
PHYSICAL REVIEW A 84, 033605 (2011)

Quantum dynamics of hard-core bosons in tilted bichromatic optical lattices
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We study the dynamics of strongly repulsive Bose gas in tilted or driven bichromatic optical lattices. Using
the Bose-Fermi mapping and exact numerical method, we calculate the reduced single-particle density matrices,
and study the dynamics of the density profile, the momentum distribution, and the condensate fraction. We show
the oscillating and breathing mode of the dynamics, and the depletion of condensate for short-time dynamics.
For long-time dynamics, we clearly show the reconstruction of system at integer multiples of Bloch-Zener time.
We also show how to achieve clear Bloch oscillation and Landau-Zener tunneling for many-particle systems.
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I. INTRODUCTION

The dynamics of a particle in a period structure has been
a fundamental subject, with the eigenenergies forming the
famous Bloch bands [1] and the eigenstates being delocalized.
If a weak external constant force is introduced, contrary
to our intuition, the particle undergoes oscillatory motion
rather than uniform motion due to acceleration by the force,
which is known as the famous Bloch oscillation [1,2]. Under
single-band tight-binding approximation, eigenenergies of the
system form the Wannier-Stark ladder [3] with eigenstates
localized. Bloch oscillation has been observed in semicon-
ductor superlattices for electrons [4], optical lattices for cold
atoms [2], and photonic crystals for light pluses [5,6]. For a
stronger force, a directed motion is reintroduced by repeated
Landau-Zener tunneling to higher Bloch bands [7–10]. For
usual cosine-shaped potentials, band gaps decrease rapidly as
the energy increases; this would lead to the decay of Bloch
oscillation, which has been observed in Refs. [11–13].

In order to study the interplay between Bloch oscillation and
Landau-Zener tunneling, one needs at least a two-band system
with the lowest two bands well separated from the upper
ones. Furthermore, the gap between the lowest two Bloch
bands must be small for observing a clear signal of Landau-
Zener tunneling. This can be achieved by bichromatic optical
lattices [14], where parameters of the system are adjustable
and controllable. Bichromatic lattices have been implemented
by superimposing two incoherent optical lattices, with the
wavelength of one lattice two times the other [15,16], or by
virtual two-photon and four-photon processes [17–21]. Under
two-band tight-binding approximation, eigenenergies form
two Wannier-Stark ladders with energy spacing doubled and
an offset between them [22,23]. The corresponding eigenstates
are still localized. The dynamics of a particle is governed by
two timescales, i.e., the Bloch period and the period of Zener
oscillation. If the two periods are commensurate, the system
reconstructs at integer multiples of Bloch-Zener time.

So far, most works concentrate on the dynamics of the
single-particle system. The generalization of these results
to interacting many-particle systems remains an open ques-
tion. The possibility of investigating Bloch oscillation and
Landau-Zener tunneling of interacting Bose-Einstein conden-
sate (BEC) experimentally has attracted much interest. Most
theoretical studies are based on the mean-field approximation
[24–27] and Gross-Pitaevskii (GP) equations [28]. Results for

the dynamics of strongly interacting many-particle systems
are rarely known. In this paper, we study the dynamics
of interacting bosons in bichromatic optical lattices under
constant drag force in the limiting case with infinitely repulsive
interaction, which permits us to solve the problem exactly.
The one-dimensional (1D) Bose gas with infinitely repulsive
interaction is known as the hard-core boson (HCB) or Tonks-
Girardeau (TG) gas [29], which can be exactly solved via the
Bose-Fermi mapping [29], and has attracted intensive theoret-
ical attention [30–32]. Experimental access to the required
parameter regime has made the TG gas a physical reality
[33,34]. Following the exact numerical approach proposed
by Rigol and Muramatsu [35,36], we calculate the dynamics
of density profile, momentum distribution, and condensate
fraction for hard-core bosons in the tilted bichromatic optical
lattice, and show Bloch oscillation, Landau-Zener tunneling,
and reconstruction of the system at integer multiples of
Bloch-Zener time.

The paper is organized as follows. In Sec. II, we present the
model and the exact approach used in this paper. We also
recover the dynamics of the single-particle system in this
section. In Sec. III, we study the short-time and long-time
dynamics for hard-core bosons in bichromatic optical lattice
with a constant drag force. We also show how to achieve
clear Bloch oscillation and Landau-Zener tunneling for
the many-particle system. Finally, a summary is presented in
Sec. IV.

II. MODEL AND METHOD

In this section we describe the exact approach we used
to study 1D hard-core bosons in tilted or driven bichromatic
optical lattices. Under the tight-binding approximation, the
system can be described by the following Hamiltonian:

H = −J
∑

i

(b†i bi+1 + H.c.) + δ
∑

i

(−1)inb
i

+F
∑

i

inb
i +

∑
i

Vin
b
i . (1)

Here we only consider the nearest-neighbor hopping and
neglect the off-diagonal terms of position operator x̂ in
the Wannier basis. The operator b

†
i (bi) is the creation

(annihilation) operator of the boson which fulfills the hard-core
constraints [35], i.e., the on-site anticommutation ({bi,b

†
i } =
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1) and [bi,b
†
j ] = 0 for i �= j ; nb

i is the bosonic particle number
operator; J is the hopping amplitude being set to be unit of
energy (J = 1); Vi = VH (i − i0)2 is the harmonic potential for
preparing the initial state of the system, with VH the strength
and i0 the position of the trap center; δ is the energy shift
of the alternate site; and F is the strength of driven force. For
convenience, the lattice spacing is set to be the unit of measure.

In order to study the dynamics of the hard-core bosons in
a driven optical lattice, we first load the hard-core bosons into
a bichromatic optical lattice with an additional harmonic trap.
Then we switch off the harmonic trap and turn on the driven
force. We shall study the evolution of the initially prepared
system and the dynamics of the system under the driven force.
First, the initial state is the ground state of the Hamiltonian:

Hinit = −J
∑

i

(b†i bi+1 + H.c.) + δ
∑

i

(−1)inb
i +

∑
i

Vin
b
i ,

(2)

with particle number N . In order to get the initial state, it
is convenient to use the Jordan-Wigner transformation [37]
(JWT),

b
†
j = f

†
j

j−1∏
β=1

e−iπf
†
β fβ , bj =

j−1∏
β=1

e+iπf
†
β fβ fj , (3)

to map the Hamiltonian of hard-core bosons into the Hamil-
tonian of noninteracting spinless fermions HF

init, which is in
the same form as Hinit, but with all the boson operators, e.g.,
b
†
i , bi , and nb

i , being replaced by the corresponding fermion
operators, e.g., f †

i , fi , and n
f

i . The ground-state wave function
of the system with N spinless free fermions, which is a product
of lowest N eigenfunctions, can be obtained by diagonalizing
HF

init and can be represented as

∣∣�G
F

〉 =
N∏

n=1

L∑
i=1

Pinf
†
i |0〉, (4)

where L is the number of lattice sites, N is the number
of fermions (same as bosons), and coefficients Pin are the
amplitude of the nth single-particle eigenfunction at the ith
site which can form an L × N matrix P [38].

After releasing from the trap, the system is described by the
Hamiltonian:

He = −J
∑

i

(b†i bi+1 + H.c.) + δ
∑

i

(−1)inb
i + F

∑
i

inb
i .

(5)

Similar to the above method, from the corresponding free-
fermion Hamiltonian HF

e , we can get all single-particle states
and corresponding energies, and use P ′ to represent all the
single-particle states and εi to represent the energies. The
nonequilibrium quantum dynamical properties of the system
can be calculated through the equal time one-particle Green
function which is defined as

Gij (t) = 〈�HCB(t)|bib
†
j |�HCB(t)〉, (6)

where |�HCB(t)〉 is the wave function of hard-core bosons
at time t after releasing from the harmonic trap. After some
derivations (see Appendix A), one can get

Gij (t) = det[(P A)†P B], (7)

where P A and P B are obtained from P , P ′, and εi . It
follows that the reduced single-particle density matrix can be
determined by the expression

ρij (t) = 〈b†i bj 〉t = Gji(t) + δij [1 − 2Gii(t)]. (8)

The momentum distribution is defined by the Fourier transform
with respect to i − j of the reduced single-particle density
matrix with the form

n(k) = 1

L

L∑
i,j=1

e−ik(i−j )ρij , (9)

where k denotes momentum. The natural orbitals φ
η

i are
defined as eigenfunctions of the reduced single-particle density
matrix [39],

L∑
j=1

ρijφ
η

j = ληφ
η

i . (10)

The natural orbitals can be understood as being effective
single-particle states with occupations λη. For noninteracting
bosons, all particles occupy the lowest natural orbital and
bosons are in the BEC phase at zero temperature, whereas only
the quasicondensation exists for 1D hard-core bosons [35].

For hard-core bosons we know that the state for the
corresponding Fermi Hamiltonian is a product of time-
dependent single-particle states, and each single-particle state
evolves itself (see Eq. [(A4)] in Appendix A). We recover
the single-particle properties of the Hamiltonian He in
Appendix B, which have been studied by Breid et al. [22].
From Appendix B, we know that a single-particle wave func-
tion will be reconstructed at integer multiples of Bloch-Zener
time (TBZ) if T1 and T2 are commensurate. Here T1 is the Bloch
period decided by the spacing of the Wannier-Stark ladders,
and T2 is the period of Zener oscillation decided by the offset
between Wannier-Stark ladders. Since each single-particle
state can be reconstructed at a period of time, and the period
is independent of the single-particle state and decided by
parameters of Hamiltonian, the state for many-body hard-core
bosons composed of a product of single-particle states will also
be reconstructed at integer multiples of Bloch-Zener time.

III. QUANTUM DYNAMICS OF HARD-CORE BOSONS

In order to observe reconstruction of the system, two
periods T1 and T2 must be commensurate, which are decided
by F and E0, where E0 is a function of F and δ. In Fig. 1(a),
we show numerical results of E0 versus δ for a particular F .
For different F , structure of the picture is similar. In order to
generate a particular Bloch-Zener time (TBZ), δ must be one
of the discrete numbers. For example, if we want TBZ = TB

for the system with F = 0.05, we have to let E0 = 0 and then
δ = 0.1684,0.3614, . . . .

For comparison, we first recover the dynamics of a
single-particle system. We choose E0 = 0 and let the system
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FIG. 1. (Color online) (a) E0 vs δ for the system with F = 0.05.
The dynamics of the density profile (b) and momentum distribution
(c) for the single-particle system with δ = 0.1684, F = 0.05, and
VH = 0.001. (d) The breathing mode dynamics of the density
profile for the single-particle system with δ = 0.1684, F = 0.05, and
VH = 20.

reconstruct at integer multiples of Bloch time (TB). From now
on, we take Bloch time TB = 2T1 as the reference timescale.
In Fig. 1(b), we show the dynamical evolution of the density
profile for a single-particle system, from which one can see
the reconstruction of the density profile at integer multiples
of Bloch time. The edge of the Brillouin zone is reached
at t = TB/4, and part of the particle moves into the upper
excited Bloch band located in the upper half of the figure.
The particle in the upper excited band returns to the lower
Bloch band at t = 3TB/4. For a quantitative analysis of the
Landau-Zener tunneling rate, one can characterize it by the
number of particles in the upper half of the picture at time
t = TB/2. Numerical results show that the Landau-Zener
tunnelling probability [28]

PLZ ≈ exp

(
−πδ2

2F

)
. (11)

So in order to see a clear signal of Landau-Zener tunneling,
we have to choose small δ for a given strength of force F .
Furthermore, the available interval for motion of a particle in
lattice [40]

L ≈ 4/F. (12)

In Fig. 1(c), we also show the dynamical evolution of
momentum distribution of the single-particle system. Particles
with momentum in the interval (−π/2,π/2) are in the lower
Bloch band, and outside the region particles are in the upper
excited Bloch band. From this picture we can see the clear
signals for Bloch oscillation and Landau-Zener tunneling.
Furthermore the momentum is linear with time with slope
given by F . Next we consider a localized initial state which
has a wide momentum distribution and can be implemented by
setting a strong harmonic trap potential, for example, VH = 20
here. From Fig. 1(d), one can find a breathing behavior of
the density profile. The reconstruction still happens at integer

multiples of TB . But one can observe that the enveloping
structure with period of TB is overlayed by a breathing mode
of smaller amplitude, whereas part of the particle remains in
the lower Bloch band all the time with a period of TB/2.

Now we consider the case of many-body hard-core bosons
and study the short-time dynamics first. Systems with various
particle numbers will be considered by keeping the other
parameters fixed. For comparison, we show the dynamics of
a single-particle system in the first column of Fig. 2. After
release from the trap, the particle speeds up under the drag
force F , and it reaches the edge of the Brillouin zone at
time TB/4. Part of the particle moves into the upper excited
Bloch band through Landau-Zener tunneling, while the other
part of the particle remains in the lower Bloch band with
changing of the sign of momentum by Bragg scattering.
Because of Landau-Zener tunneling, the particle turns into
two parts separated in real space, with particles in the upper
half of the density distribution being in the upper excited Bloch
band. In the momentum distribution, the particles outside the
first Brillouin zone of (−π/2,π/2) are in the upper excited
Bloch band. The changing of the sign of momentum occurs
at time TB/4 by Bragg scattering for particles in the lower
Bloch band. In the third row of Fig. 2, we show the evolution
of condensate fraction which is defined as λ0/N with λ0

being the occupation of the lowest effective single-particle
state. For the single-particle system, the particle is always in
the lowest effective single-particle state, and the condensate
fraction is one all the time. For the 1D many-body systems
of hard-core bosons, there is only quasicondensation with
λ0 ∝ √

N [29,35]. In the fourth row of Fig. 2, we show the
reduced single-particle density matrix at time TB/2. Here we
consider the modulus because of the elements of the density
matrix being complex numbers after turning off the trap. The
upper right spot in the picture is caused by particles in the
upper excited Bloch band and the lower left spot for the lower
Bloch band. For single-particle dynamics, however, particles
in the upper excited Bloch band and the lower Bloch band
are separated in real space, there is phase coherence between
them, and the off-diagonal parts of the reduced single-particle
density matrix are very strong.

In the second through fifth columns, we show the dynamics
for the hard-core bosons with N = 2,5,30, and 150, respec-
tively. As the particle number increases, the adding particle
has to occupy a higher single-particle state because one state
can only be occupied by a hard-core boson. And the size (S) of
system becomes larger and larger, while the available interval
L of the system decided by force F remains unchanged. Also,
the width of the momentum distribution becomes wider for
the larger system. As the momentum distribution becomes
wider, it takes a shorter time for particles at the edge of the
momentum distribution to reach the edge of the Brillouin zone,
and thus Landau-Zener tunneling happens early, which leads
to the condensate fraction decreasing early. The condensate
fraction decreases (∝ 1/

√
N ) as the particle number increases.

As time increases but is smaller than TB/4, the condensate
fraction basically does not change. A slight increase of the
condensate fraction in short time is caused by the expansion
after turning off the trap [38]. At time t = TB/4, Landau-Zener
tunneling happens, and the condensate fraction decreases
quickly. After this an overdamped area appears, and then
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FIG. 2. (Color online) The short-time dynamical evolution of density profile (first row), momentum distribution (second row), condensate
fraction (third row), and modules of the reduced single-particle density matrix (fourth row) at time t = TB/2 for systems of different particle
number with F = 0.05, δ = 0.1684, E0 = 0, and VH = 10−4 (VH = 8 × 10−4 for the fifth column).

the condensate fraction remains basically unchanged. For the
reduced single-particle density matrix at time TB/2, lengths
for the two parts of the diagonal terms become larger as
the size (S) of the system increases. The off-diagonal parts of
the matrix become weaker as particles are added in. Also, the
phase coherence between particles in the upper excited Bloch
band and the lower Bloch band decreases. As shown in the
figure, the particles between the upper band and the lower band
lost their phase coherence when N = 30. Furthermore, the
particles in the upper excited Bloch band and the lower Bloch
band developed phase coherence inside each part; the reduced
single-particle density matrix has exponential law decay in
each part as the distance increases.

We note that the density profile no longer splits into two
obviously separated parts after time TB/4 for system with
N = 30 as shown in the fourth column, where the particles
in the upper excited Bloch band and the lower Bloch band
are overlapped in real space. To achieve this situation, one
has to adjust the parameters of the system and let the size
of the system be larger than the available interval (S > L).
One also has to avoid the initial state staying in a localized
state because a localized initial state will cause the breathing
mode dynamics. Although the two parts are overlapped in
real space, they are separated in the momentum distribution.
The width of the momentum distribution becomes larger as
the particle number increases. The dynamical evolution of
condensate fraction still has a similar structure, except that
the quick decrease happens earlier. As two parts of particles

are overlapped in real space, the diagonal terms of the density
matrix are also overlapped. For sites outside the overlapped
area in the upper excited Bloch band or the lower one, the
density matrix still has an exponential law decay as distance
increases. For the overlapped area the density matrix is
irregular, but as the distance increases, it goes to zero quickly.
In the fifth column, we show the dynamics of the system with
N = 150. As the particle number increases, the localization
of the initial state becomes stronger [35] and we see the
breathing mode of the dynamics of the density distribution.
Lots of particles are localized in the center, and particles in
two parts are overlapped. The dynamics of the momentum
distribution is also changed. The momentum distribution
does not increase linearly as time increases, and momentum
distributions for particles in the upper excited Bloch band
and lower Bloch band are overlapped. For the localized initial
state, the momentum distribution is almost flat. Right after
turning off the trap, there are particles moving into the upper
excited Bloch band through Landau-Zener tunneling, and the
condensate fraction decreases immediately. Meanwhile, for a
localized initial state, the expansion is also important after
turning off the trap, and there is a large overdamped area in
the breathing mode dynamics of the condensate fraction. The
reduced single-particle density matrix still has exponential law
decay for particles in localized states.

Next, we consider the long-time dynamics of hard-core
bosons. In Fig. 3(a), we show the dynamical evolution of
density distribution for a five-particle system with Bloch-Zener
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FIG. 3. (Color online) The dynamical evolution of density profile
(a,d), momentum distribution (b,e), and condensate fraction (c,f) for
the five-particle system with F = 0.05, VH = 10−3, and δ = 0.1684
(a,b,c), δ = 0.238 (d,e,f).

time TBZ = TB , where E0 = 0. After releasing from the
harmonic trap, particles move along with the direction of the
force F . Around time t = TB/4, particles reach the edge of
the Brillouin zone, and part of the particles move into the
upper excited Bloch band through Landau-Zener tunneling
and keep moving along with force F . The other part of the
particles remain in the lower Bloch band, but the momentum of
the particles changes the sign due to Bragg scattering and
thus the particles move against the force F . Around time t =
3TB/4, particles reach the edge of Brillouin zone again, and all
particles move into the lower Bloch band. At time t = TB , the
system reconstructs into the initial state. As time goes on, more
periods occur. The dynamical evolution of the momentum
distribution for the same system is shown in Fig. 3(b). After
turning off the trap, particles accelerate under force F , and
the momentum increases linearly with time. Around time t =
TB/4, particles reach the edge of the Brillouin zone (k = π/2).
Part of the particles, which move into the upper Bloch band
through Landau-Zener tunneling, remain in the same belt and
their momentum increases linearly with time. The other part of
the particles stay in the lower Bloch band and change the sign
of their momentum by Bragg scattering. Two parts of particles
are recombined around time t = 3TB/4, and the momentum
distribution returns to the initial distribution at t = TB . In
Fig. 3(c), we show the dynamical evolution of the condensate
fraction. Around time t = TB/4, the condensate fraction has
a quick decrease due to Landau-Zener tunneling. After this
there is an overdamped area. Around time t = 3TB/4, two
parts of the particles recombine, and the condensate fraction

FIG. 4. (Color online) The dynamical evolution of density profile
(a,d), momentum distribution (b,e), and condensate fraction (c,f) for
the 80-particle system with F = 0.05, δ = 0.1684, and VH = 10−3

(a,b,c), VH = 4 × 10−5 (d,e,f).

increases quickly. The system returns to its initial state at time
T = TBZ. Furthermore, the condensate fraction is symmetrical
with center at T = TBZ/2. In Fig. 3, we also show the dynamics
of a system with TBZ = 2TB where E0 = F/4, which has
similar properties to the previous one. From Fig. 3(d), one
can obviously observe the reconstruction of the system after
Bloch-Zener time TBZ, Bloch oscillation, and Landau-Zener
tunneling.

In Fig. 4, we show the dynamical evolution of a system
with 80 hard-core bosons. As particles add in, the particles
in the initial state get more localized, and the dynamical
evolution of the system is dominated by the breathing mode
instead of the oscillating mode. In Fig. 4(a), we show the
dynamical evolution of the density profile for a system with
F = 0.05, δ = 0.1684, and VH = 10−3. This picture is not in
prefect breathing mode because of the initial state being not
localized enough. First of all, the reconstruction of density
profile happens again after integer multiples of Bloch-Zener
time TBZ. Second, lots of particles are localized at the center
and form a belt. Third, one can observe that the enveloping
structure is overlaid by a breathing mode of smaller amplitude.
The outside breathing mode is formed by Bloch oscillation
and Landau-Zener tunneling for particles in the upper excited
Bloch band with period TBZ = TB . The inside breathing mode
is formed by Bloch oscillation for particles remaining in
the lower Bloch band with period T1 = TB/2. The center
is the localized belt. In Fig. 4(b) we show the dynamical
evolution of the momentum distribution. The strip structure
disappears and the windmill structure appears with the center
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FIG. 5. (Color online) The dynamical evolution of density profile
(a) and momentum distribution (b) for the 80-particle system with
F = 0.01, δ = 0.08211, and VH = 4 × 10−5.

at (nTB,k = 0) (n ∈ N). In this picture we cannot distinguish
the two parts of the particles, and lots of particles are localized
at an area of k ≈ 0 all the time. Foremost, the momentum
distribution reconstructs at integer multiples of TBZ. The
dynamical evolution of the condensate fraction is shown in
Fig. 4(c), As the initial state is a localized state, there are
many particles with high momentum; right after turning off
the trap the condensate fraction decreases quickly, and it
reconstructs at t = TBZ. As a lot of particles add in, the initial
state becomes a localized state and one can observe breathing
mode dynamical evolution of the density profile. In order to
observe the oscillating mode and Landau-Zener tunneling, we
have to reduce the localization of the initial state by decreasing
the strength of the harmonic trap. The dynamics of the system
after decreasing the strength of trap is shown in the second
column of Fig. 4. For the density distribution we actually see
the oscillating mode, but we cannot see the Landau-Zener
tunneling clearly. At time range (TB/4,3TB/4), the particles
in the upper excited Bloch band and the lower Bloch band
are overlapped in real space. This is due to the available
interval for the motion being L ≈ 4/F = 80 for a system with
F = 0.05, but the size of the system is about S ≈ 300. It is
clear that S > L and the overlapped structure appears. After
decreasing the strength of the trap, the strip structure reappears
in the dynamical evolution of the momentum distribution
instead of the windmill structure. Furthermore, the momentum
distribution between the particles in the upper excited and
lower Bloch band are distinguishable despite the fact that they
are overlapped in real space. For the condensate fraction,
the curve is flat again for the time short after turning off
the trap.

So in order to observe the oscillating mode of dynamics
and Landau-Zener tunneling, one has to let L > S. Now we
have to decrease the strength of force F to achieve a bigger
available interval for the motion. Once F is changed, we have
to change δ too to make E0 = 0 for the system still with
Bloch-Zener time TBZ = TB . Furthermore, we have to choose
a small δ to achieve the big enough Landau-Zener tunneling
probability, otherwise we only see the Bloch oscillation but
cannot see the Landau-Zener tunneling. In Fig. 5(a), we
show the dynamical evolution of the density profile for the
system with F = 0.01, δ = 0.08211, and TBZ = TB . Now
we see the clear signals of Bloch oscillation and Landau-
Zener tunneling. The dynamical evolution of the momentum
distribution and condensate fraction are similar to Figs. 4(e)
and 4(f).

IV. CONCLUSION

In summary, we have studied the dynamics of infinitely
repulsive Bose gas in tilted or driven bichromatic optical
lattices. Using the Bose-Fermi mapping and exact numerical
method, we calculate the one-particle density matrices, density
profiles, momentum distributions, natural orbitals, and their
occupations (condensate fraction). Both the short-time and
long-time dynamical evolution of density profile, momentum
distribution, and condensate fraction are studied. The recon-
struction of the system at integer multiples of Bloch-Zener
time is clearly shown. We also give estimations for how to
achieve clear Bloch oscillation and Landau-Zener tunneling in
given many-particle systems.
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APPENDIX A: THE EQUAL TIME GREEN FUNCTION FOR
HARD-CORE BOSONS

The equal time Green function for the hard-core bosons can
be written in the form

Gij (t) = 〈�HCB(t)|bib
†
j |�HCB(t)〉

= 〈�F (t)|
i−1∏
β=1

eiπf
†
β fβ fif

†
j

j−1∏
γ=1

e−iπf
†
γ fγ |�F (t)〉

= 〈�B |�A〉, (A1)

where |�HCB(t)〉 is the wave function of hard-core bosons at
time t after releasing from the harmonic trap and |�F (t)〉 is the
corresponding one for noninteracting fermions. In addition, we
denote

∣∣�A
〉 = f

†
j

j−1∏
γ=1

e−iπf
†
γ fγ |�F (t)〉,

(A2)∣∣�B
〉 = f

†
i

i−1∏
β=1

e−iπf
†
β fβ |�F (t)〉.

The wave function |�F (t)〉 can be easily calculated with
the initial wave function |�G

F 〉,

|�F (t)〉 = e−iHF
e t

∣∣�G
F

〉 =
N∏

n=1

L∑
l=1

Pln(t)f †
l |0〉, (A3)

with

Pln(t) =
N∑

k=1

e−iεk tP ′
lk

N∑
j=1

(P ′∗
jkPjn), (A4)

where we have set h̄ = 1 in the evolution operator, and P (t) is
the matrix of |�F (t)〉 in the same way as |�G

F 〉. In order to get
Eq. (A3), one has to insert

∑L
j=1 |φj 〉〈φj | = 1 into it, where

|φj 〉 = ∑L
n=1 P ′

njf
†
n |0〉 is the lowest jth eigenfunction of HF

e .
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We can see that |�F (t)〉 is still a product of time-dependent
single-particle states.

In order to calculate �A(and �B) we notice that

j−1∏
γ=1

e−iπf
†
γ fγ =

j−1∏
γ=1

[1 − 2f †
γ fγ ]. (A5)

Then, the action of
∏j−1

γ=1 e−iπf
†
γ fγ on the state |�F (t)〉

[Eq. (A3)] generates only a change of sign on the element
Pln(t) for l < j , and one has to add a column to P (t) with
element Pj,N+1 = 1 and all the others equal to zero for the
further creation of a particle at site j. Then

∣∣�A
〉 =

N+1∏
n=1

L∑
l=1

P A
lnf

†
l |0〉 ,

(A6)∣∣�B
〉 =

N+1∏
n=1

L∑
l=1

P B
lnf

†
l |0〉 ,

where P A and P B are obtained from P (t) changing the
required signs and adding the new column.

The Green function is written as

Gij (t) = 〈0|
N+1∏
n=1

L∑
l=1

P B∗
ln fl

N+1∏
n′=1

L∑
l′=1

P A
lnf ′

l |0〉

=
L∑

l1···1N+1,l
′
1···1′

N+1

P B∗
l11 · · · P B∗

lN+1N+1

×P A
l′11 · · · P A

l′N+1N+1〈0|fl1 · · · flN+1f
†
l′lN+1

· · · f †
l′1
|0〉

= det[(P B)†P A], (A7)

which requires

〈0|fl1 · · · flN+1f
†
l′lN+1

· · · f
†
l′1
|0〉 = ελ1···λN+1δl1l

′
λ1

· · · δlN+1l
′
λN+1

(A8)

with ελ1···λN+1 the Levi-Civita symbol and λ = 1 · · · N + 1.

APPENDIX B: THE SINGLE-PARTICLE PROPERTIES
OF HAMILTONIAN He

First of all, for the field-free case with F = 0, a straightfor-
ward calculation yields the dispersion relation

Eβk = (−1)β+1
√

δ2 + 4cos2(k) (B1)

and corresponding wave functions |χβ(k)〉 (Bloch bands and
Bloch waves) with the miniband index β = 0,1. For nonzero F,
the spectrum of the Hamiltonian consists of two Wannier-Stark
ladders with an offset in between. After introducing translation
operator

Tm =
∞∑

n=−∞
b
†
n−mbn (B2)

and an operator G that causes the inversion of the sign of δ in

the Hamiltonian,

GHe(δ) = He(−δ)G, [Tm,G] = 0, (B3)

an eigenvector |�〉 of He with the eigenvalue E(δ,F ) satisfies

He{T2l|�〉} = {E(δ,F ) − 2lF }{T2l|�〉},
(B4)

He{T2l+1|�〉} = {E(−δ,F ) − (2l + 1)F }{T2l+1|�〉}.
Thus, the eigenenergies of the Hamiltonian

E0,n = E(δ,F ) + 2nF,
(B5)

E1,n = E(−δ,F ) + (2n + 1)F,

consists of two Wannier-Stark ladders with the corresponding
eigenstates |�β,n〉 = T−(2n+β)G

β |�〉 [22]. A further calcula-
tion can prove that E0 ≡ E(δ,F ) = −E(−δ,F ).

For an initial state expanded on the Wannier-Stark basis,

|〉 =
∑

n

c0,n|�0,n〉 +
∑

n

c1,n|�1,n〉, (B6)

the dynamics of |〉 under the Hamiltonian He is given by

|(t)〉 =
∑

n

c0,ne
−iE0,nt |�0,n〉 +

∑
n

c1,ne
−iE1,nt |�1,n〉.

(B7)

Expanding Wannier-Stark functions on the Bloch basis,

|�β,n〉 =
∫ π

2

− π
2

aβn(k)|χ0(k)〉dk +
∫ π

2

− π
2

bβn(k)|χ1(k)〉dk,

(B8)

and projecting |(t)〉 on the Bloch basis, one can get

〈χ0(k)|(t)〉 = e−iE0t [a0,0(k)C0(k + F t)

+ a1,0(k)e−i(F−2E0)tC1(k + F t)],
(B9)

〈χ1(k)|(t)〉 = e−iE0t [b0,0(k)C0(k + F t)

+ b1,0(k)e−i(F−2E0)tC1(k + F t)],

where Cβ are the Fourier series of cβ,n:

Cβ(k + F t) =
∑

n

cβ,ne
−i2n(k+F t), (B10)

which are π periodic. To get Eq. (B9) one has to use
T−2n|χβ(k)〉 = e−i2nk|χβ(k)〉 (translation of Bloch waves).
From Eq. (B9), one can see that the dynamics of a particle is
characterized by two periods: Cβ are functions with a period
of

T1 = π

F
, (B11)

whereas the exponential function e−i(F−2E0)t has a period of

T2 = 2π

F − 2E0
. (B12)

T1 is half of the Bloch time TB = 2π/F for the single-band
system (δ = 0). In general, if T1 and T2 are commensurate,

T1

T2
= 2F

F − 2E0
= m

n
with n,m ∈ N, (B13)

thus the wave function is reconstructed at integer multiples of
Bloch-Zener time (TBZ = nT1).

033605-7



XIAOMING CAI, SHU CHEN, AND YUPENG WANG PHYSICAL REVIEW A 84, 033605 (2011)

[1] F. Bloch, Z. Phys. 52, 555 (1928).
[2] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and

C. Salomon, Phys. Rev. Lett. 76, 4508 (1996).
[3] M. Glück, A. R. Kolovsky, and H. J. Korsch, Phys. Rep. 366,

103 (2002).
[4] J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham,

T. Meier, G. vonPlessen, A. Schulze, P. Thomas, and S. Schmitt-
Rink, Phys. Rev. B 46, 7252 (1992).

[5] T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and
F. Lederer, Phys. Rev. Lett. 83, 4752 (1999).

[6] R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and
Y. Silberberg, Phys. Rev. Lett. 83, 4756 (1999).

[7] L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).
[8] C. Zener, Proc. R. Soc. London 137, 696 (1932).
[9] E. Majorana, Nuovo Cimento 9, 43 (1932).

[10] E. C. G. Stückelberg, Helv. Phys. Acta 5, 369 (1932).
[11] B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998).
[12] B. Rosam, K. Leo, M. Gluck, F. Keck, H. J. Korsch, F. Zimmer,

and K. Kohler, Phys. Rev. B 68, 125301 (2003).
[13] H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel,

A. Brauer, and U. Peschel,Phys. Rev. Lett. 96, 023901 (2006).
[14] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[15] A. Görlitz, T. Kinoshita, T. W. Hänsch, and A. Hemmerich, Phys.
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