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Spectroscopy of dipolar fermions in layered two-dimensional and three-dimensional lattices
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Motivated by ongoing measurements at JILA, we calculate the recoil-free spectra of dipolar interacting
fermions, for example ultracold heteronuclear molecules, in a one-dimensional lattice of two-dimensional
layers or “pancakes,” spectroscopically probing transitions between different internal (e.g., rotational) states.
We additionally incorporate p-wave interactions and losses, which are important for reactive molecules such
as KRb. Moreover, we consider other sources of spectral broadening: interaction-induced quasiparticle lifetimes
and the different polarizabilities of the rotational states used for the spectroscopy. Although our main focus is
molecules, some of the calculations are also useful for optical lattice atomic clocks. For example, understanding
the p-wave shifts between identical fermions and small dipolar interactions coming from the excited clock state
is necessary to reach future precision goals. Finally, we consider the spectra in a deep three-dimensional lattice
and show how they give a great deal of information about static correlation functions, including all the moments
of the density correlations between nearby sites. The range of correlations measurable depends on spectroscopic

resolution and the dipole moment.
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I. INTRODUCTION

Recoil-free spectroscopy is a powerful, pervasive probe
of ultracold atomic systems that includes radiofrequency
and microwave spectroscopy, as well as Doppler-free optical
or Raman spectroscopy. Interatomic interaction effects on
the spectra give information about the phase diagram and
behavior of many-body systems. For example, these effects
on recoil-free spectra were used to first detect Bose-Einstein
condensation (BEC) in dilute spin-polarized atomic hydrogen
[1], locate and probe the Mott insulator/superfluid quantum
phase transition of bosons in optical lattices [2—6], and study
Cooper pair binding [7,8], polaron quasiparticle residue [9],
and pseudogap behavior of ultracold fermions across the
BEC/BCS crossover [10-12]. In precision measurements, e.g.,
atomic clocks, understanding the effects of interactions is
crucial because they can limit [ 13] or enhance [14] the achieved
accuracy.

Here we calculate the recoil-free spectra of dipolar
molecules in a one-dimensional lattice of two-dimensional
layers or “pancakes” and in a three-dimensional lattice.
Such systems have been realized at JILA [15-19]. As we
demonstrate, recoil-free spectroscopy gives information com-
plementary to density profile or time-of-flight measurements.
Additional probes are especially important for molecules,
where direct imaging is extremely difficult due to the absence
of cycling transitions [20]. To be concrete, we consider
driving the transition between two rotational states of the
molecule, but the same calculations apply to transitions
between vibrational, hyperfine, and electronic states when the
transitions are measured with techniques imparting negligible
recoil momentum.

There is great excitement about ultracold molecules:
they offer additional internal degrees of freedom (rota-
tional, vibrational) compared to atoms, and the long-range
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character of their interactions can lead to interesting many-
body physics [21-24]. Examples are quantum liquid crystals
[25-27], Wigner crystals [28,29], exotic superfluids [30-32],
supersolids [33], topological phases [34-37], and the physics
resulting from quantum phase transitions among this plethora
of phases [38,39]. We expect recoil-free spectroscopy to play
a major role in observing and characterizing these systems.

The outline of our paper is as follows. Section II introduces
these systems and derives the Hamiltonian describing them.
Section III A gives general expressions, valid even for strongly
correlated systems, relating the average spectral shifts to sim-
ple static correlation functions. Section III B evaluates these
expressions explicitly for weakly interacting homogeneous
systems. Section III C applies these expressions to obtain the
trapped system’s spectra, while Sec. III D presents examples
of results. These calculations are directly relevant for the
ongoing experiments at JILA [15-19] and should be useful in a
number of related ongoing efforts to make ultracold molecules,
e.g., [40].

We quantitatively calculate the spectral shifts and, in
Sec. IV B, line shapes due to the dipolar interactions, p-wave
interactions—including p-wave losses that are important for
reactive molecules such as KRb—and the differing polariz-
abilities of the different molecular rotational states that may
be used in the spectroscopy. We also qualitatively consider and
bound other effects, such as higher lattice band occupation and
the validity of treating the atoms in the cold collision regime,
i.e., treating interactions via a pseudopotential.

To briefly motivate the utility of these spectra, we point
out that measuring them in the dilute thermal gas allows one
to ensure that these various nontrivial contributions—many of
which are just beginning to be explored in the context of cold
atoms—behave as expected. Furthermore, deviations from the
simple dilute thermal gas values allow one to diagnose more
interesting behavior as the temperature is lowered, the simplest
example probably being the degree of quantum degeneracy of
the gas. The onset of strongly correlated quantum phases will
also have signatures.
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As another application of recoil-free spectra to dipolar
interacting systems, Sec. V considers a deep three-dimensional
(3D) lattice. We show that one can measure the joint probability
distribution P(1,nq,n,,...) of a particle occupying a site
while having n; molecules in the nearest-neighbor sites, n,
in the next-nearest-neighbor sites, and so on. This includes
all moments (ny'n3”---) for arbitrary ;. The spatial range
of correlations that can be measured is set by the spectral
resolution and interaction strength, and is typically a few
sites for the molecules presently considered. This provides
a powerful way to characterize the system, measuring a much
more complete set of correlations and with greater spatial range
than other techniques, such as modulation spectroscopy [41].

While our quantitative estimates of parameters are for
dipolar molecules, many of the calculations are also relevant
for Rydberg atoms and alkaline-earth-metal atomic clock
experiments. As one example, Rydberg atoms have long-range
dipolar interactions. As another, p-wave interactions can be
important in optical atomic clocks, as recently revealed by
Ramsey spectroscopy of Yb lattice clocks with the atoms
trapped in 1D arrays of 2D pancakes or 2D arrays of 1D
tubes [42]. Moreover, as experiments in these clocks expand
their capabilities to approach expected 10~'% accuracy and
mHz frequency resolution, small dipolar interactions between
the atoms become relevant. We expect that our calculations
may provide insight into these experiments. However, we
mention that while our theory assumes that few atoms are
transferred to the excited state (i.e., linear response), many
clock interrogation techniques transfer a substantial fraction
of the atoms [43,44].

II. THEORETICAL AND EXPERIMENTAL BACKGROUND

We are interested in heteronuclear molecules in a one-
dimensional optical lattice of two-dimensional pancakes in the
presence of an electric field. We assume that the energy scale
set by this field is large compared to the hyperfine splitting;
we explain this in more detail below. Figure 1 illustrates
this system and defines notation. Section V considers the
effects of adding a lattice to the transverse directions. This
system displays a hierarchy of energy scales, which dictates
the physical behavior. We begin by describing this hierarchy.

FIG. 1. (Color online) Schematic of the experimental geometry
considered. Heteronuclear dipolar molecules are trapped in a one-
dimensional lattice of two-dimensional pancakes, with the lattice
periodic in the z direction. The angle 6 is the angle between the
intermolecule separation r — r’ and the molecular dipole (applied
electric field axis), here taken to be along the z axis.
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FIG. 2. (Color online) Lowest rotational energy levels of a single
molecule in an electric field. These are described by the rigid
rotor Hamiltonian in an electric field H = BN? — dyE, with N the
angular momentum operator, B the rotational constant, and dy the
dipole moment along z. The label |M,m,) indicates the state that is
adiabatically connected to the £ = 0 state with angular momentum
M and angular momentum z-component projection m,. However, the
E field mixes states with the same m_ but with different M, so M is
not a good quantum number. The energy splitting v increases with
increasing electric field and is a large energy scale even for small E:
interactions, the trapping potential, and the kinetic energy cannot mix
in states that are off-resonant bythis energy scale.

Figure 2 shows the lowest energy rotational levels of a
molecule in a dc electric field. This structure is well-described
by the rigid rotor Hamiltonian in an electric field, H =
BN? —d - E, with N the angular momentum operator, B the
rotational constant, and d the dipole moment operator. This
single-molecule physics sets the largest energy scales in the
problem. In the absence of an electric field, there is the usual
rotational level structure: a ground state, a threefold degenerate
spin-1 first excited state manifold, a fivefold degenerate spin-2
second excited state manifold, etc. These are labeled by their
total angular momentum M and z-axis projection m,. In
the presence of an electric field E, the rotational symmetry
is broken. Here we take E to be along the z direction,
perpendicular to the pancakes, as is used in the ongoing KRb
experiments to suppress the reactive losses [15]. The electric
field mixes states with different M but the same m,.

Figure 2 shows the resulting level structure for a nonzero
value of E, where we label by |M,m.) the state that is
adiabatically connected to the E =0 state with angular
momentum M and z projection m. An electric field induces
a level splitting v in the previously degenerate excited state
manifold, and this energy scale is large compared to the other
energy scales that will be of interest. As a consequence, when
we treat the interactions, lattice, and trap, it is quantitatively
accurate to restrict oneself to processes occurring in the
resonant subspace where we neglect transitions that require
energy changes on the order of v.

We now present the Hamiltonian describing the period
lattice, the harmonic confining potential, and intermolecular
interactions for molecules in an electric field. We consider
two molecular states, choosing |0,0) and |1,0) to be concrete,
but the vast majority of our calculation is general and
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straightforwardly extended to arbitrary internal states. We will
denote these states as |«) with ¢ = 1,2 henceforth. Only the
quantitative numbers presented depend on the choice of these
states.

The hyperfine coupling is the next largest energy scale after
the rotational and electric field, and can couple the @ = 1,2
and other rotational states, shown in Fig. 2. However, even a
small electric field—one that generates dipole moments more
than an order of magnitude smaller than the permanent dipole
moment—suffices to generate level splittings ~v that are larger
than the hyperfine coupling. Thus for even such small electric
fields, if the initial populations are confined to these two
rotational states, we can neglect the other states, which are
then far off-resonant compared to the hyperfine energy.

The lattice energy scale is the largest after the rotational,
electric field, and hyperfine structure of the molecules, all set
by single-molecule physics. The lattice separates the energy
levels into bands, and because the other energy scales—trap,
interactions, and temperature—are small relative to the band
splitting for the deep lattices of present interest, we can thus
project the Hamiltonian to the lowest lattice band for states
a = 1,2. We neglect terms that are exponentially small in the
lattice depth (e.g., tunneling terms). The molecular system is
described by the Hamiltonian

H = Hy+ Hyy + Hdipule + pr + Htrap (1)

with the noninteracting part
VZ
Hy = Z / dp v}(i,p) (—% - u) V@0, ()

where ¥, (i,p) and 1//2(1', p) are fermionic annihilation and
creation operators acting on atoms in rotational state o at
site i in the lowest band at the transverse two-dimensional
position p. They satisfy the anticommutation relationships
{wa(i,p),w;(j,,o’)} = 8;j84p8(p — p’). Here m is the molec-
ular mass and u is the chemical potential.

The projected s-wave interaction Hamiltonian is

Hyy =Y %"" / dp Wi oW E.PW PG p)  (3)
i,a,B

with ges = (mags/m) [dz lwe(2)*lwe(@)|*> (we set hi =
kg = 1 throughout), where a,g is the s-wave scattering length
for scattering between molecules in states « and 8, and w,(z)
is the lowest band Wannier function for particles in state «.
This depends on « because the lattice depths felt by each
species need not be equal since the molecular polarizabilities
differ. The interaction g;; is undefined for identical fermions,
which do not scatter in the s-wave channel, and so we can set
it to zero, but gj, is nonzero. When the Wannier functions
for the two states are not identical, the three-dimensional
p-wave interaction projected onto the lowest band gives a
renormalization of the two-dimensional 1-2 s-wave interaction
(not included above) in addition to the contribution coming
from the three-dimensional s-wave scattering, because the
particles effectively become distinguishable. However, the
s-wave interaction will turn out to be irrelevant for the recoil-
free spectra in the linear-response regime with all molecules
initially in the ground internal state, as a consequence of the
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Pauli exclusion principle. Hence we can ignore the s-wave
contact interaction.
The dipolar interaction Hamiltonian in 3D is [45,46]

1—3cos*6
VDE;D) = / drdr' ———
dreglr — /)3

x [dudﬂwi(r)wi(r’)wl(r’wz(r) +He.

+ Z dmm dm’m’w;rn (r)(ﬂlt.'(r/)¢mr(rl)¢m(r):| ) (4)

mm’

where 6 is the angle between the dipole orientation di-
rection and r—r', d,, = (m|d®|n), where d© is the
m, = 0 spherical component of the dipole operator in the
basis aligned with the electric field, and ¢,(r) and (pg (r)
are fermionic annihilation and creation operators satisfying
the anticommutation relations {(pa(r),gog(r’)} = 8up8(r —1').
The reason why only the m = 0 spherical component of the
dipole operator is retained is that we are considering the
transition between m, = 0 levels and even a small electric field
drives the m = %1 levels off-resonance, as shown in Fig. 2. For
other transitions, the coefficients would be more complicated
[46]. To be sufficiently off-resonant compared to the other
energy scales—interactions, lattice, and hyperfine coupling (to
allow one to neglect the nuclear degrees of freedom)—requires
only a small field, where the induced dipole moment is still an
order of magnitude or more smaller than the permanent dipole
moment. The same reason justifies why only the shown matrix
elements of the dipole interaction are kept—the other matrix
elements leave the resonant subspace. Note that the permanent
dipole moments of these levels are nonvanishing, in contrast
to the zero-field rotational levels, because the electric field
induces a dipole moment in the eigenstates.
The projected dipolar interaction Hamiltonian is

1 . . /
Hiipole = B Z /dp dp/vaﬁ(l —Jsp—=p)

ij,op
< YW WGP Wi (i)

1 ’ . .
+§Z:/Wwpﬁm—1m—p5
ij

[V G )W G oW, oW Gp) + Held  (5)
with

dyodss(l —3cos?0)
Vgl — jop— p) = [ dzdZ aa“pp
N L ey e

x lwa(z — z0)*lwp(z — z)1 (©6)

and

Vi@ — j.p = p)
/ , d12d21(1 — 30082 9)
= [ dzdz
dreol(p — p')* + (z — 2P
X wi(z — z)w,(z — z)w3 (@ — zj)w, (@ —z;).  (7)
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‘We refer to the former term as the “direct” term and the second
as the “spin-flip” term. We approximate V,g(j,0) by

Vap(J.p) X Yapld(j.p) ®)

and Vi by

Vse(J,0) = nU(j,p), 9
with

(d))?
1 - 3( Zi(jd,ﬂ)
(0% + (jd)*)¥?’

where Yap = daadpg /(4T €), n=
| [dz wi(z)wa(2)|*d},/(47e€p), and d; is the lattice spacing,
where A ~ ¢3, with £ the width of the Wannier functions,
governs the short-range physics. More details on this
approximation follow shortly. In principle, we should let A
be different for the Vir and V4 terms, but we will argue that
we can set A = 0 and maintain quantitative accuracy in the
calculated spectra.

We also note that the factor of F = |fdz wik(z)wz(z)|2
appearing in 1 is almost always nearly unity in a deep
lattice. We denote the polarizability of state 2 by (1 + &)
times the polarizability of state 1. In a deep lattice, wy(2)
can be approximated by a Gaussian. Then one finds F =
BV ﬁzé (1 4+&)"74. For a £ = 0.4 polarization difference, one
finds F = 0.99.

At long distances, these approximate interaction potentials
are exact for dipoles aligned by a (perhaps very small) electric
field, projecting the dipolar interaction into the lowest band,
but at short distances they are just a convenient approximation.
The form is chosen so that at short distances the potential
goes to a constant, as does the true projected potential, and
approximately interpolates between the exact long-distance
and zero-distance forms. In fact, we will set A = 0. Although
for some calculations this can lead to divergent results,
everything in this paper remains finite in the A — 0 limit, and
comparing the A — 0 limit with alternative calculations using
finite realistic values of A (not presented) shows excellent
agreement. The fundamental reason for this is that at low
temperature and for a dilute gas, the physics is fairly insensitive
to the short-range physics governed by A.

The p-wave interaction Hamiltonian is (the multi-internal
state generalization of [47], as given in Ref. [48])

. 1
U(J,,O)=50jp3T+(l 8o7) (10)

A

Hpy = H\) + H\D + HYY (11

pw o

where

HyD = uagWap ) / dpl[V, vl (i.p1 ). p)

— YLV YN X ATV W) i)
— UiV Vel p)]) (12)

with u,s = 670203, /m, Was = [dz |wa(2)I*|lwp(2)|%, and
by is the p-wave scattering length between states o and
B. In asymptotically deep lattices, the Wannier functions
are approximately Gaussian, and W,g simplifies to Wyg =

f(\/ L 4V I) 172 with V, the lattice depth in recoil
units for state ‘o. If the lattice potentials for o« and S are
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the same, then W, = (1/d)/7/2V/4. Alternatively, the
p-wave interaction could be written by adding a term to
the intermolecular potential V,g in Eq. (5) of the form

@by /mIV ,8(0) 5 0>V, [dz |wa(2)Plwp(2)I? [47], where
an arrow to the left (right) indicates that the gradient operates
to functions on the left (right).

There is also a confining potential

Hup =Y / dp Vol pYUL G p)Walip).  (13)

which we neglect in our first computation of the average
spectral shifts for the homogeneous system in Secs. IIT A
and IIIB. Its effects will be included with a local density
approximation in Sec. IIIC.

One measures the recoil-free spectrum by applying a probe
pulse for a short time, where the probe pulse is described by
the Hamiltonian

=) f dp e Yi(j.p)W}(j.p) + He.  (14)
J

in the rotating-wave approximation, with w the probe fre-
quency and €2 proportional to the amplitude of the probe
field. The spectrum is given by counting the number of atoms
transferred to state 2 as a function of w for a fixed probe time.

As an aside, we note that in atomic clock experiments,
the small variations of Q with the trap quantum number
give rise to a shift even for s-wave interacting—initially
identical—fermions [43,44]. This effect is quite tiny, coming
from the differences in Rabi frequencies associated with each
trap mode: they only manifest in clocks because of the clock
experiments’ extraordinary frequency resolution (~1 Hz). The
effect is even smaller for current experiments: the variation of
this Rabi frequency for radiofrequency or microwave pulses
is orders of magnitude smaller, and so the resulting shift will
be much smaller than a Hertz. This is completely negligible in
the current experiments.

Finally, we comment that we calculate all frequency shifts
relative to the level splitting of the internal states (e.g.,
rotational levels) 1 and 2 of a single molecule, §,. The
experimentally measured spectra will then all be shifted by
this value.

III. SPECTRAL SHIFT: SUM RULES

A. General expressions for the homogeneous gas

The spectral weight for the recoil-free spectrum is the
number of particles transferred from the initial internal state
in a time 7, as defined above. Fermi’s golden rule gives

—Zpl

where the sum over i and f runs over all possible energy
eigenstates of H, p; is the initial probability of being in state
i,and E; is the energy of state j for the Hamiltonian H.

The average spectral frequency

[dw oZ(w)
JdoI(w)

I(w) = FIH|i)*8(w — Ef + E)), (15)

(w) = (16)
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is [49,50]
(@) = —<[H’2£3Hp)’ (17)

P
where the expectation includes both the thermal and quantum
averages. This is an exact result (within linear response)
relating (w) to the expectation value of an operator that can
simply be evaluated from the definitions of H, and H, for any
Hamiltonian, and holds even for strongly correlated systems.

We evaluate the commutators in Eq. (17) for each inter-
action term in H in turn. The spectral shift from s-wave
interactions vanishes.

The spectral shift from the direct and spin-flip terms of the
dipolar potential is

(wa) =n Z/ dplVia(j,0) = Vu(j,p) + Vst(j. p)1g2(j, 0),

(18)
with
n = (¥](0,0)%,(0,0)) (19)

the two-dimensional density and

1 .
&20i,p) = ;(Ilff(i,p)wf((),ﬂ)wl(0,0)1/f1(i,p))- (20)

This holds for any two-body potential, and one sees that
it vanishes for an s-wave contact interaction because <
¥ 10)y T (0)¥(0)y(0)) = 0. The key qualitative features of this
result are understood by mean-field theory: the expression, up
to constant factors in each term, is the mean-field interaction
energy of the state with one molecular state changed (a
superposition of states with a single molecular state changed at
position p, summed over p, giving V}, and Vi terms) minus the
state with all the molecules in the same initial state (V;; term).
The spectral shift for the p-wave potential is

Bua Wiz — uy Wip)

(wpw> = »
X (VY (0,0)1n1(0.0) - [VY1(0,0)])  (21)
with n;(j,p) = 1//1T(j,,0)1ﬁ1(j,,0). The total average spectral

shift is (@) = (wa) + (Wpw)-

B. Weakly interacting homogeneous gas

Equations (18) and (21) give exact, general relations for
the spectral shift, valid in any system. Here we simplify
these for weakly interacting systems. In the limit in which
the interactions induce negligible correlations, the system’s
correlations are that of a free Fermi gas. In other words, since
we want to know the shifts to lowest order in the interactions,
and the interaction already appears multiplying the operator
expectation values, we may evaluate these expectation values
to zeroth order in the interaction. Consequently, Wick’s
theorem determines the expectation values.

The spectral width of a homogeneous gas narrows as
the interactions decrease, as we show in Sec. IV B. For
experiments considered in the present paper, the spectral width
is very small and the spectrum is nearly a perfect § function.
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In this case, the sum rule gives the exact location of the
well-defined spectral peak.

1. Expressions at general temperature

For the dipolar interaction, we first compute g,. Wick’s
theorem gives

. 2
G(l,p)) ’ 22)
n

&li.p)=1- <

where G(i,p) = (wf(i,p)wl (0,0)). Because there is no tunnel-
ing, the Green’s function has the form

G(i,p) = 8;0G(p) (23)
with

G(p) =

P / dk e (i), (24)

where the integral runs over all the transverse momentum states
of the system (which, recall, is assumed in this section to be

homogeneous).
The expectation values are, from Eq. (19),
1 1
=5 _— = B
n= o [kdk 1= ﬂln(l +eft)  (25)

and, from Eq. (24),

1 k

L eak — Jo(kp)

27 PR/ @m—ul + |
with Jy the zeroth-order Bessel function of the first kind.

Equations (18), (22), and (26) give the dipolar shift.
For the p-wave interaction, Wick’s theorem gives

G(p) = (26)

8
(wpw) = ;(M12W12 —un Wi

X ([VY(0.0)] - [V1,(0.p)1)(n(0.))

8
(2 ) (wi2Wia —uiiWip)
0 k3
% /(; dkeﬁ[kz/ﬂm)—/t] +1
8m?T?

= (1 Wia — uyy Wip) Lip(—e™), (27)
where Li, is the polylog function.

2. Thermal (Boltzmann) and degenerate gas limits

In this section, we evaluate the shifts, given above for
a weakly interacting system at arbitrary temperature, in the
thermal/Boltzmann (7 > p) and degenerate (T < ) limits.

In the thermal limit 7 >> u, the dipolar shift, given by
Egs. (18), (22), and (26), taking A = 0, is

1 — e—mP*/B
(wq) =n(yi2 —yn +77)[/de

+22/

= 2n3/2\/%n (12 —yu1 +n) (thermal), (28)

jdp)*
— 3 (7t }
[p? + (jd)?1¥?
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where n = [m/(2nB)]eP*. Note that the integrals in the sum
over j vanish. The physical reason for this is that these integrate
the electric field generated by the zeroth pancake over the plane
of pancake j. Closing this planar surface at infinity, the total
electric flux penetrating the surface must be zero. Since the
dipolar field decays as 1/r3, the contribution from the surface
at infinity is negligible, the electric flux through the plane must
be zero, and hence the integral vanishes.
In the degenerate limit 7 < u, the dipolar shift is

_ 4[-]](ka2)]2
%
(wg) =ni2—yiu+n) /dﬂ %

256
= —nkp (Y12 — Y11 + 1)

45
with kr = +/2mu the Fermi wave vector and n = k% /(4m) in
this limit.

The p-wave shift, Eq. (27), simplifies in the thermal 7' > u
gas to

(degenerate)  (29)

T
n(upWi —upyWip) (thermal) 30)

(a)pw) =

and in the degenerate 7 < u gas to

4
(wpw) = ;F (w12Wi2 —unWi1) (degenerate). (31

C. Spectra in a trap

In this section, we calculate the spectra of systems in a
harmonic trap. We use the local density approximation (LDA):
we approximate the properties at a position (i,p) in the trap
by those of a homogeneous system at an effective chemical
potential fLei(j. p) = po — (me?/2)[(jd))? + p*] with 1o the
global chemical potential of the system and w, the harmonic-
oscillator potential’s trapping frequency, assuming an isotropic
trap. As usual, the LDA is accurate only when the local
chemical potential variation over the correlation lengths is
sufficiently small [51]. This condition is met in the experiments
of present interest. There is an additional requirement for
the accuracy of the LDA, because we are considering a
rather nonlocal quantity, the shifts from the dipolar interaction
energy. For this quantity, the accuracy of the LDA requires
that the spatial variation of the local chemical potential is
sufficiently slow compared to the length over which the dipolar
interaction becomes negligible. Here, the accuracy of local
quantities in a spatially varying system will not be expected to
converge exponentially, but rather the error € scales as a power
law € ~n fLOO(ZJT,o)dp# o n/L in the scale L over which u
varies (L is on the order of the cloud width). Meanwhile, as
seen in Eq. (18), the contributions to the shift scale as n/¢
with ¢ a characteristic microscopic scale (thermal de Broglie
wavelength in the thermal gas or Fermi wavelength in the
degenerate gas). Since (for our trap parameters) L is typically
much larger than tens of micrometers, while ¢ is typically a
tenth of a micrometer, we expect this to be quite accurate.
However, it will lead to quantitative corrections at the <1%
level. Consequently the LDA is a good approximation for these
systems.
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Within the LDA, in the limit that the homogeneous system’s
spectrum is a § function (validated in Sec. IV for current,
weakly interacting systems), the trap summed spectrum is

7@ = 2121 Y, [dpnlucnti o)l ~ 0yl

(32)

We can generally numerically sample the integral, approxi-
mating the § function as a sharply peaked Lorentzian of width
I, 8(x) = 8r(x), with 8p(x) = (1/7)['/(x> 4+ I'?). In some
cases, however, an analytic formula can be derived, as we now
discuss.

The spectral weight in the frequency window (w,w + dw),
given by Z(w)dw, is 2w Q*t times the number of atoms with
spectral shifts in that window:

I(w) = Qu 2 0)An [r(w)Palr(w)]|dr/dw|, (33)

where r(w) is the distance to the trap center of atoms that have
spectral shift equal to w. Within the LDA, (w) as a function
of r is inverted to give r(w) and one similarly can calculate
dw/dr.

In the thermal gas, we obtain analytic formulas. Note
that in this regime, the sole chemical potential dependence
of both the p-wave and dipolar interactions comes from
the density, which multiplies a term independent of the
chemical potential: (w) = Cn for some constant C. More-
over, in this limit, n(r) = [m/QnB)]ef* ). Then r(w) =
(1/w)+/2/(mB)y/Bpo — n27Bw/(Cm)] and  |dr/dw| =
(V2mBww;~/Bio — N[2nBw/(Cm)]}~'. Thus the trap
summed spectrum of the thermal gas is

\/ <2n/3a)>

I(w) x| Buo —In (trap, thermal)  (34)
Cm

for w such that the term under the square root is real and

positive, and zero otherwise.

No simple expression exists for the case of general
temperature, nor does one exist even if the gas is deeply
degenerate, although we mention that such formulas do exist
for the deeply degenerate gas if either the p-wave or dipolar
shift is included alone. For a purely dipolar gas in the deeply
degenerate regime (T = 0), one finds

Ho («/imo

I(w) x »'/?

Wdeg

2/3
(trap, degenerate) (35)
Wdeg

with wgeg = (M [Z2(y12 — yi1 + )PP}

D. Example spectra

Figure 3(a) shows an example spectrum for a thermal gas
calculated by numerically integrating the LDA expression
Eq. (32) with the dipolar shifts Eq. (28), for a finite-size
system of 200 pancakes (although only ~ 30 of these are
significantly occupied) and trapping frequencies and temper-
atures roughly corresponding to ongoing JILA experiments:
w, =21 x 100 Hz and T = 800 nK, with 2200 particles in
the central tube. In fact, the JILA traps are quite anisotropic,
but, since our goal here is not to construct detailed models
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FIG. 3. (Color online) (a) Recoil-free spectrum with a rough
modeling of the JILA experimental parameters (see text). Here
Ny (w)/No(wnax) is the number of excited particles after a probe
pulse of frequency w and duration ¢ rescaled by the peak’s max-

imum value. The overall frequency scale, related to the dipolar
interaction strengths, is ®sae = (Y12 — Y11 + n)\/”ﬂg . The shape
of this spectrum is entirely determined by the density profile. The
infinite system has a logarithmically divergent peak at w = 0, but
this is rounded off by a small spectral broadening I' = 7 x 10™*wyeqc
added to the calculation here and, less so, by the finiteness of the
present system, assumed to be 200 lattice sites wide. (b) Recoil-free
spectrum at T = O (deeply degenerate) with wg., = {mﬁ%(ylz —
yir + )7, where we have chosen wo = 2.6wge; different po’s
just rescale the plot.

of particular experiments, an isotropic trap gives an adequate
caricature. Figure 3(b) shows the spectrum at 7 = 0, showing
how the spectral shape changes when the gas becomes deeply
degenerate. In contrast to the asymmetric thermal cloud with
its small-w logarithmic divergence, a more symmetric, broad
peak forms. At intermediate temperatures, the spectrum looks
roughly like a sum of these two spectra: there is a broad spectral
peak from the degenerate portion of the trap and a small-w
logarithmic divergence. This shows how the spectra may be
used to assess the degeneracy of the gas.

The structure shown in Fig. 3 is quite general. A trapped
system’s spectra generically show two characteristic features:
a logarithmic divergence at low frequency due to thermal
tails and a broad structure when the gas becomes strongly
interacting and/or degenerate [52].

Such a structure has also been seen in other systems, such
as dilute spin-polarized atomic hydrogen [1].

The dipolar energy scale wgcale = wdir + Wsf, With wgir =

(Y12 — Y1),/ ”ﬂ—"f and wgf = 7 /”ﬁ—”f, depends on the rotational

states being used and the external electric field applied. For
concreteness, we estimate the shift in the transition from the
ground rotational state |0,0) to the excited rotational state
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Wgcale (kHZ)

0.0 0.2 0.4 0.6
di/d,

FIG. 4. (Color online) The characteristic frequency of the colli-
sional shifts in the thermal gas, wyc,e, for transitions between KRb’s
two lowest rotational states vs the dipole moment d;; in units of
the permanent dipole moment d,, (roughly 0.5 D for KRb). Middle
curve: total characteristic frequency wscye = wst + wgir. Top curve:
wsf, the contribution from the spin-flip term. Bottom curve: wy;, the
contribution from the direct term.

[1,0). The magnitudes of shifts for other low-lying rotational
transitions are generically the same order of magnitude.
Figure 4 plots the energy scale wgcye versus the dipole moment
in units of the permanent dipole moment. The permanent
dipole moment for KRb is about 0.5 D. We calculate the dipolar
interaction and wgcqe by computing the dipole moments of
these rotational states using a quantum rigid rotor model in an
electric field with parameters given in Ref. [53]. We observe
that this energy scale can be greater than 50 kHz. Then we
see from Fig. 3(a) that even for the low densities of the JILA
experiments, the width of the spectra is as large as about 5 kHz.
Experimentally resolving such scales is standard practice.

The real part of the p-wave interaction is unknown, but it
should be quite small at these low temperatures. On the other
hand, the imaginary part of the p-wave scattering, due to the
reactive loss when molecules collide, can be much faster, and
limits the cloud lifetime for KRb, even when it is suppressed
by using a two-dimensional “pancake” geometry [15]. It gives
an imaginary shift to the average frequency from the sum
rule, and thus a Lorentzian broadening. To determine the
value of this broadening, note that Eq. (30) with b, =0 is
the expectation value of the p-wave interaction energy. The
imaginary part is the particle lifetime, since at the level of
calculation of this equation the imaginary part of this energy is
the quasiparticle lifetime, and the only source of quasiparticle
decay is the p-wave particle loss. Thus the cloud lifetime
is simply this quasiparticle lifetime. Using cloud lifetimes
measured in Ref. [15] that decay is around 4/s, or a little
less than a Hertz. Since the shift is the difference of two
such rates—the 1-2 channel and the 1-1 channel—we expect
it to be at most on this order, and likely considerably less.
Of course, we cannot rule out the possibility that the 1-2
interaction is much larger, but it is highly unlikely to be the
orders of magnitude larger required to contribute substantially
to the spectral broadening, compared to the dipolar shifts. Thus
the p-wave broadening will be negligible under the current
conditions of the JILA experiments.
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IV. SPECTRAL SHAPE: BROADENING

Previously, we considered the mean spectral shifts. Also,
because the p-wave shifts may have an imaginary part due
to the reactive nature of certain molecules, such as KRb,
this gives a broadening. Here we go beyond treating the
spectra as sharp § functions with this simple broadening, and
we consider the spectral line shape for the experimentally
relevant dilute gas. Broadening arises from several sources:
differing trapping potentials felt by the two states due to their
differing polarizabilities (coming from vector and tensor light
shifts), collisional broadening (related to the quasiparticle
lifetime), temperature broadening from going beyond the
pseudopotential approximation, and higher band occupation.
We will see that in this limit, all sources of broadening are
very small, except the differing state polarizabilities. However,
even for current conditions, these broaden the spectra by an
amount that is comparable to the width of the trap-summed
spectra. Consequently, some key features survive, such as the
maximal shift. Moreover, by applying the probe after aligning
the dipoles at the “magic angle” or “magic field strength” [53],
even this broadening can be eliminated.

There is also the natural linewidth of the excited rotational
state, given by [y = (6, /c)3d122/(37160h), where §, is the
transition frequency between the excited state |1,0) and the
ground state |0,0), and d; is the dipole matrix element between
these states. Even for the strongest dipole moments, this is
~10~19 Hz for KRb, calculating d, and 8, in the same manner
we calculated the energy scales above, and thus completely
negligible.

A. Differing polarizabilities

The polarizabilities of rotational states can differ substan-
tially for different states due to vector and tensor light shifts.
For example, the polarizability difference of KRb between the
lowest and first excited rotational states is about 30% for lattice
wavelengths giving a lattice spacing of 545 nm [53]. In systems
using optical potentials to confine the molecules, this leads to
the molecules experiencing different external potentials. In the
presently considered case, this means the trapping frequencies
differ by about 15% and the lattice depths differ by about
30%. Since we are taking the lattice to be sufficiently deep
to suppress tunneling, its only effect on physics along the
lattice direction is to change the Wannier functions for each
state and thus renormalize the interactions. This was accounted
for in our derivation of the lattice Hamiltonian. However, the
differing trapping frequencies in the transverse direction leads
to broadening.

Within the LDA, we note that if the trapping potentials
differ by A(r) at location r, then this shifts the spectral line
of atoms at that position by s(r) = A(r) [this intuitive result
follows formally from calculating the sum-rule commutators
of Eq. (17)]. For harmonic traps, this shift is s(r) = —A, +
A+ Mﬂ, where wq, the harmonic-oscillator trapping
frequency in the transverse direction for state ¢, and A, are
constants. Note that A, are positive since the optical intensity
is maximal at the center of the trap and that there is a frequency
shift there as well. The magnitude of the shift A; — A, depends
on the exact trapping laser used and just gives a constant
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shift to the spectrum. What is more important for our present
concerns is the broadening coming from the second, spatially
dependent term. At finite temperatures, there is (exponentially
small) occupation arbitrarily far from the trap center, and the
shift from the second term increases indefinitely as one moves
outward in the trap. However, because the spectral density for
a given value of this shift is proportional to density, the result
of the polarizability difference is an exponentially decaying
tail, in frequency, in the spectrum. The spectrum for locations
at distance r from the center of the trap has a polarizability
difference shift
2 2
w = Mﬂ, (36)
2

and the spectral weight is proportional to n(r). In the thermal
gas, Eq. (33) with the frequency position relation Eq. (36) thus
gives the spectrum, at least in the tails where the polarizability
difference shiftis the only relevant one and the cloud is thermal.

Thus Z(w) }"z(dr/da))e’‘@”’TU)T’2 yielding

I o Viole "F170((03 ~o})w).  G)

where ® is the Heaviside step function. The spectral density
decays exponentially with frequency, with the characteristic
decay frequency [(@3 — w?)T/w?]. Note that this decreases
with decreasing temperature, by virtue of the cloud shrinking,
so that fewer particles occupy the wings, where the potential
difference is largest. Also in the tail, this is the only source of
shifts since densities are low, so this always gives the complete
spectral shape of the spectral tail.

For an 800 nK gas with polarizabilities of the two states
differing by 30%, this characteristic frequency scale over
which the spectral density decays is about 4.9 kHz, comparable
to the spectral width of the trap-summed spectra obtained
without this source of broadening. However, we emphasize
that these shifts can be eliminated by performing the recoil-free
spectroscopy while aligning the molecules at the magic angle
or at the magic field strength, using states with nearly identical
polarizabilities, or using other techniques to compensate the
polarizability difference. As such, the spectral tails can be a
useful diagnostic of how close the trapping potentials of the
two species are, and can help, for example, to experimentally
pinpoint the magic angle.

Figure 5(a) illustrates the spectral shape due to polariz-
ability difference broadening, with a sufficiently dilute system
such that there is no interaction shift. In this limit, the spectrum
without the polarizability difference broadening would simply
be a § function. For illustration, we assumed that w% < a)f
For w% > w%, the spectrum will be reflected across the y axis.
Figures 5(b) and 5(c) illustrate the effect of this broadening
on the spectrum in the presence of dipolar interaction shifts,
analogous to Fig. 3.

B. Collisional lifetime

Interparticle interactions broaden the spectral line by giving
the quasiparticle excitations associated with the response a
finite lifetime. For weak interactions, the line shape is roughly
Lorentzian. We emphasize that the full line shape is captured
in Eq. (15). Only our subsequent determination of trapped
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FIG. 5. (Color online) Polarizability difference broadening in the
spectra. (a) Polarizability difference broadening when other shifts are
negligible (as applies in a very dilute gas, or in the tails of the cloud).
(b,c) Broadening including interactions and with the polarizability
difference for positive (b) and negative (c) a)% — w%, with magnitude
decreased fivefold from its true value. They compare the thermal
spectra without broadening [blue, dashed, exactly as Fig. 3(a)] with
the spectra with broadening (red, solid) for dipole moments giving
the maximal values of the collisional shifts relevant for the JILA
parameters computed previously.

system spectra by the LDA and treating the homogeneous
systems’ spectra as § functions made an assumption that
the linewidth was narrow. Here we will derive the linewidth
and show that this assumption is justified under current
experimental conditions. Because we have found the effect of
p-wave collisions to be substantially smaller than the dipolar
collisions, we only consider the latter here. Moreover, we will
treat only the direct term dipolar effects in a single pancake and
restrict ourselves to the thermal gas. Including interpancake
interactions and spin-flip terms is more tedious, and we will
see that the direct, on-site contribution to the broadening—
even at its largest experimentally relevant values—is fairly
small. Thus, we may expect the other effects—interpancake
interactions and spin-flip terms—to be small as well. We return
to this in a bit more detail at the end of this section.

PHYSICAL REVIEW A 84, 033608 (2011)

We start by calculating the quasiparticle lifetime for
particles in the initial rotational state. The standard theory
of collisional lifetimes for a quasiparticle of momentum p and
frequency w gives the decay rate [54]

(p.w) = 22y /dp/dq 8w+ €y — €prq — €p—q)
x [v(—q) = v(p — p' + @]
X {f(ep)[l — fleptIll — flep—g)]
—[1- f(fp’)]f(epwtq)f(ep’fq)}» (38)
where f(€) = m is the Fermi function, €, = p?/(2m),

and v(q) is the Fourier transform of the interaction potential,
here the Fourier transform of Vi;(p). This can be understood
by the decay processes occurring in Fermi’s golden rule,
perturbing in the interactions. For a thermal gas, this simplifies
to

1
I'(p.w) = e / dp'dqd(w + €y — €prq — €p—q)

x [v(—q) — v(p — p' + @)Pe P . (39)

Rather than worry about the full p and w dependence of this
broadening, we calculate the average broadening of the line
and for each p treat the frequency as being fixed to w = ¢,.
With this, the typical broadening—that is, the broadening
averaged over momenta 'y, = (1/N) Zp I'(p,ep)—is

1 dp
T n ) @ny
Calculating I'y, from Eq. (39) requires the Fourier trans-

form of the interaction potential. The Fourier transform,
neglecting A as argued to be valid earlier, is simply

L(p.€p). (40)

v(q) = Co — 2t y11q + 0(q*) (41)

for some constant Cy. The constant C cancels in Eq. (39).
Physically, this is because it describes a renormalization
of the contact potential, which affects nothing in a gas of
identical fermions. Then, evaluating the integrals, the typical

2 2
quasiparticle lifetime is 'y, = m(zTﬂz)y”Tn. Reference [55]
argued that the recoil-free spectral broadening is simply
the expression for the quasiparticle decay rate with y;; —

Y12 — Y11, giving the collisional spectral broadening

2 2 _ 2
= m=(mr + 2)(y12 — y11) Tn.
273

It is useful to compare this broadening to the mean dipolar
spectral shift:

(42)

[ T +2

o szT(Jﬁz = Y1)
Note that this ratio decreases with temperature, and is
proportional to y;» — yi1. Thus as the shifts decrease, the
ratio of the broadening to the shift also decreases. Even for
the largest experimentally realistic differences yj, — 11, for
example setting y;; = 0 and taking y;, to be that associated
with the permanent dipole, this ratio is about 0.02. More typical
differences will be a small fraction of this (<10% or smaller).
Given the already small shifts, this broadening is negligible,
perhaps at most 100 Hz.

(43)
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So far, we have neglected the interactions with other
pancakes and the spin-flip terms. Neglecting the interpancake
interaction is reasonable since the interpancake interactions
are somewhat smaller than the intrapancake interactions—by
being further away by at least one lattice spacing.

The fact that the shift vanishes for interactions between
pancakes suggests that the broadening may be even smaller
than this naive argument suggests. Since the effect of the
intrapancake interactions is quite small, it is almost certainly an
excellent approximation to neglect the interpancake interaction
induced collisional broadening. Regarding the spin-flip terms,
their maximal value is less than the maximal direct term’s, and
thus the spin-flip term’s effect is likely to be comparably small.

C. Broadening from interaction potential shape

At sufficiently high temperatures, multiple scattering chan-
nels will become relevant, and rather than merely shifting
the spectral line, interactions will also broaden it. This leads
to a broadening as one leaves the cold collisional regime.
This occurs when the thermal de Broglie wavelength Ap
becomes less than or comparable to the range of the potential.
Here, however, the temperature is sufficiently low that A7 is
somewhat longer than the characteristic range of the potential,
even for the dipolar potential. To see this, observe that
presently A7 ~ 70 nm while the dipole length is ~50 nm.
As experiments achieve colder temperatures, A7 will increase.

D. Higher band occupation

We have so far neglected higher band occupations. These
have various effects, including a broadening of the spectra.
Such broadening should mostly be, relative to the shifts, on
the order of the relative occupation of the higher bands, perhaps
~10-20% at most here. A somewhat larger contribution can
come from s-wave collisions between molecules in different
bands. Regardless, these occupations are exponentially sup-
pressed as the temperature is lowered, and additionally it may
be possible to remove them by purification techniques: e.g.,
higher bands tunnel more rapidly than the lowest band, and
it may be possible to remove them from the lattice on a short
time scale.

V. 3D LATTICE

This section considers the recoil-free spectra of molecules
in a sufficiently deep 3D lattice such that tunneling is
negligible. This limit is interesting both for its simplicity
and, as we show, its utility as a direct measurement tool for
numerous important correlation functions, including for states
created when the tunneling is significant. Experiments on KRb
molecules in 3D lattices are underway at JILA [56].

In the infinitely deep lattice, the eigenstates of the initial
Hamiltonian, prior to application of the spectral probe, are
I{ni}) = @, Ini):, where |n); is the Fock state with n particles
at site i. Then the total spectrum is the sum over sites j of §
functions whose spectral shift is that for exciting particles at
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site j; in the eigenstate |{n;}), the shift associated with exciting
site j is

(@); =Y [VoRij) = ViiR;)) + VieRi)Ini,  (44)
i#]
where R;; is the separation of the ith and jth lattice sites.
This is essentially the integrand/summand of Eq. (18), since
we are considering the shift associated with changing the
rotational state at a single site j, projected to a 3D lattice.
Each interatomic separation between i and j will have its
own unique shift, and this will allow us to spectroscopically
measure the correlations at various distances. Broadening can
be neglected, as the only source of broadening when the
tunneling is zero is the ~Hz p-wave losses.
Any many-body wave function | W) initially all inthe @ = 1
internal state can be expanded in this basis:

W) =" Apyl{ni)). (45)
{ni}

The total spectrum is a sum of peaks with shifts given by
Eq. (44). In particular, the total spectrum in the present zero-
tunneling limit is Zipe(@) = >,y An) Zin;) (@), where Zy, y(w)
is the spectrum for the eigenstate |{n;}). This spectrum is
Ziy(w) = Zj n;8(w — (w);) with (w); given by Eq. (44).

For simplicity, we consider the case in which the 3D lattice
is broken into 2D sheets such that the interlayer interactions
are negligible. This can be achieved either by depopulating all
but one sheet or by increasing the lattice spacing along one
axis. The basic idea to read off correlations, discussed in the
next paragraph, can be used in more general geometries, but
the procedure becomes more complicated.

Figure 6 shows an example of how to read correlation
functions from the splitting of spectral peaks, explained in
the caption. Figure 6(a) shows this including only nearest-
neighbor interactions, and Fig. 6(b) includes next-nearest-
neighbor interactions. Contributions from further separated
sites’ correlations will continue the pattern of splitting the
lines by smaller and smaller values.

Thus we observe that recoil-free spectra can be used to
cleanly extract a tremendous amount of information about
the static correlation functions of a system in a 3D lattice
that have either zero or one particle per site (somewhat higher
occupations can be accounted for straightforwardly, but lead to
complications where peaks start to overlap). In particular, one
can measure the joint probability distribution P(1,n,n,, ...),
the probability of a site having one particle on it, n; atoms on
all the nearest-neighbor sites, n, the number of atoms on all the
next-nearest-neighbor sites, and so on. Neglecting occupations
of more than one molecule per site, the arguments above show
that this function P(1,ny,n,, ...) is simply proportional to the
spectral weight of a particular spectral peak.

Measuring P(1,ny, ...,n;) requires finer spatial resolution
as j increases. For a given string of occupancies (n1, . ..,n;_1),
Eq. (44) gives the frequency splitting between having n; and
n; + 1 particles at lattice sites that are jth nearest neighbors
to be § = Via(rj) — Viu(rj) + Vie(r;), where rj is the lattice
vector corresponding to the jth nearest-neighbor separation.
The energy scales for KRb for current 532-nm lattice spacing
square lattices (neglecting interactions between the 2D sheets
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FIG. 6. (Color online) Zero-tunneling recoil-free spectra, illus-
trating how to read off correlations. (a) Recoil-free spectra with
nearest-neighbor interactions only. The correspondence between
spectral shift and spatial correlations is labeled, where the peak
labeled (n,n,n3) has a spectral weight that is a sum over all
configurations and sites i with n; particles on site i, n, in i’s nearest-
neighbor sites, and n; in the next-nearest-neighbor sites, summed
over all sites i. The “- - -” indicates further correlations are irrelevant
to the shift, and, independent of their values at longer range, all states
contribute to the peak. Here, Z; and Z, indicate the number of nearest-
and next-nearest-neighbor sites; note the maximum number of atoms
on (next)-nearest-neighbor sites is Z; (Z,). (b) Recoil-free spectra
with nearest- and next-nearest-neighbor interactions. Longer-range
interactions will continue to split the peaks, and with increasing
spectral resolution, longer-range correlations can be read off the
spectrum. Peak heights are drawn arbitrarily.

that occur in a 3D lattice, and assuming that the difference
in dipole moments for the initial state and final state can
be made comparable to half the permanent dipole moment)
enable one to resolve P(l,n,n,) if one has 30 Hz spectral
resolution and P(1,n},n,,n3) if one can obtain 10 Hz spectral
resolution. For other molecules, the measurements can be
even more informative. For example, with RbCs one can
measure P(1,ny,...,nq4) using a 30 Hz spectral resolution
and P(1,ny, ...,n7)using a 10 Hz spectral resolution. Shorter
lattice spacings enhance the range of correlations measurable
for a given spectral resolution.

Note that this joint probability distribution includes mo-
ments, e.g., (n?) and (ngn3), but is substantially more infor-
mative. In particular, one can compute any moment between
n;’s that can be resolved: i.e., it gives (ny’n{'n3? - - ~n[;’) for
arbitrary (oo, @y, ... ,0;).

Importantly, this technique can probe correlations of many-
body systems generated by the system with a shallower lattice,
where tunneling may be important. In this case, one can rapidly
ramp up the lattice depth from the value where the physics is
of interest to a value where the tunneling is effectively zero.
This projects the initial state onto a basis of the zero-tunneling
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eigenstates |{n;}), and the dynamics during the interrogation
then are described by the above considerations. Thus one
can measure the joint number distribution function of the
initial state. This is analogous to the measurement of on-site
number statistics done in collapse-and-revival experiments
[57,58]: a shallow lattice equilibrium state is quenched to a
deep lattice state for measurement.

Such a technique is straightforwardly extended to measure
correlations where the initial state may have several rotational
levels populated, and to measure intersite correlation functions
between atoms in these various states. This occurs naturally
in, and would be particularly useful for, proposals to use
molecules’ internal degrees of freedom as “pseudospins” to
emulate quantum magnetism [45,46], where the technique
would probe the pseudospin correlations.

Here we explicitly considered interpreting these spectra for
the 2D lattice in a 2D system. This is straightforwardly ex-
tended to a 3D lattice, but the form of the Vi, — Vi; + Vi will
be slightly more complicated due to interaction anisotropies.
However, our discussion does not rely crucially on the form of
Vio — Vi1 + Vi, except for the fact it is long-ranged.

Finally, this measurement technique is not limited to
molecules. For example, it may be possible to measure
correlations of alkali-metal atoms in optical lattices by exciting
all the atoms to a Rydberg state immediately before the spectral
interrogation. The spectral pulse would then be chosen to drive
the atoms between two Rydberg states, which will experience
dipolar effects in a manner analogous to the molecules.

VI. SUMMARY

In this paper, we have calculated the recoil-free spectra
for dipolar molecules in one-dimensional lattices of two-
dimensional pancakes, and in deep three-dimensional lattices.
We particularly focused on the case of driving transitions
between different rotational states. We have incorporated both
the dipolar interactions and the p-wave interactions and losses,
the latter of which are important for reactive molecules. We
gave general expressions for the shifts, and we evaluated
these expressions for the weakly interacting gas as well
as their simpler low-temperature (T < u, degenerate) and
high-temperature (T >> u, thermal) limits. We calculated the
broadening of these lines from collisions, losses, differing
polarizabilities of rotational states, and other mechanisms. We
overviewed typical scales for these various effects for the case
of KRb molecules. The overall scale for the trap summed
spectrum under current experimental conditions is on the order
of ~5 kHz for strong dipoles due to the dipolar interactions and
the inhomogeneous density of the trapped system. This will
increase to a constant with decreasing temperature and increase
indefinitely with increasing density (until perturbation theory
breaks down). Observation of this line shape will confirm that
the interactions in this system take the expected form and can
be used to diagnose temperature and degeneracy. Deviations
from the weakly interacting spectral line shapes can then be
used to observe and characterize strong correlation physics.

The p-wave losses induce a few Hertz broadening, and
the real p-wave interactions should be very small. Collisional
broadening is also small, probably much less than 100 Hz for
current conditions. The largest source of shift and broadening,
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other than the dipolar interactions, comes from the differing
polarizabilities of rotational states. This is on the order of a few
kilohertz, and decreases with temperature. However, it can be
eliminated by working, for example, at the “magic angle” or
“magic field strength” [53]. Recoil-free spectra offer a useful
probe of this physics.

In the three-dimensional lattice, we showed how the spectra
give access to a multitude of static correlation functions that
are inaccessible by other techniques. The spectral weight in
each peak is proportional to the probability of a certain set of
spatial configurations of a particular set of lattice occupations.
This allows one to measure joint probability distributions for
correlations among a few nearest-neighbor sites.

We mention that although we focused on the most
immediately relevant case of dipoles aligned perpendicular
to the pancakes and in a one-dimensional lattice of two-
dimensional pancakes, most of our general formulas extend
straightforwardly to other cases, for example three dimensions
or other angles of alignment. Only an evaluation of the integrals
changes. Presumably, many of the overall magnitudes typically
will remain similar.

Finally, although we focused on dipolar molecules in
our quantitative estimates, the effects are relevant elsewhere.
Rydberg atoms have a strong dipolar interaction. In alkaline-
earth-metal atomic clocks, p-wave interactions and reactive
losses can be important, and although the dipolar interactions
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are very small, they may be important as clock accuracies
approach their fundamental limits. However, we mention
that we have treated the dipole interaction electrostatically.
This is valid when the particle separation is much less than
the wavelength of the photons mediating the dipole-dipole
interaction. For molecules, we expect this to be quantitatively
accurate. However, in other contexts such as atomic clocks,
the dynamic field becomes important when interparticle
separations are comparable to or larger than the wavelength of
the photon associated with the dipole transition [59]. In this
case, the treatment of dipolar interactions of the excited state
is quite different. For example, they scale as 1/r, where r is
the interparticle separation. In this context, careful choice of
lattice parameters mitigates these effects [59].
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