq. (25) in the following form:

(
0 Â

Â† 0

)(
f +

λ

f −
λ

)
= Eλ

(
f +

λ

f −
λ

)
, (28)

where Â = i[−vF ∂x + �(x)] and Â† = −i[vF ∂x + �(x)]
are mutually adjoint operators. After simple manipulations,
Eq. (28) can be written in the supersymmetric (SUSY) form(

ÂÂ† 0

0 Â†Â

)(
f +

λ

f −
λ

)
= E2

λ

(
f +

λ

f −
λ

)
. (29)

Equation (29) corresponds to the N = 2 SUSY quantum
mechanics introduced by Witten [58], where �(x) is the SUSY
potential. This connection will be important for a discussion
of zero-energy bound states at domain walls. In the explicit
form, Eq. (29) reads(

v2
F

d2

dx2
+ E2

λ − �2(x) ± vF

d�(x)

dx

)
f ±

λ (x) = 0, (30)

while the self-consistency equation (26) is

�(x) = g
∑

λ

1

2Eλ

[vF ∂x + 2�(x)]|f +
λ (x)|2

× [1 − nF (Eλ + h) − nF (Eλ − h)]. (31)

The Schrödinger equations (30), with the effective potentials
determined by the order parameter �(x), are integrable for a
special type of reflectionless potentials. A solution for �(x)
minimizing the ground-state energy F0 can be written in terms
of the Jacobi elliptic functions specified by the modulus k

�(x)

�2
= (1−k′)sn[(1 + k′)ζ,ν] = k2 sn(ζ,k)cn(ζ,k)

dn(ζ,k)
, (32)

where

ζ = x
�2

vF

, k′ =
√

1 − k2, ν = 1 − k′

1 + k′ . (33)

The second equality in Eq. (32) follows from the properties
of the elliptic functions. The parameter �2 and the modulus k

of the Jacobi elliptic function have to be determined from the
minimization of the ground-state energy F0 in Eq. (21), see
Ref. [52] for more details. The period l of the order parameter
�(x) is

l = 2π

Q
= 2vF

�2
K(k), (34)

where K(k) is the complete elliptic integral of the first kind.
On substitution of Eq. (32) into the ground-state energy F0

and minimization with respect to �2 and k, one finds [45,52]

�0

�2
= k,

2E(k)

π
�2 = h, (35)

where �0 is the BCS energy gap for a homogeneous unpolar-
ized system at h = 0, and E(k) is the complete elliptic integral
of the second kind. The parameter �0 is a convenient way to
characterize the strength of the attractive interaction g in the
system. Eliminating �2 from Eq. (35), we obtain an equation
for the modulus k in terms of the given values of the effective
magnetic field h and the BCS gap �0:

k

E(k)
= 2

π

�0

h
. (36)

The values of k are restricted to k � 1 because of the
properties of the elliptic functions. With the increase of h,
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FIG. 6. (Color online) The single-particle energy dispersion
relation E(p) in the quasi-1D FFLO state described by Eq. (32).
The spectrum is obtained by solving Eqs. (45) and (47) for given
values of the momentum p and the parameter b = ±. This plot is a
zoom into Fig. 3 near the Fermi momentum pF .

Eq. (36) acquires a solution at the critical value hc = 2�0/π ,
where k → 1 and E(k = 1) = 1. At h = hc, the solution �(x)
corresponds to a single soliton, as shown in Fig. 5(b). With
the further increase of h, the value of k given by Eq. (36)
decreases, so the soliton lattice period l in Eq. (34) also
decreases, corresponding to Fig. 5(c). In the LO limit h � �0,
Eq. (36) gives k � 1, and the period l in Eq. (36) becomes
l = πvF /h. In this limit, the order parameter takes the LO
form �(x) ≈ (�2k

2/2) sin(2πx/l).
The solution for the amplitudes f ±(x) can be expressed in

terms of the function γ (ζ ) satisfying the following equation

�2
2

(
dγ

dζ

)2

= 4γ
(
γ − E2

2

)(
E2

3 − γ
)
, (37)

where the variable ζ is defined in Eq. (33). Here we introduced
the parameters E3 = �2 and E2 = �2k

′. The parameters E2 and
E3 are the band edges in the single-particle excitation spectrum
shown in Fig. 6. The spectrum in Fig. 6 corresponds to the
spatially inhomogenous order parameter �(x) in Eq. (32) and
represents a zoom-in of the spectrum shown in Fig. 3 in the
vicinity of the Fermi momentum p ≈ pF .

The solution of Eq. (37) has the form

2γ (ζ ) = E2
2 + E2

3 − �2(ζ ) + �2
d�(ζ )

dζ
. (38)

One can check by direct substitution that the solution of
Eq. (30) reads

f +
λ,b(x) =

√
E2

λ − γ (x)

2LAλ

exp

[
ib

vF

∫ x

0

√
Rλdx ′

E2
λ − γ (x ′)

]
, (39)

where Rλ = E2
λ(E2

λ − E2
2 )(E2

λ − E2
3 ), 2L is the length of the

system, and Aλ is a normalization factor [48]

Aλ = E2
λ − E2

3
E(k)

K(k)
. (40)

The index b = ± in Eq. (39) distinguishes quasiparticles
residing on the two energy branches of the spectrum shown in

Fig. 6 and allows us to define unambiguously the momentum
pλ,b for a given value of Eλ. Using Eqs. (25) and (27), we find
the other solution

f −
λ,b(x) = cλ,b e−iϕλ,bf +

λ,b(x + l/2), (41)

where the coefficient cλ,b and the phase ϕλ,b are

cλ,b = sgn(bEλ) ×
{−1, |Eλ| < E2,

+1, |Eλ| > E3,
(42)

ϕλ,b = b

vF

∫ l/2

0

√
Rλdy

E2
λ − γ (y)

.

We emphasize that, in order to recover correct amplitudes
uλ,b and vλ,b, it is necessary to know the relative phase
between f +

λ,b(x) and f −
λ,b(x) in Eq. (41). This subject was not

discussed in the previous work focusing on thermodynamics
of the soliton-lattice state [45,47,51–53], because the order
parameter �(x) (31) depends only on |f +

λ,b(x)| and the
ground-state energy can be calculated without invoking the
relative phase. However, in general, response functions involve
matrix elements between various Bogoliubov amplitudes, and
the relative phase is absolutely necessary for maintaining
the particle-hole symmetry. Note that the solution given by
Eqs. (32) and (39) is a particular case of a more general type
of multiperiodic solutions [59].

Because the pairing potential �(x) is periodic, the am-
plitudes f ±

λb(x) in Eq. (39) must satisfy the Bloch theorem
f ±

λ,b(x + l) = eipλ,blf ±
λ,b(x) with the quasimomenta pλ,b. Here

the subscript b = ± labels the two momentum branches pλ,b

corresponding to a given eigenenergy Eλ. Thus, we can write

f ±
λ,b(x) = eipλ,bxφ±

λ,b(x), (43)

where φ±
λ,b(x + l) = φ±

λ,b(x) is a periodic function, which can
be expanded in the Fourier series

φ±
λ,b(x) =

∞∑
m=−∞

φ̃±
λ,b(m) eimQx, Q = 2π

l
. (44)

Using the energy-momentum relation pλ,b ≡ pb(Eλ), we can
obtain the energy dispersion Eλ(pλ) shown in Fig. 6 and the
density of states per spin ρb(Eλ) = |dpλ,b/dEλ|/2π . Below
we omit the eigenstate label λ for brevity. First, we consider
the energy range 0 � E � E2 and find from Eq. (39) [47,52]:

pb(E) = − b�2

vF K(k)
M(ϕE,k′), E � E2, (45)

where ϕE = arcsin(|E|/E2) and

M(ϕE,k′) = [E(k) − K(k)]F (ϕE,k′) + K(k)E(ϕE,k′) (46)

with F (ϕE,k′) and E(ϕE,k′) being the incomplete elliptic
integrals of the first and the second kinds, correspondingly.
The function M(ϕE,k′) remains positive for all values of
the energy E. The momenta corresponding to the band edge
energy E2 = �2k

′ are p(E2) = ±(π�2/2vF )K(k) = ±Q/2,
as shown in Fig. 6.
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Similarly, for the energies above the upper band edge E �
E3, we get

pb(E) = b

vF

⎡
⎣
√(

E2 − E2
2

)(
E2 − E2

3

)
E2

+ �2

K(k)
M(ϕ̃E,k′)

⎤
⎦ , E � E3, (47)

where ϕ̃E = arcsin(E3/|E|). Notice the minus sign in front of
the square brackets in Eq. (47), which indicates that the branch
index b actually changes across the gap, as shown in Fig. 6. For
the energies away from the gap E � E2 and E � E3, Eqs. (45)
and (47) reproduce the original linearized dispersion relation
E = vF p in Eq. (4). [The quasimomentum p, introduced in
Eq. (43) and used in the rest of the paper, actually corresponds
to p − p̃F , where the latter momentum p is the one used in
Sec. II.] Equations (45) and (47) determine the single-particle
spectrum of the quasi-1D FFLO state, which is shown in Fig. 6.

The single-particle density of states ρ(E) = |dp/dE|/2π

is given by the following expression [47]

ρ(E) = ρF

∣∣2E2 − E2
2 − E2

3 + 〈�2〉∣∣√(
E2 − E2

3

)(
E2 − E2

2

) , ρF = 1

2πvF

, (48)

where ρF is the density of states in the normal state and

〈�2〉 = 1

l

∫ l

0
�2(x) dx = �2

2

(
2 − k2 − 2

E(k)

K(k)

)
. (49)

Plots of the density of states for difference values of h are
shown in the top row in Fig. 5. At the point of transition
into the spatially homogeneous superfluid phase (k → 1 and
h → hc), Eq. (48) reproduces the BCS density of states.

Having obtained the exact Bogoliubov amplitudes, we can
compute the spin density ρs(x):

ρs(x) ≡ 〈ŝz(x)〉 = 〈ψ†
↑(x)ψ↑(x)〉 − 〈ψ†

↓(x)ψ↓(x)〉, (50)

where ŝz(x) is the spin-density operator. Using Eqs. (13) and
(20), we find

〈ψ†
σ (x)ψσ (x)〉 =

∑
λ

{|Uλ(x)|2nF (Eλ − σh)

+ |Vλ(x)|2[1 − nF (Eλ + σh)]} (51)

and

ρs(x) =
∑

λ

[|Uλ(x)|2 + |Vλ(x)|2]

× [nF (Eλ − h) − nF (Eλ + h)]. (52)

where the sum is taken over positive Eλ, as discussed below.
Equation (52) has a clear physical interpretation. First, at T =
0, the contribution to the spin density comes only from the
middle band with the energies |Eλ| < h, which is occupied by
the majority spin only, as shown in Fig. 6. Second, for a given
value of λ, the spatial integral of the spin density is equal to 1

because of the normalization condition for the Nambu spinors
(15). Thus, at T = 0, the integral

ns = 1

2L

∫ L

−L

dx ρs(x) = 1

2L

∑
λ

θ (h − Eλ)

= 2
∫ ∞

−∞
dE ρ(E) θ (h − |E|) = 4

∫ Q/2

0

dp

2π
= Q

π

(53)

relates the spin imbalance ns and wave vector Q = p
↑
F − p

↓
F ,

as discussed in Sec. II. The factor of 2 in the second line of
Eq. (53) comes from summation over the index α representing
the ±pF branches; see Fig. 3.

It is instructive to consider the limit h → hc, where the
imbalance corresponds to just one excessive majority atom
ns = 1/2L. In this regime, the order parameter forms a domain
wall �(x) = �0 tanh(�0/vF x), which binds the unpaired
atom. There is a single normalizable midgap state at Eλ = 0,
which is localized at the domain wall and is characterized by
the Witten topological index [58](

U0(x)

V0(x)

)
=

√
�0

2vF

1

cosh
(

�0
vF

x
) ( cos(p̃F x)

i sin(p̃F x)

)
. (54)

Using Eq. (54), we obtain the spin density from Eq. (52)

ρs(x) = �0

2vF

1

cosh2(x�0/vF )
, (55)

which, indeed, corresponds to the unpaired spin localized at the
domain wall around x = 0. With the increase of the population
imbalance, it becomes energetically favorable for the system to
create more domain walls in order to accommodate excessive
spins. This regime corresponds to the soliton lattice. In general,
we can calculate ρs(x) for an arbitrary population imbalance
using the exact solution discussed above. Using Eqs. (24) and
(27), we rewrite Eq. (52) at T = 0 as

ρs(x) =
∑

λ

[|f +
λ (x)|2 + |f −

λ (x)|2] θ (h − Eλ), (56)

where we omitted the fast-oscillating terms with the wave
vector 2pF . After substituting Eqs. (39) and (41) into Eq. (56)
and using the identity

∑
λ f (Eλ) = 2L

∫
dE ρ(E) f (E), we

find

ρs(x)

4ρF �2
= −

∫ E2

0

dE

2�2

2E2 − E2
2 − E2

3 + �2(x)√(
E2

2 − E2
)(
E2

3 − E2
)

= E(k′) − 1−k′2

2
K(k′){1+(1−k′2)sn2[(1+k′)ζ,ν]},

(57)

The plots of �(x) and ρs(x) are shown in Fig. 7. In the soliton-
lattice limit depicted in Fig. 7(a), the spin-density spikes are
well pronounced, because the distance between solitons is
fairly long. With the increase of the spin imbalance, the solitons
start to overlap, and the system crosses over to the LO phase
with the sinusoidal �(x) shown in Fig. 7(b). The midgap states
become hybridized and extended over many domain walls. As
a result, the amplitude of spin-density modulation becomes
small compared with the uniform spin background, as shown
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FIG. 7. (Color online) The pairing potential �(x) and the spin
density ρs(x) calculated for the quasi-1D FFLO state. (a) The soliton-
lattice regime for h close to the critical value hc. The spikes of
ρs(x) are aligned with the kink solitons, where �(x) changes sign.
(b) The Larkin-Ovchinnikov regime for h � �0. The spin-density
modulation is small compared with the uniform spin background.

in Fig. 7(b). Thus, it may be difficult to detect the modulation
of ρs(x) in the LO limit experimentally.

Finally, we point out that the spin density ρs(x) = ρs(x +
l/2) is a periodic function with the period l/2 = π/Q, so it can
be expanded into a Fourier series with the coefficients ρ̃s(m)

ρs(x) = 2
∞∑

m=0

ρ̃s(m) cos(2Qmx), (58)

ρ̃s(m) = 4

l

∫ l/4

0
dx ρs(x) cos(2Qmx). (59)

Because of the symmetry ρs(x) = ρs(−x), the Fourier expan-
sion has only cosine functions. The coefficients ρ̃s(m) can be
computed using Eq. (57)

ρ̃s(m)

4ρF �2
=

[
E(k′) − 1 − k′2

2
K(k′)

]
δm,0

− (1 − k′2)2

2
K(k′) Y (k′,m), (60)

where the dimensionless function Y (k′,m) is defined as

Y (k′,m) =
∫ 1

0
dz sn2[K(ν)z,ν] cos(πmz) (61)

with ν = (1 − k′)/(1 + k′). The Fourier coefficients ρ̃s(m)
can be calculated by expressing the sn function in terms
of an infinite series and taking the spatial integral over z;
see Ref. [52]. We will use the expansion (58) in the next

section when discussing the elastic optical Bragg scattering
experiments.

Here we conclude our overview of the exact mean-field
pairing solution for a quasi-1D Fermi system with a spin-
population imbalance. One of the hallmarks of this solution is
the midgap energy band populated by the majority spins. In
the next section, we propose and theoretically analyze several
experiments for detection of the soliton lattice.

IV. EXPERIMENTAL DETECTION OF THE SOLITON
LATTICE

The soliton lattice in the quasi-1D FFLO state can be
detected by various experimental techniques, such as polariza-
tion phase-contrast imaging [12,60], Bragg diffraction [61,62],
radiofrequency spectroscopy [63,64], quantum polarization
spectroscopy [65], and quantum spin-noise spectroscopy [66,
67]. Different experimental techniques have advantages and
disadvantages. In particular, the polarization phase-contrast
imaging used in the recent Rice experiment [12] does not have
sufficient spatial resolution to resolve modulation of ρs(x).
Thus, alternative experimental probes are needed to identify
the FFLO state unambiguously. Also, it is important to map
out the parameter space where the signatures of the FFLO
state are most prominent. In this section, we propose and
analyze theoretically three experimental approaches which
may be the most suitable for a clear detection of the FFLO
phase. Specifically, we consider the optical Bragg diffraction
on spin-density modulation, the inelastic Bragg scattering, and
the radiofrequency spectroscopy.

A. Optical Bragg diffraction on spin-density modulation

Spatial modulations of the spin density ρs(x) in the FFLO
state can be detected using the spin-dependent Bragg scattering
of light. This method is a cold-atom analog of the elastic
polarized-neutron scattering widely used in condensed-matter
physics, particularly for detecting magnetism and determining
the symmetry of a superconducting order parameter, see, e.g.,
Ref. [68]. The optical elastic Bragg scattering was proposed in
Ref. [62] for detection of antiferromagnetism in cold atoms
described by the fermionic Hubbard model, but it can be
also adapted for our problem. This method is based on the
following observation. If the frequency ω of incident light is
tuned halfway between the energy distance from the level
|3〉 to the two hyperfine levels |1〉 and |2〉 in Fig. 2, i.e.,
ω = ω23 + ω12/2, then the light couples to the population
imbalance of the levels |1〉 and |2〉, i.e., to the local spin
density ρs(x) = ρ↑(x) − ρ↓(x). As explained in more detail
in Appendix A, this happens because the scattering matrix
elements of light on the atoms in the hyperfine states |1〉
and |2〉 have opposite signs, so they produce opposite phase
shifts for the light. Because the light frequency is detuned
from atomic transitions in this regime, there is no photon
absorption, whereas photon scattering is maximally sensitive
to the spin-density modulation. Thus, the cross section of
elastic scattering is proportional to the static spin-structure
factor S(qx) [62], which is determined by the Fourier transform
ρ̃s(qx) of the spin density ρs(x): S(qx) ∝ |ρ̃s(qx)|2. Below, we
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FIG. 8. (Color online) Schematic plot of the elastic Bragg
diffraction experiment. Photons with the momentum |k| = 2π/λ

are elastically scattered to the momentum k′ by the spin-density
modulation with the period l/2. The Bragg condition for constructive
interference is l sin θ = mλ (or 2kx = 2Qm), where m is an integer.

derive this relation explicitly for the three-band model shown
in Fig. 2.

The energy dispersion of an atom in the state |3〉 is ε3(p) =
E3 + p2/2m, where E3 = ω23 + ω12 is counted from the
bottom of the lowest band in Fig. 2. We assume that the state |3〉
is not populated (i.e., μ3 = 0), and the interaction amplitudes
between atoms in the state |3〉 and with atoms in the other states
|1〉 and |2〉 are negligible. Let us introduce the annihilation
operators ψ̂3(x) for an atom in the state |3〉 and âk for a photon
with momentum k. The interaction of light with the atoms
is governed by the Hamiltonian Ĥint = ∑

σ (Ĥσ + Ĥ †
σ ), where

the operator Ĥσ describes atomic transitions from the state σ

to the state |3〉 with absorption of a photon

Ĥσ =
∑
kx

∫ L

−L

dx ϒk e−ikxx âk ψ̂
†
3(x) ψ̂σ (x). (62)

The amplitudes ϒk contain microscopic information about
atomic transitions, such as dipole matrix elements and light
polarization. To simplify notation, Eq. (62) is written for one
tube, but summation over all tubes is implicitly assumed.

We consider a process where an incoming photon with the
momentum k = (kx,k⊥) and energy ωk scatters into the state
with the momentum k′ = (−kx,k⊥) and energy ωk′ , as shown
in Fig. 8. Since |k| = |k′|, the photon energies ωk = ωk′ are
the same, so the scattering process is elastic. At the same time,
the momentum transfer qx = kx − k′

x = 2kx from the photon
to the atoms in the x direction allows one to probe the spatial
spin-density modulation in the FFLO state.

The transition amplitude Mel
k′,k for this elastic process is

given by the second-order perturbation theory in Ĥint:

Mel
k′,k = 〈0,k′|Ĥint

1

E0,k − Ĥ
Ĥint|0,k〉, (63)

where |0〉 represents the ground FFLO state of the atoms in
the levels |1〉 and |2〉 and the empty state of the level |3〉. As
shown in Appendix A, when ω = ω23 + ω12/2, the transition

amplitude is proportional to the Fourier transform ρ̃s(qx) of
the spin density:

Mel
k′,k = −2 ϒ k ϒk′

ω12
ρ̃s(kx − k′

x). (64)

Then, the transition rate W el
k′,k for the elastic scattering process

is given by the Fermi golden rule

W el
k′,k(qx) = 2π

∣∣Mel
k′,k

∣∣2 δ(ωk − ωk′ )

= 8π
|ϒk|2 |ϒk′ |2

|ω12|2 ρ̃2
s (qx) δ(ωk − ωk′), (65)

where qx = kx − k′
x is the transferred momentum. The Fourier

transform ρ̃s(qx) of the spin density can be straightforwardly
computed from the Fourier expansion (58)

ρ̃s(qx) =
∫ L

−L

e−iqxxρs(x) dx (66)

= 2π

∞∑
m=0

ρ̃s(m)[δ(qx − 2mQ) + δ(qx + 2mQ)]. (67)

We observe that the photon scattering rate Wk′,k peaks when the
momentum transfer qx = kx − k′

x is an even integer multiple of
the momentum Q of the soliton lattice. This effect represents
diffraction of light on the periodic modulation of spin density
in the soliton-lattice state. An experimental observation of this
effect would give a strong evidence in favor of the spatially
inhomogeneous quasi-1D FFLO state.

Equation (67) is obtained for an infinite tube with L =
∞, but the experimental situation [12] corresponds to a finite
system with L/l ∼ 10–100. To check for finite-size effects, we
calculated the integral (66) for L/l = 12 and plotted the results
in Fig. 9 for two values of h. The peaks in the scattering rate at
qx = 2mQ are well defined. For the experimentally relevant
values of Q, the probe light should have the frequency ω in the
visible spectrum in order to deliver the required momentum

0 1 2 3 4 5
qx/Q

0

0.2

0.4

0.6

0.8

1

W
k,

k+
q x/W

k,
k

h=1.005h
c

h=1.03h
c

FIG. 9. (Color online) Transition rate W el
k′,k for the elastic Bragg

scattering vs. the momentum transfer qx = k′
x − kx , calculated from

Eq. (66) for L = 12l. The scattering rate has peaks at qx = 2mQ. The
effective magnetic fields h = 1.005hc (solid line) and h = 1.03hc

(dashed line) correspond to the spin polarizations P ≈ 4.1% and
P ≈ 4.2% in Eq. (1). Here we used �0/EF = 0.2.
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transfer qx = 2mQ. This can be achieved, for example, by
using the 2S1/2 → 2P3/2 transitions in 6Li, corresponding to
the wavelength of light λ = 671 nm [62]. Thus, although there
may be additional complications due to confinement potential,
our results show that the diffraction peaks are observable under
realistic experimental conditions and can give a signature of
the soliton-lattice formation in quasi-1D fermionic superfluids.

B. Inelastic Bragg scattering

Now we generalize the previous discussion to the inelastic
Bragg scattering, where the final state of the atomic system is
an excited state |η〉. The transition rate is given by the Fermi
golden rule:

W in
k′,k = 2π

∑
η

|M in
k′,k(η)|2 δ(ωk′ − ωk + Eη − E0), (68)

where Eη − E0 is the excitation energy of the atomic system.
The matrix element for the inelastic process is given by the
second-order perturbation theory:

M in
k′,k(η) = 〈η,k′|Ĥint

1

E0,k − Ĥ
Ĥint|0,k〉. (69)

Equation (63) for the elastic Bragg scattering is recovered from
Eq. (69) when ωk = ωk′ . After some manipulations described
in Appendix A, we find

W in
k′,k = 4|ϒk|2|ϒk′ |2

ω2
12

S(ωk − ωk′ ,kx − k′
x), (70)

where

S(�,q) =
∫

dt dx1 dx2 ei�t−iq(x2−x1)〈ŝz(x2,t)ŝz(x1,0)〉 (71)

is the dynamical spin structure factor. Here � = ωk − ωk′ and
q = kx − k′

x represent the energy and momentum transfers
from the photon to the atoms. When the atomic system is in
the ground state, the inelastic photon scattering is possible
only for � > 0, i.e., when the photon loses some energy.
Equation (70) applies when the incoming photon energy
is tuned to ωk = ω23 + ω12/2, where the transition rate is
maximally sensitive to the spin-spin correlations function.
For a different frequency, there are also contributions to the
transition rate from the density-density correlation function
[62].

To calculate the dynamical structure factor, we use the
imaginary-time formalism and define the spin susceptibility
χ (i�n,q):

χ (i�n,q) =
∫

dτ dx1 dx2 ei�nτ−iq(x2−x1)

×〈T̂τ {ŝz(x2,τ ) ŝz(x1,0)}〉, (72)

where �n = 2πnT is the bosonic Matsubara frequency with
the temperature T and an integer n. (We will take the limit
T → 0 in the final results.) In Eq. (72), we have introduced the
notation ŝz(x,τ ) = exp(Ĥ τ )ŝz(x) exp(−Ĥ τ ). The dynamical
spin structure factor S(�,q) is obtained from χ (i�n,q) by the
analytical continuation:

S(�,q) = − 1

π
Im χ (i�n → � + iδ,q). (73)

The dynamical spin structure factor (71) can be calculated
either by direct evaluation of the averages using the exact
expressions for the Bogoliubov amplitudes similarly to the
calculation in Eq. (51) or, alternatively, by employing Green’s
functions. Since the latter is more general and is routinely used
in computation of various response functions, we use it below.
The resulting expressions, of course, are independent of the
selected method of calculation.

The spin susceptibility χ (i�n,q), Eq. (72), can be expressed
in terms of the normal and anomalous Green’s functions for
the fermions. Details of the calculations are presented in
Appendix B, where we show that the spin correlation function
χ (i�n; x,x ′) consists of two contributions from the type I
and type II processes defined below. Performing the analytical
continuation (73), we find the spin structure factor in the real
space:

S(x1,x2; �) =
∑
μν

L(I)
μν(x1,x2)�−

μνδ(� − Eμ + Eν)

+
∑
μν

L(II)
μν (x1,x2)�+

μνδ(� − Eν − Eμ). (74)

The sums in Eq. (74) are taken over the positive energy
eigenvalues Eλ,μ > 0, and the occupation factors �±

μν are

�−
μν = nF (Eν − h) − nF (Eμ − h), (75)

�+
μν = 1 − nF (Eν + h) − nF (Eμ − h). (76)

The delta functions in Eq. (74) indicate contributions to
S(x1,x2; �) from two different excitation types I and II. The
type I processes correspond to annihilation of a quasiparticle
with the energy Eν < E2 in the midgap band and creation of
a quasiparticle in the excited state with the energy Eμ > E3

in the upper band in Fig. 6. These processes involves spin-
majority quasiparticles, which occupy the midgap band, so
the factor �−

μν = 1 in Eq. (75), because nF (Eν − h) = 1 and
nF (Eμ − h) = 0. Similar transitions for the minority spins are
not possible, because they do not occupy the midgap band. The
type II processes correspond to creation of two quasiparticles
with opposite spins and the energies Eν and Eμ. The minority
quasiparticle can be created either in the upper band with
Eν > E3 (process IIa) or in the midgap band with Eν < E2

(process IIb), whereas the majority quasiparticle can be only
created in the upper band with Eμ > E3, because the midgap
band is occupied by the majority spins. In both cases, �+

λμ = 1
in Eq. (76), because nF (Eμ − h) = nF (Eν + h) = 0.

The matrix elements L
(I)
λμ(x1,x2) and L

(II)
λμ (x1,x2) for the

type I and II processes have the typical BCS structure [69]:

L(I)
μν(x1,x2) =

∑
α,α′,b,b′

P
(b,b′)
μα;να′ (x1)P

(b,b′)
μα;να′ (x2),

(77)
L(II)

μν (x1,x2) =
∑

α,α′,b,b′
T

(b,b′)
μα;να′ (x1)T

(b,b′)
μα;να′ (x2),

where the coherence factors P
(b,b′)
λα;μα′ (x) and T

(b,b′)
λα;μα′ (x) are given

by Eqs. (B11) and (B12).
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To calculate the matrix elements, we expand the Bogoliubov
amplitudes in the Fourier series as follows:[

U
(b)
λ,1(x)

V
(b)
λ,1(x)

]
=

∞∑
m=−∞

[
ũλ,b(m)

ṽλ,b(m)

]
ei(pλb+p̃F +Qm)x. (78)

Equation (78) is written for α = 1, whereas an equation for
α = 2 can be obtained by interchanging u and v and replacing
p̃F by −p̃F , as follows from Eq. (24). The amplitudes ũλ,b(m)
and ṽλb(m) can be derived straightforwardly from Eqs. (27),
(43), and (44). It also follows from the particle-hole symmetry,
Eq. (16), that |ũλ,−b(m)| = |ṽλb(−m)|. Plots of the absolute
values of several Fourier components ũλ,b(m) and ṽλ,b(m) are
shown in Appendix C.

In contrast to homogeneous superfluids, the soliton lat-
tice breaks translational symmetry. Thus, S(x1,x2; �) and
L

(I,II)
λμ (x1,x2) depend not only on the relative coordinate x1 − x2

but also on the center-of-mass coordinate (x1 + x2)/2. Thus,
the Fourier transforms L

(I,II)
λμ (q,K) depend on the two momenta

q and K corresponding to the relative and the center-of-mass
coordinates. Substituting Eq. (78) into Eqs. (B11), (B12),
and (77), we obtain Eq. (B17) for the Fourier transforms
L

(I,II)
λμ (q,K). However, to obtain the inelastic scattering rate

in Eq. (70), we need only the dynamical spin structure factor
S(�,q) at K = 0 in Eq. (71). So, we set K = 0 in the rest of
the calculations.

Because of complexity of the final equations, the frequency
and momentum dependence of S(�,q) has to be analyzed
numerically. A technical discussion is given in Appendix C.
Here we present a qualitative analysis and identify the
underlying microscopic processes in the case of a small
momentum transfer |q| � pF . It follows from Eqs. (74) that

S(�,q) = SI(�,q) + SII(�,q), (79)

where the functions SI and SII are obtained from Eqs. (B17),
(B18), and (B19) by setting K = 0

SI(�,q) =
∑

λ,μ,α,b,b′,{mj }
K(I)

λμ(α,α,b,b′,{mj }) δ(� + Eλ − Eμ)

×�−
λμδ(pμ,b′ − q − pλ,b − Q(m1 − m′

1))

× δm1−m′
1,m2−m′

2
, (80)

SII(�,q) =
∑

λ,μ,α,b,b′,{mj }
K(II)

λμ (α,ᾱ,b,b′,{mj }) δ(� − Eλ − Eμ)

×�+
λμδ(pμ,b′ − q + pλ,b + Q(m1 + m′

1))

× δm1+m′
1,m2+m′

2
. (81)

Here the sums are taken over the energy level labels λ and μ,
the energy branch labels b and b′, the Fourier indices {mj } =
{m1,m

′
1; m2,m

′
2}, and the Fermi points label α. The label α′ =

α in Eq. (B18) and α′ �= α in Eq. (B19) is selected so |q| � pF .
The numerically calculated dynamical spin structure factor

S(�,q) is plotted versus the momentum transfer q and
the energy transfer � in Fig. 10 for T = 0. Because the
experimentally measurable inelastic scattering rate in Eq. (70)
is proportional to S(�,q), below we call S(�,q) the signal
for shortness. The signal is maximal at the lines A and B in
the (q,�) space in Fig. 10. For a fixed q, the signal is strictly
zero for the values of � below the threshold represented by

FIG. 10. (Color online) Contour plot of the dynamical spin
structure factor S(�,q) vs. the momentum transfer q and the
energy-transfer �. Line A represents the threshold for the type IIa
processes creating two quasiparticles in the upper band in Fig. 6. The
minimal energy transfer threshold � = 2E3 is achieved at q = Q,
as indicated by the dashed lines. Line B represents the threshold for
the type I and IIb processes, which involve one quasiparticle in the
midgap band and another in the upper band in Fig. 6. The minimal
energy-transfer threshold � = E3 − E2 is achieved at q = 0. The spin
structure factor S(�,q) is maximal at the threshold lines A and B, as
indicated by the bright colors. The plot is calculated for the effective
magnetic field h = 1.05hc corresponding to the dimensionless spin
polarization P ≈ 4.3% at �0/EF = 0.2.

line B. For the values of � above line B, the signal is nonzero,
but maximal signal is achieved at the threshold line itself.
Similarly, an additional sharp increase of the signal is obtained
when crossing line A.

Line A in Fig. 10 originates from the type IIa processes,
where two quasiparticles are created in the upper band in Fig. 6
with the energies Eμ > E3 and Eν > E3. In this case, the
minimal energy-transfer threshold is � = 2E3, as shown by
the horizontal dashed lines in Fig. 10. The type IIa processes
are analogous to the Cooper-pair breaking in the BCS theory.
However, the unusual feature of the FFLO state is that the
minimal energy-transfer threshold is achieved at the nonzero
momentum transfers q = ±Q, as shown by the vertical dashed
lines in Fig. 10. It is a consequence of the nonzero total
momenta ±Q of the Cooper pairs in the FFLO state, as
discussed in Sec. II.

Line B in Fig. 10 originates from the type I and IIb
processes, which involve destruction or creation of one
quasiparticle in the midgap band with the energy Eν < E2

and creation of another quasiparticle in the upper band with the
energy Eμ > E3; see Fig. 6. Thus, the minimal energy-transfer
threshold for line B is achieved at � = E3 − E2, which is
significantly lower than the BCS pair-breaking threshold of
2�0 (roughly three times lower for the parameters used in
Fig. 10). The presence of line B is a characteristic feature of
the FFLO state. Naively, one might expect that the excessive
spin-majority fermions are unpaired and, thus, produce a
gapless spectrum of energy excitations. However, the self-
consistent solution discussed in Sec. III yields exactly one
spin-up fermion per kink, resulting in the fully filled midgap
band and the energy-transfer threshold represented by line B.
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While the conservation laws of energy and momentum
explain the thresholds in Fig. 10, it is not yet clear why
the signal is maximal at the threshold lines. A technical
discussion of this question is given in Appendix C. Here
we present a qualitative, heuristic explanation. Although
we systematically wrote all equations in the paper using
positive energy eigenvalues Eμ > 0 of the BdG equation
(14), it is also possible to make a particle-hole transformation
and use both positive and negative energies Eμ. The spin
susceptibility has a simpler form given by Eq. (B13) in this
representation, which effectively treats all excitations as the
type I processes involving both positive and negative energy
branches in Fig. 6. In order to obtain a qualitatively correct
result, we restrict our consideration to the branches with
positive slope in Fig. 6, because they correctly reproduce the
normal-state energy spectrum in the limit where the pairing
potential vanishes. Energy and momentum conservation in
interaction between photons and Bogoliubov quasiparticles
requires that the equation E(p − q) + � = E′(p) is satisfied.
Geometrically, the left-hand side of this equation represents the
energy dispersion curve E(p) of the Bogoliubov quasiparticles
in an occupied band, which is shifted horizontally by the
transferred momentum q and vertically by the transferred
energy �. The right-hand side of the equation represents
another, unoccupied energy band E′(p) of the Bogoliubov
quasiparticles in Fig. 6. If the two curves do not cross, the
equation is not satisfied, and the signal is zero. In general, the
two curves cross with nonparallel slopes at two points. In this
case, the signal is nonzero, but relatively weak, because the
effective overlap volume between the two curves at the two
intersection points is small. However, when the threshold is
approached, the two crossing points merge before disappearing
altogether. At the threshold, the two curves touch with parallel
slopes, which greatly increases the effective overlap volume
between the two curves. Thus, we expect that the integrals
of the δ functions in Eqs. (80) and (81) would be greatly
enhanced at the boundary between the domains in Fig. 10
where the conservation laws can and cannot be satisfied, i.e., at
the threshold lines A and B. Line B represents the set of values
(q,�) such that the displaced midgap band in Fig. 6 touches
the upper band. It is geometrically obvious that the minimal
possible energy transfer is � = E3 − E2 at q = 0. Similarly,
line A represents the set of values (q,�) such that the displaced
lower band in Fig. 6 touches the upper band. In this case, the
minimal possible energy transfer is � = 2E3 at q = Q.

These heuristic arguments indicate that the signal is
enhanced by maximizing the joint density of states represented
by the δ functions in Eqs. (80) and (81). However, these
arguments do not take into account the structure of the matrix
elements in front of the δ functions in Eqs. (80) and (81). A
more rigorous consideration is presented in Appendix C.

We conclude this section by emphasizing that the dynamical
spin structure factor for the soliton lattice in quasi-1D
fermionic superfluids has much richer structure than for con-
ventional BCS superfluids, with several important qualitative
differences discussed above. Thus, the proposed inelastic
Bragg scattering experiment to probe the dynamical spin
structure factor would help to distinguish the quasi-1D FFLO
state from the conventional BCS superfluid in cold-atoms
experiments.

C. Radiofrequency spectroscopy

In Secs. IV A and IV B, we studied the case where the
frequency ω of the incoming photons is detuned significantly
from the transition frequencies between the atomic energy
levels in Fig. 2. In that case, the fermionic atoms are only
virtually excited from the states |1〉 and |2〉 to the state |3〉,
but there are no real atomic transitions, and the photons
are re-emitted. In this section, we study the case where the
incoming photons are absorbed, and the fermionic atoms make
real transitions from the states |1〉 or |2〉 to the state |3〉.
Experimentally, the state |3〉 in this case is typically taken
to be the hyperfine-split state of 6Li with F = 3/2. Let us
define the frequency detuning ωdσ as

ωdσ =
{
ω − ω23 − ω12, σ = |1〉,

ω − ω23, σ = |2〉. (82)

The interaction between the photons and the atoms is described
by the operator (62). In this section, we study the case where
the photons propagate perpendicularly to the direction of the
1D tubes, so the photon momentum kx = 0 is zero in the x

direction. Thus, we drop the index k in Eq. (62) and replace
ϒk → ϒ . Then, Eq. (62) can be rewritten in the momentum
representation, where atoms in the states |σ 〉 and |3〉 have the
same momentum p, i.e., the atoms make vertical transitions in
Fig. 2:

Ĥσ = ϒ
∑

p
â0 ψ̂

†
3(p) ψ̂σ (p). (83)

We assume that the band |3〉 is empty, whereas the bands |1〉
and |2〉 are populated as shown in Fig. 2.

The rate of transition is obtained using Fermi’s golden rule
with the perturbation Hint = Hσ + H †

σ given by Eq. (83). In
the case where the atoms are in the normal state, the transition
rate is

W norm
σ→3(ωdσ ) = (2L) (2pσ

F ) |ϒ |2 δ(ωdσ ). (84)

Here the factor 4Lpσ
F represents the number of atoms in the

occupied band. The transition rate (84) is proportional to
|ϒ |2, as opposed to |ϒ |4 in Eqs. (65) and (70) for the elastic
and inelastic Bragg scattering, because the latter involves
absorption and emission of a photon in the second-order pertur-
bation theory for the Hamiltonian (62), whereas spectroscopy
involves only absorption in the first-order perturbation.

In the presence of superconducting pairing, the operator
ψ̂σ (p) in Eq. (83) should be expressed in terms of the
Bogoliubov operators γ̂ and γ̂ † in Eq. (13). Before studying the
quasi-1D FFLO case, let us first consider a simple BCS pairing
without population imbalance (h = 0). In this case, only the
operator γ̂ † has a nonzero matrix element when operating on
the ground state at T = 0, so Fermi’s golden rule gives

WBCS
σ→3 = 2L |ϒ |2

∫ +∞

−∞
dp |Ṽ (p)|2 δ

(
ξp +

√
ξ 2
p + �2

0

−ωdσ

)
, (85)

where Ṽ (p) is the Fourier transform of the amplitude V (x) in
Eq. (13) and ξp is the normal-state energy dispersion measured
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from the chemical potential in Eq. (19). Given that in the BCS
theory

|Ṽ (p)|2 = 1

2

⎛
⎝1 − ξp√

ξ 2
p + �2

0

⎞
⎠ , (86)

the integral (85) can be taken be changing the variable of

integration to u = ξ +
√

ξ 2 + �2
0 and introducing the density

of states ρ(ξ ) = |dp/dξ |/2π . Thus we obtain [70,71]

WBCS
σ→3(ωdσ ) = 2Lπρ∗|ϒ |2

(
�0

ωdσ

)2

θ (ωdσ − ω0), (87)

where the threshold frequency is ω0 =
√

μ̃2 + �2
0 − μ̃. The

density of states ρ∗ = ρF /

√
1 + (ω2

dσ − �2
0)/2ωdσ μ̃ is evalu-

ated at the value of ξ that satisfies the δ function in Eq. (85)
and ρF is the density of states at the Fermi level; see Eq. (48).

Physical meaning of Eq. (87) can be understood as follows.
When the superconducting gap opens, it pushes down the
energy dispersion for the lower band, as illustrated in Fig. 3. So,
a higher frequency is necessary to excite an atom from the state
|σ 〉 to the state |3〉 compared with the normal-state case shown
in Fig. 2. Thus, the spectral weight in Eq. (87) is blue-shifted to
higher frequencies relative to Eq. (84). The detuning ωdσ ∼ �0

corresponds to excitement of the atoms with |p| ∼ pF , where
ρ∗ ≈ ρF . On the other hand, at the threshold ωdσ → ω0, the
atoms are excited from the bottom of the band with p → 0,
where the density of states diverges as ρ∗ ∝ (ωdσ − ω0)−1/2.
Frequency dependence of the absorption rate (87) in the
BCS state is qualitatively represented by the dashed curve
in Fig. 11. The spectral weight is blue-shifted from ωdσ = 0
and monotonously decreases toward high frequencies.

Now we turn to calculation of the absorption rate for the
quasi-1D FFLO state using Fermi’s golden rule

W FFLO
σ→3 = 2π

∑
η
|M(η,σ )|2δ(ωdσ − �Eη,σ ), (88)

where M(η,σ ) = 〈η,0|Ĥσ |0,1〉 is the matrix element of a
transition from the initial to the final state and �Eη,σ is the
energy difference between the final and initial atomic states.
The initial state |0,1〉 = |0〉 ⊗ a

†
0|0〉 corresponds to the ground

state of the atoms |1〉 and |2〉 forming the FFLO superfluid
and the photon state a

†
0|0〉. The final state |η,0〉 corresponds

to an excited state of the fermionic system with an atom
destroyed in the state |σ 〉 and created in the state |3〉, i.e.,
|η〉 = ψσ (p)|0〉 ⊗ ψ

†
3(p)|0〉, and the photon is absorbed. Using

Eq. (13), we observe that there two kinds of the final states,
where a Bogoliubov quasiparticle is either destroyed γ̂λ,σ |0〉
or created γ̂

†
λ,−σ |0〉. According to Eq. (17), the energies of

these states are −(Eλ − σh) and Eλ + σh, correspondingly.
Because all energies are counted from the chemical potential
μσ = μ̃ + σh, the energy of the atom in the third state
effectively is ξp − σh, where ξp is defined in Eq. (19). Putting
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FIG. 11. (Color online) Absorption spectrum W FFLO
σ→3 (ωdσ ),

Eq. (89), vs. the frequency detuning ωdσ , Eq. (82). For the minority
fermions, σ = ↓, the spectrum is shown by the dashed curve and
labeled as Wbot(ωdσ ), because it originates from the bottom band in
Fig. 3. It is blue-shifted similarly to the absorption spectrum (87)
for the BCS state. For the majority fermions, σ = ↑, the spectrum
consists of two terms Wbot(ωdσ ) and Wmid(ωdσ ). The latter term is
shown by the solid curve and originates from the middle band in
Fig. 3 with |Eλ| < h in Fig. 6. The width of this peak is of the order
of �2, and some spectral density is red-shifted to lower frequencies.
The plots are obtained for h = 1.25 hc, which corresponds to the
dimensionless spin polarization P ≈ 5.1% assuming �0/EF = 0.2.

all the terms together, we find

W FFLO
σ→3 (ωdσ ) = 2π |ϒ |22L

2∑
α=1

∑
b=±

∑
Eλ>0

× [|Ũ (b)
λ,α(p)|2 nF (Eλ − hσ )

× δ(ξp − Eλ − ωdσ )

+ ∣∣Ṽ (b)
λ,α(p)

∣∣2 nF (−Eλ − hσ )

× δ(ξp + Eλ − ωdσ )
]
. (89)

where the amplitudes Ṽ (p) and Ũ (p) are the Fourier trans-
forms of the amplitudes V

(b)
λ,α(x) and U

(b)
λ,α(x) in Eq. (78), and

p = pλb + mQ − (−1)αp̃F , (90)

[
U

(b)
λ,1(p)

V
(b)
λ,1(p)

]
=

[
ũλ,b(m)

ṽλ,b(m)

]
,

[
U

(b)
λ,2(p)

V
(b)
λ,2(p)

]
=

[
ṽλ,b(m)

ũλ,b(m)

]
. (91)

Equation (89) is the main result of this subsection. Unlike
in the BCS theory, Eq. (85), the absorption rate in the FFLO
state, Eq. (89), has contributions from both |U |2 and |V |2.
The difference originates from the presence of the midgap
band in the FFLO state in Fig. 6. In order to get a physical
insight, let us consider the limiting case of the FFLO state
with a vanishingly small pairing potential � and focus on the
majority fermions with σ =↑. In this case, |U (p)| = 1 and
ξp = Eλ for p > p̃F in the first term in the sum (89), so this
term contributes an integral over p from p̃F to p̃F + Q/2 in
Fig. 6. Similarly, |V (p)| = 1 and ξp = −Eλ for p < p̃F in the
second term in the sum (89), so this term contributes an integral
over p from p̃F − Q/2 to p̃F in Fig. 6. Together, these two
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terms reproduce the contribution from the midgap band to the
normal-state absorption given by Eq. (84). On the other hand,
for the minority fermions with σ = ↓, there is no contribution
from the midgap band, because it is not populated.

Frequency depenence of the absorption rate (89) is shown in
Fig. 11. The dashed line shows W FFLO

↓→3 (ωdσ ) for the minority
fermions and is labeled as Wbot(ωdσ ), because the minority
fermions occupy the bottom band in Fig. 3. The dashed line is
qualitatively similar to the absorption spectrum in the simple
BCS case. The spectrum is blue-shifted to higher frequencies,
because the bottom band bends downward in Fig. 3 due to
the superconducting gap. The contribution from the minority
fermions in Fig. 6 comes from the energy branch b = − with
Eλ > h and the Fourier component ṽλ,−(0) until the frequency
ωdσ reaches the value corresponding to the quasimomentum
at the Brillouin zone boundary pλ,− = −Q/2. At that point,
the energy conservation condition enforces a response from
the quasiparticles in the energy branch b = + with Eλ > h

at the zone boundary pλ,+ = Q/2. To satisfy momentum
conservation, the quasiparticles acquire an extra momentum
−Q from the soliton lattice via the Fourier component
ṽλ,+(−1).

In contrast, the absorption rate W FFLO
↑→3 (ωdσ ) for the majority

fermions consists of two terms Wbot(ωdσ ) and Wmid(ωdσ ).
The first term comes from the bottom band occupied by the
majority fermions in Fig. 3. This term is the same as for
the minority fermions and is shown by the dashed line in
Fig. 11. The second term Wmid(ωdσ ) comes from the middle
band in Fig. 3 and Fig. 6, which is occupied only by the
majority fermions. Because this band bends both downward
and upward due to the opening of the gaps above and below
it, the absorption spectrum spreads to both higher and lower
frequencies. The term Wmid(ωdσ ) is shown by the solid line
in Fig. 11. It is important that some spectral weight for the
majority fermions exhibits red shifting, in contrast to the
minority fermions and the simple BCS state, which exhibit
only blue shifting. This characteristic feature can be utilized
for experimental identification of the quasi-1D FFLO state.
Similar theoretical conclusions were obtained in Ref. [33].

Absorption spectrum for the fermionic atoms was studied
experimentally in Refs. [63,64]. The spectrum in the normal
state consists of a single broadened peak, which is centered
at the atomic transition frequency, i.e., at ωdσ = 0. When the
Fermi gas is cooled to degeneracy, an extra peak emerges at
higher frequencies, followed by disappearance of the normal
peak at the lowest temperatures [63,64]. Absorption spectrum
has a characteristic threshold at the frequency � �2

0/2EF .
These features were interpreted as the onset of the pairing
gap in the spectrum of single-particle excitations [63,71–73].
However, we are not aware of experiments studying optical
absorption spectra for the quasi-1D Fermi gases with popu-
lation imbalance in the pairing regime corresponding to the
FFLO state, which would be very interesting.

V. CONCLUSIONS

In this paper, we study the quasi-1D superfluid fermionic
condensate with population imbalance. We analyze physical
properties of this phase using the exact mean-field solution
corresponding to the soliton lattice. This mean-field approach

is valid when the intertube tunneling amplitude t⊥ is suffi-
ciently large, so EF � t⊥ � Tc � t2

⊥/EF . We believe these
conditions can be satisfied experimentally by choosing an
appropriate optical lattice depth in the transverse direction,
as well as the strength of the fermion interaction. Using
the exact results for the soliton lattice, we propose and
analyze several experiments aimed at detection of the exotic
FFLO state in the quasi-1D cold-atom settings. First, we
propose to use the optical elastic Bragg scattering to measure
the spin-density modulation accompanying formation of the
soliton lattice. Second, the optical inelastic Bragg scattering
can probe the frequency and momentum dependence of
the spin-spin correlation function and provide information
about the quasiparticle spectrum. For both experiments, we
identify qualitative signatures of inhomogeneous superfluidity
in the quasi-1D FFLO state. Third, we study the difference
(red versus blue shift) in the absorption spectra for the
radiofrequency spectroscopy of the majority and minority
atoms. This difference is a characteristic feature of the FFLO
state in contrast to the conventional BCS state. Our predictions
of various physical properties of the FFLO state should help to
identify this exotic phase in the ongoing experiments in cold
atomic gases.

In this paper, we treated the tubes in Fig. 1(a) as being uni-
form in the x direction. However, a more realistic consideration
should include the effect of a confining potential along the tube
direction, which makes the problem much more complicated.
Phase diagram in the quasi-1D geometry and phase separation
due to the confining potential were studied numerically in
Ref. [16] using a mean-field theory. The results of Ref. [16]
for a fixed small t⊥ indicate that the FFLO superfluid is located
at the center of the trap, similarly to the strictly 1D case [12].
Therefore, we argue that the quasi-1D regime is the most
promising for observation of the FFLO physics, because the
atomic motion is largely one-dimensional while maintaining
advantage of the quasi-1D Fermi surface nesting. At the same
time, phase fluctuations of the pairing potential are suppressed
due to the presence of weak tunneling between the tubes,
which stabilizes the true long-range order. Phase diagram as a
function of the interchain hopping, as well as the dependence
of the spin polarization on t⊥ are open questions at the moment
and require a more systematic study.
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APPENDIX A: BRAGG SCATTERING RATE OF LIGHT
AND SPIN STRUCTURE FACTOR FOR THE ATOMS

In this appendix, we show how the transition rate for the
Bragg scattering of light is related to the spin structure factor
for the atoms for both elastic and inelastic scattering. Using
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Eqs. (62) and (69), we obtain the following expression for the
matrix element of transitions from the state |0,k〉 representing
the ground state of the atoms and a photon with the momentum
k to the state |η,k′〉 representing an excited state of the atoms
and a photon with the momentum k′:

M in
k′,k(η) =

∑
σ

〈η,k′|Ĥ †
σ

1

E0,k − Ĥ
Ĥσ |0,k〉. (A1)

The atomic level |3〉 is empty for both initial and final
states. Using Eqs. (62), we rewrite Eq. (A1) in terms of the
intermediate states |p〉, where the photon is absorbed, and
an atom is excited from the level σ to the level |3〉 with the
momentum p

M in
k′,k(η) =

∑
σ,p

∫
dx dx ′ ϒ k′ϒk e−ik′

xx
′+ikxx 〈η|ψ̂†

σ

× (x ′)ψ̂3(x ′)|p〉 1

E0,k − Eσ,p

〈p|ψ̂†
3(x)ψ̂σ (x)|0〉.

(A2)

To estimate the energy difference in the denominator of
Eq. (A2), we use the energy E3 + p2/2m for the atom
promoted to the intermediate state from the initial state with
the energy Eσ + ε(p − kx), where we took into account
momentum conservation. However, given that the energy
corrections to the quasiparticle dispersion in the FFLO state
and the momentum transfer from the photon are small
compared with the atomic energy difference ω12, we can ap-
proximately use the normal-state dispersion law Eσ + p2/2m

for the annihilated atomic state. The energy denominator
then becomes ωk + Eσ − E3, where p2/2m has canceled out,
and ωk is the photon frequency. When the photon frequency
is tuned halfway between the energy distance from |3〉 to
|2〉 and |1〉 (see Fig. 2), i.e., ωk = ω23 + ω12/2, then the
denominator in Eq. (A2) is equal to ∓ω12/2 for σ =↑ , ↓.
Using the plane-wave expansion ψ̂3(x) = ∑

p eipx ψ̂(p)/
√

2L

and taking into account that 〈p|ψ̂†(p)|0〉 = 〈0|ψ̂(p)|p〉 = 1,
we find from Eq. (A2)

M in
k′,k(η) = −2ϒ k′ϒk

2Lω12

∑
p

∫
dx dx ′ e−ik′

xx
′+ikxx eip(x−x ′)

×〈η|ψ̂†
↑(x ′)ψ̂↑(x) − ψ̂

†
↓(x ′)ψ̂↓(x)|0〉. (A3)

The sum over p in Eq. (A3) gives the δ function δ(x − x ′),
which is then eliminated by integration over x ′. Thus we find

M in
k′,k(η) = −2ϒ k′ϒk

ω12

∫
dx ei(kx−k′

x )x〈η|ŝz(x)|0〉, (A4)

where ŝz(x) = ψ̂
†
↑(x)ψ̂↑(x) − ψ̂

†
↓(x)ψ̂↓(x) is the spin-density

operator. If |η〉 is taken to be the ground state |0〉 in
Eq. (A4), then 〈0|ŝz(x)|0〉 = ρs(x) as in Eq. (50), and Eq. (A4)
reproduces Eq. (64) for the elastic Bragg scattering.

Substituting Eq. (A4) into Eq. (68) and denoting q = kx −
k′
x , we find the transition rate for the inelastic Bragg scattering

W in
k′,k = 2π

4|ϒk|2|ϒk′ |2
ω2

12

∑
η

∫
dx1 dx2 〈0|ŝz(x2)|η〉

× 〈η|ŝz(x1)|0〉 eiq(x1−x2) δ(� − �Eη), (A5)

where � = ωk − ωk′ and �Eη = Eη − E0. Using the identity
for the δ function δ(� − �Eη) = ∫

ei(�−�Eη)t dt/2π , the
transition rate (A5) can be written as

W in
k′,k′ = 2π

4|ϒk|2|ϒk′ |2
ω2

12

∫ ∞

−∞

dt

2π

∫
dx1dx2e

i�t eiq(x1−x2)

×
∑

η

〈0|eiE0t ŝz(x2)e−iEηt |η〉 〈η|ŝz(x1)|0〉

= 4|ϒk|2|ϒk′ |2
ω2

12

∫
dt dx1 dx2 ei�t+iq(x1−x2)

×〈0|ŝz(x2,t)ŝz(x1,0)|0〉 = 4|ϒk|2|ϒk′ |2
ω2

12

× S(ωk − ωk′ ,kx − k′
x). (A6)

Equation (A6) reproduces Eqs. (70) and (71).

APPENDIX B: DERIVATION OF THE SPIN-SPIN
CORRELATION FUNCTION

In this appendix, we present a detailed derivation of the
expression the spin-spin correlation function in Eq. (72):

χ (x,τ ) = 〈T̂τ {ŝz(x,τ )ŝz(0,0)}〉,
(B1)

ŝz(x,τ ) = ψ̂
†
↑(x,τ )ψ̂↑(x,τ ) − ψ̂

†
↓(x,τ )ψ̂↓(x,τ ),

where ψ̂σ (x,τ ) are the fermionic field operators in the Heisen-
berg representation. By employing standard methods of the
many-body theory [74], one can express the function χ (x,τ )
in terms of the normal and anomalous Green’s functions for
the fermions, which we define as follows:

G↑(x,τ ; x ′,τ ′) = −〈T̂τ {ψ̂↑(x,τ )ψ̂†
↑(x ′,τ ′)}〉,

(B2)
G↓(x,τ ; x ′,τ ′) = −〈T̂τ {ψ̂↓(x,τ )ψ̂†

↓(x ′,τ ′)}〉,
F↑↓(x,τ ; x ′,τ ′) = 〈T̂τ {ψ̂↑(x,τ )ψ̂↓(x ′,τ ′)}〉,

(B3)
F†

↓↑(x,τ ; x ′τ ′) = 〈T̂τ {ψ̂†
↓(x,τ )ψ̂†

↑(x ′,τ ′)}〉.
Using Wick’s theorem [74] and going into the Matsubara
frequency representation, we find that the spin-spin correlation
function (B1) can be written as a sum of two terms

χ (x1,x2; i�n) = χ (↑)(x1,x2; i�n) + χ (↓)(x1,x2; i�n) (B4)

corresponding to the majority and minority fermions. The
functions χ (↑,↓)(x1,x2; i�n) in Eq. (B4) are given by

χ (↑)(x1,x2; i�n) = T
∑
i�

[G↑(x1,x2; i� + i�n)G↑(x2,x1; i� )

+F†
↓↑(x1,x2; i� + i�n)F↑↓(x2,x1; i� )],

χ (↓)(x1,x2; i�n) = T
∑
i�

[G↓(x1,x2; i� + i�n)G↓(x2,x1; i� )

+F†
↑↓(x1,x2; i� + i�n)F↓↑(x2,x1; i� )],

(B5)
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where the sums are taken over the fermionic Matsubara
frequency � . To evaluate the Matsubara sums, it is convenient
to express Green’s functions in terms of the Bogoliubov
amplitudes given by Eqs. (13). After some algebra, we obtain
the following expressions for the normal Green’s functions:

G↑(x1,x2; i� )

=
∑
μ,α,b

(
U (b)

μα (x1)U
(b)
μα(x2)

i� − Eμ + h
+ V

(b)
μα(x1)V (b)

μα (x2)

i� + Eμ + h

)
,

G↓(x1,x2; i� )
(B6)

=
∑
μ,α,b

(
U (b)

μα (x1)U
(b)
μα(x2)

i� − Eμ − h
+ V

(b)
μα(x1)V (b)

μα (x2)

i� + Eμ − h

)
.

Here the summation is performed over all eigenenergies Eμ,
the energy branch label b, and the right and left Fermi points
label α. Similarly, for the anomalous Green’s functions, we
obtain

F↑↓(x1,x2; i� )

=
∑
μ,α,b

(
U (b)

μα (x1)V
(b)
μα(x2)

i� − Eμ + h
− V

(b)
μα(x1)U (b)

μα (x2)

i� + Eμ + h

)
,

F↓↑(x1,x2; i� )

=
∑
μ,α,b

(
U (b)

μα (x1)V
(b)
μα(x2)

i� − Eμ − h
− V

(b)
μα(x1)U (b)

μα (x2)

i� + Eμ − h

)
,

F†
↑↓(x1,x2; i� )

=
∑
μ,α,b

(
V (b)

μα (x1)U
(b)
μα(x2)

i� − Eμ − h
− U

(b)
μα(x1)V (b)

μα (x2)

i� + Eμ − h

)
,

F†
↓↑(x1,x2; i� )

=
∑
μ,α,b

(
V (b)

μα (x1)U
(b)
μα(x2)

i� − Eμ + h
− U

(b)
μα(x1)V (b)

μα (x2)

i� + Eμ + h

)
. (B7)

In contrast to the conventional BCS theory, the anomalous
Green’s functions F↑↓(x1,x2; i� ) and F↓↑(x1,x2; i� ) are not
equal and can be related by replacing h → −h. Substituting
Eq. (B7) into Eq. (8), we recover the self-consistency condition
Eq. (26)

�(x) = −gT
∑
i�

F†
↓↑(x,x; i� )ei�0+

= −2g
∑

λ

vλ(x) uλ(x)[nF (Eλ + h) − nF (h − Eλ)].

(B8)

We could have employed the particle-hole symmetry relations
(16) and reduced the sums to the positive eigenenergies only.
However, since the correlation functions (B6) and (B7) acquire
the extra prefactor of 2 under the transformation (16), we will
do it at the end of the calculation.

We now proceed with the calculation of the correlation
function χ (↑)(x1,x2; i�n). Substituting Eqs. (B6) and (B7) into
Eq. (B5) and using the Poisson summation formula

T

∞∑
n=−∞

1

[iπT (2n + 1) − a][iπT (2n + 1) − b]

= nF (a) − nF (b)

a − b
, (B9)

where nF (a) is the Fermi distribution function, we obtain the
following expression for χ (↑)(x1,x2; i�n):

χ (↑)(x1,x2; i�n) =
∑

μλ;bb′;αα′
U

(b)
μα(x2)U (b′)

να′ (x2)
[
U (b)

μα (x1)U
(b′)
να′ (x1) + V (b)

μα (x1)V
(b′)
να′ (x1)

] nF (Eμ − h) − nF (Eν − h)

−i�n + Eμ − Eν

+
∑

μλ;bb′;αα′
V (b)

μα (x2)V
(b′)
να′ (x2)

[
V

(b)
μα(x1)V (b′)

να′ (x1) + U
(b)
μα(x1)U (b′)

να′ (x1)
] nF (−Eμ − h) − nF (−Eν − h)

−i�n − Eμ + Eν

+
∑

μλ;bb′;αα′
U

(b)
μα(x2)V

(b′)
να′ (x2)

[
U (b)

μα (x1)V (b′)
να′ (x1) − V (b)

μα (x1)U (b′)
να′ (x1)

] nF (Eμ − h) − nF (−Eν − h)

−i�n + Eμ + Eν

+
∑

μλ;bb′;αα′
V (b)

μα (x2)U (b′)
να′ (x2)

[
V

(b)
μα(x1)U

(b′)
να′ (x1) − U

(b)
μα(x1)V

(b′)
να′ (x1)

] nF (−Eμ − h) − nF (Eν − h)

−i�n − Eμ − Eν

(B10)

The correlation function χ (↓)(x1,x2; i�n) can be obtained
by replacing h → −h. To simplify the presentation, it is
convenient to introduce the following notation for the matrix
elements:

P
(b,b′)
μα;να′ (x) = U (b)

μ,α(x)U
(b′)
ν,α′(x) + V (b)

μ,α(x)V
(b′)
ν,α′(x), (B11)

T
(b,b′)
μα;να′ (x) = V (b)

μ,α(x)U (b′)
ν,α′(x) − U (b)

μ,α(x)V (b′)
ν,α′ (x). (B12)

Under the particle-hole symmetry (Eμ,Eν) → (−Eμ, − Eν),

one can show that P
(b,b′)
μα;να′ (x) → P

(b,b′)
μα;να′ (x) and T

(b,b′)
μα;να′ (x) →

T
(b,b′)
μα;να′ (x). Also, for (Eμ,Eν) → (−Eμ,Eν) and (Eμ,Eν) →

(Eμ, − Eν), the matrix elements transform as P
(b,b′)
μα;να′ (x) →

−T
(b,b′)
μα;να′ (x) and P

(b,b′)
μα;να′ (x) → T

(b,b′)
μα;να′ (x), respectively.

Using the symmetry properties of the matrix elements,
we can simplify the expressions for the correlation function.
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Exchanging the indices {μ,α,b} ↔ {ν,α′,b′} in the expression
for χ (↓)(x1,x2; i�n) and adding it to χ (↑)(x1,x2; i�n), we find

χ (x1,x2; i�n) = 4
∑

μλ;bb′;αα′
P

(b,b′)
μα;να′ (x1)P

(b,b′)
μα;να′

× (x2)
nF (Eμ − h) − nF (Eν − h)

−i�n + Eμ − Eν

.

(B13)

Here the factor of 4 comes from combining the terms related
by the particle-hole symmetry. Also, note that the sums in
Eq. (B13) are taken over both positive and negative energies
Eλ. Performing the analytical continuation i�n → � + iδ and
taking the imaginary part of the spin-spin susceptibility as in
Eq. (73), we obtain the spin structure factor in the real space

S(x1,x2,�) = 4
∑

μλ;bb′;αα′
P

(b,b′)
μα;να′ (x1)P

(b,b′)
μα;να′ (x2)

× [nF (Eν − h) − nF (Eμ − h)]

× δ(� − Eμ + Eν). (B14)

In order to understand various processes contributing the spin
structure factor, it is instructive to consider the cases Eμ > 0,

Eν > 0 and Eμ > 0, Eν < 0 separately (the other cases do not
contribute to S(x1,x2,�) for h > 0 and � > 0):

S(I)(x1,x2,�) = 4
∑

μ>0,ν>0;bb′;αα′
P

(b,b′)
μα;να′ (x1)P

(b,b′)
μα;να′ (x2)

× [nF (Eν − h) − nF (Eμ − h)]

× δ(� − Eμ + Eν), (B15)

S(II)(x1,x2,�) = 4
∑

μ>0,ν>0;bb′;αα′
T

(b,b′)
μα;να′ (x1)T

(b,b′)
μα;να′ (x2)

× [1 − nF (Eν + h) − nF (Eμ − h)]

× δ(� − Eμ − Eν). (B16)

Equation (B15) describes the type I process, where a spin-
majority quasiparticle is annihilated in the midgap band with
the energy Eν < h and created in the upper band with the
energy Eμ > h. Equation (B16) describes the type II process,
where two quasiparticles with opposite spins are created.

We now substitute the Fourier expansions (78) into
Eqs. (B15) and (B16) and perform the Fourier transform with
respect to x1 and x2. As discussed in Sec. IV B, the Fourier
momenta q and K correspond to the relative coordinate x1 − x2

and the center-of-mass coordinate (x1 + x2)/2, respectively.
Thus, we obtain the Fourier transforms of the functions L

(I,II)
λμ

appearing in Eqs. (74) and (77):

L
(I)
λμ(q,K) =

∑
α,α′,b,b′,{mj }

K(I)
λμ(α,α′,b,b′,{mj }) δ[K − Q(m1 − m′

1 + m′
2 − m2)]

× δ[pμ,b′ − q − pλ,b − p̃
(α′)
F + p̃

(α)
F − Q(m1 − m′

1 + m2 − m′
2)/2],

L
(II)
μλ (q,K) =

∑
α,α′,b,b′,{mj }

K(II)
λμ (α,α′,b,b′,{mj }) δ[K − Q(m1 + m′

1 − m′
2 − m2)]

× δ[pμ,b′ − q + pλ,b − p̃
(α′)
F − p̃

(α)
F + Q(m1 + m′

1 + m2 + m′
2)/2],

(B17)

where {mj } = {m1,m
′
1; m2,m

′
2} denotes the set of indices for the Fourier components and

K(I)
λμ(α,α′,b,b′,{mj }) = [

ũ
(b)
λα(m1)ũ(b′)

μα′(m′
1) + ṽ

(b)
λα(m1)ṽ(b′)

μα′(m′
1)
][

ũ
(b)
λα(m2)ũ

(b′)
μα′(m′

2) + ṽ
(b)
λα (m2)ṽ

(b′)
μα′(m′

2)
]
, (B18)

K(II)
λμ (α,α′,b,b′,{mj }) = 1

2

[
ũ

(b′)
μα′ (m′

1)ṽ(b)
λα (m1) − ũ

(b)
λα(m1)ṽ(b′)

μα′(m′
1)
][

ũ
(b′)
μα′(m′

2)ṽ
(b)
λα(m2) − ṽ

(b′)
μα′(m′

2)ũ
(b)
λα(m2)

]
. (B19)

Using Eqs. (73), (74), (B18), and (B19), we obtain Eqs. (80)
and (81).

APPENDIX C: TECHNICAL DISCUSSION OF THE
INELASTIC BRAGG SCATTERING

In this appendix, we present a technical discussion of
the elementary processes contributing to the inelastic Bragg
scattering introduced in Sec. IV B.

We begin by discussing the properties of the Fourier
transforms of the Bogoliubov amplitudes ũλ,b(m) and ṽλ,b(m)
defined in Eq. (78). The absolute values of several Fourier
amplitudes ũλ,b(m) and ṽλ,b(m) are plotted in Fig. 12 versus
the energy Eλ for b = +. The particle-hole symmetry relation
|uλ,b(m)| = |vλ,−b(−m)| allows one to eliminate the processes

permitted by conservation laws but forbidden by the particle-
hole symmetry. The plots of |ṽλ,b(m)| versus h/hc for a fixed
value of Eλ = 1.2 E3 are shown in Fig. 13. We observe that
the Fourier components ũλ,b(m) and ṽλ,b(m) are small for
m �= 0, ± 1 for the experimentally relevant values of spin
polarization, which correspond to the parameter k ∼ 1/2.
Therefore, we will discuss only matrix elements involving
the Fourier amplitudes with m = 0, ± 1.

Now we discuss the origin of lines A and B in Fig. 10 for
the spin structure factor S(�,q) calculated in Sec. IV B. First,
it is useful to convert the sums over the eigenstates λ and μ in
Eqs. (80) and (81) into the energy integrations by introducing
the density of states ρ(ε) = ∑

λ δ(ε − Eλ). One of the energy
integrals then can be taken by resolving the δ function repre-
senting the energy conservation constraints Eμ = � ± Eλ in
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FIG. 12. (Color online) Plots of the Fourier components of the
Bogoliubov amplitudes |ũλb(m)| and |ṽλb(m)| from Eq. (78) for
m = 0, ± 1, branch b = +, and the right Fermi point (α = 1).
The amplitudes for the branch b = − can obtained from the ones
shown above using |ũλ,b(m)| = |ṽλ,−b(−m)|. The amplitudes for the
left Fermi point (α = 2) can be obtained using Eqs. (24). Energy
dependence of these functions reflects the subtle structure of the wave
function describing the quasi-1D FFLO state. For the presentation
purposes, we have chosen a large effective magnetic field h = 1.95hc,
along with k � 0.7 and �2 � 1.4�0.

Eqs. (80) and (81). Another energy integral can be taken by
resolving the δ function representing momentum conservation:

SI(�,q) =
∫

dε ρb(ε) ρb′ (� + ε)K(I)(ε)

× δ(pb′ (� + ε) − q − pb(ε) + Q(m′
1 − m1))

=
∑
ε∗

ρb(ε∗) ρb′ (� + ε∗)K(I)(ε∗)∣∣v−1
b′ (� + ε∗) − v−1

b (ε∗)
∣∣ , (C1)

and

SII(�,q) =
∫

dε ρb(ε) ρb′ (� − ε)K(II)(ε)

× δ(pb′ (� − ε) − q + pb(ε) + Q(m′
1 + m1))

=
∑
ε∗

ρb(ε∗) ρb′ (� − ε∗)K(II)(ε∗)

|v−1
b (ε∗) − v−1

b′ (� − ε∗)| , (C2)

where summation over α, b, b′, and {mj } is implied, and
v−1

b (ε) = dpb(ε)/dε is the inverse group velocity of quasi-
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FIG. 13. (Color online) Plots of the absolute values of the Fourier
amplitudes |ṽλ,b(m)| vs. h/hc for Eλ = 1.2 E3. The higher-order
Fourier amplitudes decrease fast with the increase of the effective
magnetic field h.

particles, which is related to the density of states ρb(ε) =
|v−1

b (ε)|/2π . The sums in Eqs. (C1) and (C2) are taken over the
roots ε∗ of the equations representing momentum conservation
for the type I and II processes, respectively:

pb′ (� + ε∗) = q + pb(ε∗) − Q(m′
1 − m1), (C3)

pb′ (� − ε∗) = q − pb(ε∗) − Q(m′
1 + m1). (C4)

The roots ε∗ exist only for the values of (q,�) located above
or at the threshold lines A and B in Fig. 10.

The denominators in Eqs. (C1) and (C2) may vanish for
certain combinations of the signs of b and b′ when the
two branches have equal group velocities v−1

b = v−1
b′ at the

intersection point. This condition is equivalent to the condition
discussed in Sec. IV B whereby one energy branch touches
another one when displaced by q and �. Vanishing of the
denominators in Eqs. (C1) or (C2) results in divergence of
S(�,q) at the corresponding values of (q,�), which constitute
lines A and B in Fig. 10. The singularity is smoothed out by a
small but finite value of δ in Eq. (73).

We now discuss the contributions of different processes in
more detail. First, we consider the type I processes described
by Eqs. (C1) and (C3), where a quasiparticle with the energy
ε < E2 is transferred from the occupied midgap band to the un-
occupied upper band with the energy ε + � > E3. Assuming
that m1 = m′

1 = 0 and taking into account the energy spectrum
shown in Fig. 6, we observe that the denominator in Eq. (C1)
can vanish for transitions between the midgap branch with
b = − and the upper branch with b′ = +. The two energy
branches touch for the values of (q,�) belonging to line B in
Fig. 10, where Eq. (C1) has singularity and Eq. (C3) has only
one root. The minimal energy-transfer threshold � = E3 − E2

is achieved at q = 0. For the values of (q,�) located above
line B in Fig. 10, Eq. (C3) has two roots and Eq. (C1) gives a
nonsingular contribution to S(�,q).

There are also the type I excitations with b′ = b. As shown
in Fig. 6, such processes require a momentum transfer Q from
the lattice, i.e., m′

1 − m1 = ±1. However, the contribution
from these excitations is much smaller than from b �= b′ for
the following two reasons: (i) The two group velocities have
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opposite signs, so the denominator in Eq. (C1) does not vanish
for b = b′ and (ii) the matrix elements for these transitions
with m′

1 − m1 = ±1 quickly decay as a function of energy ε,
as shown in Fig. 12. Thus, the processes with b = b′ do not
give a significant contribution to S(�,q).

Another contribution to line B in Fig. 10 comes from
the type IIb processes with energies ε < E2 and � − ε >

E3. Given that momentum conservation requires α �= α′ in
Eq. (B19), the matrix elements for such processes involve the
products ũμ,b(m′

1) ũν,b′ (m1) and ṽν,b′ (m′
1) ṽν,b(m1). Similarly

to the type I processes, the dominant contribution to the matrix
elements comes from b �= b′ and m1 = m′

1 = 0. However,
these processes do not give a significant contribution to
S(�,q), because the denominator in Eq. (C2) does not vanish
for b �= b′ and m1 = m′

1 = 0.
There is also a contribution to S(�,q) from the type IIb

processes with b = b′ and m1 − m′
1 = ±1. Indeed, Fig. 12

shows that the matrix elements ũμ+(m′
1 = 1) ũν+(m1 = 0) for

Eμ < E2 and Eλ > E3 are nonzero and strongly peaked at Eμ

close to E2. These type IIb processes with b = b′ and � =
E3 + E2 strongly enhance S(�,q), because the denominator in
Eq. (C2) vanishes. Geometrically, it is a consequence of the
peculiar nesting between the midgap and upper branches at
q = Q and � = E3 + E2 in Fig. 6. The strong enhancement of
S(E3 + E2,Q) is indicated by the bright colors in Fig. 10.

We next discuss the type IIa processes, where two quasipar-
ticles are created in the upper band with the energies ε > E3

and � − ε > E3. These processes are possible at or above line
A in Fig. 10. The dominant contribution comes from b′ = b,
because the denominator in Eq. (C2) can vanish in this case.
The energy-transfer threshold is � = 2E3, as shown by the
horizontal dashed lines in Fig. 10. The momentum-transfer
threshold can be determined from Eq. (C4): 2pb(E3) = q −
Q(m1 + m′

1), where we used � = 2E3 and ε = E3. Taking into
account that |pb(E3)| = Q/2 and assuming that m1 = m′

1 = 0,
we find the momentum threshold at q = Q, as shown by the
vertical dashed lines in Fig. 10.

From momentum conservation, one might expect an ex-
citation line starting at q = 0 for the type IIa processes
with b′ = b, m1 = 0, and m′

1 = −1. However, the ma-
trix elements ũμ,b(m′

1) ũν,b′ (m1) and ṽν,b′ (m′
1) ṽν,b(m1) such

processes vanish. Figure 12 shows that the diagonal pro-
cesses with b = b′ are allowed only for m1 = m′

1 = 0,
whereas the matrix elements for m1 = 0 and m′

1 = −1 are
zero.

Finally, we consider the type IIa processes with b �= b′.
Given that p+(E3) = −p−(E3) at the threshold energy, the
momentum conservation law reads q = Q(m1 + m′

1). Accord-
ing to Fig. 12, the matrix elements vanish for m1 = m′

1 = 0,
but are nonzero for m1 + m′

1 = 1. Thus, the momentum
threshold is q = Q for b �= b′ as well. However, the pro-
cesses with b �= b′ give a smaller contribution to S(�,q),
because the denominator in Eq. (C2) does not vanish in this
case.
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