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Fermi polaron in two dimensions: Importance of the two-body bound state
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We investigate a single impurity interacting with a free two-dimensional atomic Fermi gas. The interaction
between the impurity and the gas is characterized by an arbitrary attractive short-range potential, which, in two
dimensions, always admits a two-particle bound state. We provide analytical expressions for the energy and
the effective mass of the dressed impurity by including the two-body bound state, which is crucial for strong
interactions, in the integral equation for the effective interaction. Using the same method, we also give the results
for the polaron parameters in one and three dimensions and find good agreement with previous results. Thus, our
relations can be used as a simple way to estimate the polaron parameters once the two-body bound state of the
interaction potential is known.
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I. INTRODUCTION

In recent years, thanks to the capability of experimentally
tuning the relative population and interaction strength in
atomic gases of different species, highly imbalanced gases
have been extensively studied. In particular, a lot of theoretical
and experimental work has been devoted to atomic Fermi gases
in two different hyperfine states (see, e.g., the recent review [1]
and references therein). The key is the solution of the limiting
case of a single-impurity atom interacting via a short-range
potential with an ideal atomic Fermi gas. Such a problem is not
only relevant in the field of ultracold gases, since it is related to
the more general one, the so-called impurity problem, which
is present also in other area of physics. In our case, the dressed
impurity is called a Fermi polaron (or polaron), in analogy with
electrons dressed by the bosonic (phonon) bath in a crystal.

Important quantities characterizing the polaron are (i) its
chemical potential, also called interaction energy or binding
energy [i.e., the (negative) energy difference of the ground
state with and without the impurity atom at rest]; and
(ii) its effective mass (i.e., the dressed parabolic dispersion
relation at low impurity momentum). In three dimensions
(3D), these parameters have been calculated in different ways,
for example, by means of variational ansatz [2,3], Monte
Carlo methods [4,5], functional renormalization group [6],
and experimental measurements [7].

The variational approach is known to give reasonable results
also in the one-dimensional (1D) case [2,8], since it can be
compared with the exact solution found by McGuire [9]. Very
recently the same approach has been used to study the two-
dimensional (2D) case, where it has been shown that in two
dimensions its use can be questionable, at least if using the
same approximations as in three dimensions [10,11].

In two dimensions, as well as in one dimension, an attractive
interaction always allows for a two-body bound state. In the
present work, we solve the impurity problem including such a
bound state explicitly in the integral equation for the effective
interaction of the impurity with the Fermi gas. Within a number
of approximations, we provide analytical expressions for the
polaron parameters which agree quite well with the known
results in one and three dimensions. In two dimensions, we
find an expression for the energy which interpolates between
the correct and expected limiting values in the weakly and the

strongly interacting regime. Thanks to the recent experimental
advances in realizing 1D and 2D strongly interacting Fermi
gases [12,13], the impurity problem in reduced dimensionality
has become relevant in the context of ultracold gases.

In the next section, we introduce the formalism and give
the result for the energy and the effective mass of the 2D
Fermi-polaron problem. In Sec. III, we apply the method to
the 1D and 3D cases.

II. FERMI POLARON IN TWO DIMENSIONS

It is known that Brueckner-Hartree-Fock theory, when ap-
plied to the Fermi-polaron problem in three dimensions, gives
reasonable results [14] (see also Sec. III B). The basic equation
from this theory is the Bethe-Goldstone integral equation for
the reaction matrix [15], also called effective interaction (e.g.,
for the 2D electron gas [16]). The Bethe-Goldstone integral
equation for the effective interaction between a particle in
the bath with momentum k1 and the impurity atom with
momentum k2 can be written as

g(k1,k2,q) = V (q) +
∫

dk
(2π )D

V (|q − k|)

×
(
1 − nk1+k

)
k2

1
2m

+ k2
2

2m
− (k1+k)2

2m
− (k2−k)2

2m

g(k1,k2,k).

(1)

In Eq. (1), q is a transfer momentum, V (q) is the Fourier
transform of the two-particle interaction potential, and nk
is the Fermi distribution function at zero temperature. The
interaction energy or correlation energy follows then from the
mean value of the effective interaction εp = 〈g(k1,k2,q)〉.

For k2 = 0, one gets the rest correlation energy ε0
p of the

polaron, and by expanding this solution in k2
2 one get its

effective mass m∗ as usual by the relation E = ε0
p + k2

2/2m∗.
We note that in Eq. (1) for the effective interaction only ladder
diagrams are summed and the Fermi sea limits the momenta
in the intermediate states.

We consider an interaction characterized by an attractive
short-range potential of arbitrary shape. In three dimensions,
this potential can be approximated by a δ function, and Eq. (1)
coincides with the self-consistent equation obtained via single
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particle-hole variational ansatz [2,14]. In two dimensions, it
is not clear whether one can use a δ function pseudopotential
(see, e.g., [17]); hence, a solution of Eq. (1) obtained in the
same way as in three dimensions is questionable. As usual,
in order to treat properly the two-body problem, we write
Eq. (1) by expressing V in terms of the two-particle scattering
amplitude f [18]:

g(k1,k2,q) = f (k1 − k2,q)

+
∫

dk
(2π )D

f (k1 − k2,q − k)(−nk1+k)
k2

1
2m

+ k2
2

2m
− (k1+k)2

2m
− (k2−k)2

2m

× g(k1,k2,k), (2)

where f (k1 − k2,q) is the off-shell scattering amplitude [19].
Note that this equation is already renormalized with respect to
ultraviolet divergencies.

For short-range potentials, the exchange momentum q is
small and the main contribution from the integral comes from
small values of k; thus we can approximate the off-shell
scattering amplitude by the on-shell scattering amplitude
f (k1 − k2). Then the effective interaction does not depend on
the exchange momentum, and for the impurity at rest (k2 = 0)
Eq. (2) reduces to

1

g(k1)
≈

[
1

f (k1)
−

∫
p<kF

dp
(2π )2

m

p · (p − k1)

]
. (3)

We assume that the finite range R of the attractive
interaction potential is the shortest length scale in the system.
In particular, for kF R � 1 the s-wave scattering amplitude
reads (see, e.g., [20])

f (k)−1 = −[ ln(k2/m|εb|) − iπ ]m/4π, (4)

where εb is the binding energy of the two-particle bound state,
which in two dimensions is always present (but not in three
dimensions).1

Solving Eq. (3) for the weakly interacting case |εb| � εF ,
where εF = h̄2k2

F /(2m) is the Fermi energy, we find the
interaction g(k1) = −4π/[m ln(2εF /|εb|)] from which we get
the mean field energy ε0

p = −2εF /[m ln(2εF /|εb|)], which is
obviously in agreement with the result found in the weakly
interacting regime using the single particle-hole variational
ansatz [10].

Until now, deriving Eq. (3) from the Bethe-Goldstone
equation, we have neglected the two-particle bound state. In
order to take it into account, we go back to Eq. (2). We rewrite
the initial energy of excitation processes appearing in the

denominator as k2
1

2m
+ k2

2
2m

= k2
r

m
+ P 2

4m
, with relative momentum

kr and center-of-mass momentum P. Further, we note that the
scattering amplitude f (kr ) depends on the relative momentum
only. It is well known that in the case where the majority
particle with k1 and the impurity with k2 form a two-body
bound state, their relative momentum kr is purely imaginary

with k2
r

m
= εb < 0 being the binding energy. For the calculation

of the interaction energy, we assume the impurity to be

1The relation between the binding energy and the potential V (r) in
two dimensions has been recently discussed in detail in [21].
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FIG. 1. (Color online) Main: polaron energy as a function of the
two-body binding energy εb as given by Eq. (6) (solid red line) in two
dimensions. For completeness, we report also the weakly interacting
(dashed green line) and the strongly interacting (dotted black line)
results (see text). Inset: ratio m∗/m between the effective and the bare
mass as given by Eq. (9).

at rest and P = 0. Then the effective interaction in ladder
approximation obeys, instead of Eq. (3),

1

g(εb)
≈ 1

f (kr )
−

∫
k<kF

dk
(2π )2

(
|εb| + k2

m

)−1

. (5)

Let us notice that a very similar equation is found in [22] for
the vertex function in the presence of a two-particle bound
state, where the molecular propagator is expressed by the
two-particle scattering amplitude at the vacuum energy of the
molecule.

At the momentum corresponding to the bound state, the
scattering amplitude has a pole f (kr = √

mεb)−1 = 0 and the
interaction energy is given by

ε0
p ≈ ng(εb) = −2εF

ln
[
1 + 2εF

|εb|
] , (6)

shown in Fig. 1.
In the limit of weak interactions (i.e., |εb| � εF ), the

polaron energy reduces to εp ≈ −2εF / ln(2εF /|εb|), which
coincides with the one obtained from Eq. (3) or the variational
ansatz [10], where the two-particle bound state is not included.
In the opposite limit, |εb| � εF , Eq. (6) yields εp = −|εb| −
εF + o(εF /|εb|). This is the expected result, because in this
regime one atom of the majority is strongly bound to the
impurity with −|εb| and thus it has to be removed from the
Fermi sea, leading to the first correction −εF . Thus, Eq. (6)
smoothly interpolates between these two limits and it provides
a good approximation for the interaction energy of the 2D
polaron in all regimes. Our results are in good agreement with
recent preliminary Monte Carlo calculations [23]. We note
that Eq. (6) is valid for all attractive potentials with s-wave
scattering amplitude of logarithmic form [Eq. (4)].
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A. Effective mass

In this section, we study the effect of the interaction on the
motion of the impurity. As already mentioned, its energy can
be expanded for small momentum k2 as E = ε0

p + k2
2/2m∗,

where we define the effective mass of the impurity as

1

m∗ = 1

m
+ 1

m

dεp(k2)

d
(
k2

2/2
) |k2=0 (7)

and εp(k2) = ng(εb,k2), with the effective interaction g calcu-
lated again including the two-body bound state. In particular,
the initial energy of excitation processes is −|εb| + k2

2/4m and
instead of Eq. (5) we obtain

1

g(εb,k2)
≈ 1

f (kr )
−

∫ kF

0

dk
(2π )2

1

|εb| + e(k2,k)
, (8)

where e(k2,k) = k2
2

4m
+ k2k cos φ

m
+ k2

m
. The ratio between the

bare and the effective mass of the impurity atom in two
dimensions within our approximation reads

m

m∗ = 1 − 1

2

(
ε0
p

2εF

)2 (
1 + |εb|

2εF

)−2

. (9)

As shown in Fig. 1, the effective mass m∗ obtained from
the previous equation has the expected behavior: For small
interactions it is close to the bare mass value m and for large
interactions it approaches the molecular mass value 2m.

III. FERMI-POLARON PARAMETERS IN ONE
AND THREE DIMENSIONS

For a 2D system, our approach seems to give quite
reasonable results and provides analytical expressions for the
polaron’s parameters. In the present section, we apply our
approach to the 1D and 3D case. The simple expressions we
find are in reasonable agreement with the known results.

A. The Fermi-polaron in one dimension

In one dimension, the Fermi-polaron problem admits an
exact solution [9] and the interaction energy reads

ε0
p

2εF

= − 1

π

[
y + π

2
y2 + (1 + y2) arctan(y)

]
, (10)

where y = √|εb|/(2εF ). Again εb is the binding energy of the
lowest two-body bound state.

When applied to one dimension, Eq. (5) gives for the
polaron energy

ε0
p

2εF

≈ − y

arctan
(

1
y

) , (11)

which we compare against the exact result [Eq. (10)]
in Fig. 2. The agreement looks pretty good, although in
the strongly interacting case, we get −|εb| − 2/3εF instead
of −|εb| − εF . However, our results are closer to the exact
solution than the one obtained with the single particle-hole
variational ansatz (see, e.g., [8]).
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FIG. 2. (Color online) Interaction energy (main panel) and effec-
tive mass (inset) as a function of the two-body binding energy εb in
one dimension. The approximate result [Eq. (11)] (solid red line) is
compared with the exact expression [Eq. (10)] given by McGuire [9].

B. The Fermi polaron in three dimensions

In a 3D geometry when no two-body bound state is present
[i.e., for negative s-wave scattering length (a < 0)], we can
use Eq. (3)—the usual Brueckner-Hartree-Fock theory—with
scattering amplitude 4πf (k1)−1/m = a−1 + i|k1|. The main
contribution to the effective interaction is g(k1 = 0), and thus
we can write an approximated expression for the polaron
energy as

ε0
p

εF

≈ − 2

3
(

1 − π
2

1
kF a

) . (12)

Note that adding self-consistency to the Bethe-Goldstone
equation by changing the initial energy of excitation processes
k2

1
2m

+ k2
2

2m
→ ε0

p + k2
1

2m
+ k2

2
2m

[14] increases the accuracy of the
results in the polaron regime and yields the same equations as
in [2].

In the molecular regime, the potential admits a two-body
bound state (a > 0) with binding energy εb = −1/(ma2).
From the 3D version of Eq. (5), we obtain the interaction
energy of the impurity, which reads

ε0
p

εF

≈ − 2

3
[
1 −

√
|εb|
2εF

arctan
(√

2εF

|εb|
)] , (13)

with
√|εb|/(2εF ) = 1/(kF a). For large binding energy |εb| �

εF (or kF a � 1), one gets ε0
p = −|εb| − 6εF /5, which is larger

than the expected result by −1/5 εF . In Fig. 3, we show the
comparison between the previous simple expression and the
results obtained from Monte Carlo calculations [5]. Although
the agreement is good, it is worse (as already mentioned) than
the results obtained from the variational approach in both the
polaron [2] and the molecular regime [3] as well as the results
obtained from the functional renormalization group [6].
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FIG. 3. (Color online) Interaction energy as a function of the
inverse 3D scattering length 1/(kF a) (red line) in comparison with
the results obtained from Monte Carlo calculations [5] in the polaron
regime and at unitarity (black diamonds). In the molecule regime
(|εb| � εF ), we compare the expected result ε0

p = −|εb| − εF (blue
line). Inset: zoom on the negative axis.

C. Remarks on the effective mass in one and three dimensions

The effective mass of the impurity is given by Eq. (9) in
any dimension.

In the inset of Fig. 2, we compare our result [Eq. (9)] with
the exact one found by McGuire in [9] which reads

m∗

m
=

(
1 + 2

π
arctan y

)2

1 + 2
π

(
arctan y + y

1+y2

) , (14)

where y = √|εb|/(2εF ) is defined as in Eq. (10). Again the
agreement is reasonable and better than the single particle-hole
variational ansatz [2,8].

In three dimensions, the situation is more involved since
a maximum (quite larger than 2m) for the effective mass has
been found when the nature of the impurity changes from a
fermionic quasiparticle to a bosonic quasiparticle [4]. In our

approximation, this maximum cannot be found. In order to
find this maximum, one has to take three-particle scattering
into account, which is beyond the scope of this paper.

IV. CONCLUSION

In conclusion, we have investigated the problem of an
impurity atom interacting with a noninteracting Fermi gas in a
2D geometry. We consider a short-range, attractive potential,
which implies the presence of a two-body bound state for
any interaction strength. We have calculated the interaction
energy and the effective mass of the impurity by including the
bound state in the Bethe-Goldstone integral equation for the
effective interaction. We were able to obtain simple analytical
expressions which give reasonable results in two dimensions,
interpolating between the weakly and the strongly interacting
regime (see Fig. 1). Moreover, when applied to the 3D and 1D
cases, our polaron parameters compare well with most of the
known results (see Sec. III). Thus our expressions can be used
to estimate the dressed impurity’s parameters in a simple way
once the two-body bound state is known. Our analysis shows
how important the two-body bound state is for the polaron
problem.

Finally, let us stress that we do not address the question of
whether there exists a polaron-to-molecule transition in two
dimensions as debated in [10,11]. The problem is still open
and it could happen that the system behaves similarly to the
1D case where there is not such a transition. Such a question
is clearly relevant for the possible low-temperature phases of
a 2D polarized Fermi gas, whose balanced version has been
recently experimentally realized [13].
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