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We investigate the absorption of two identical photons from the ground state of hydrogen-like atoms over an
energy range that extends beyond that explored up to now. Our approach is based on a hybrid formula, valid in
second-order perturbation theory, in which the A2 contribution from the nonrelativistic Hamiltonian is treated
exactly, while the A · P contribution is calculated in dipole approximation. We find that, at least up to 50 keV,
the nonrelativistic dipole approximation, based only on the A · P contribution, determines the values of the total
cross section. Our numerical results, covering photon energies from 90 nm (13.7 eV) to 0.0248 nm (50 keV) are
in very good agreement with most previous theoretical works. Differences with recent results are discussed.
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I. INTRODUCTION

The interest in the ionization of atoms through simultaneous
absorption of two identical infrared photons started well
before its experimental detection in 1962 [1], and it is still a
challenging problem at shorter wavelengths. Well-documented
studies of the nonlinear processes from the microwave to the
ultraviolet frequencies do exist, and they led to numerous
applications. With the emergence of x-ray free-electron lasers
(XFEL) these studies have been extended to the extreme
ultraviolet (euv) and x-ray photon energy range [2,3]. A recent
experiment illustrates the application of a femtosecond kilovolt
x-ray beam (at the SLAC National Accelerator Laboratory):
with energy near the ionizing threshold of the 1s electrons of
neon (1196 eV), Doumy et al. [4] have found evidence of the
two-photon direct ionization of Ne8+.

It is expected that new experimental results, such as those
cited above, will stimulate the development of theoretical
approaches able to describe nonlinear processes with intense
and short pulses in the x-ray domain, which has not been thor-
oughly investigated up to now. Furthermore it will be necessary
to study the case of complex (many-electron) atoms, which is
far from being well understood in the context of multiphoton
absorption. Keeping this objective in mind, we first focus on
the case of one-active-electron atoms and ions. The purpose
of the present theoretical study is to reconsider the case of
the hydrogenic atom (fixed nucleus with charge Z) interacting
with a monochromatic radiation. Our calculation is extended
to photon energies as high as 50 keV; results above this energy,
shown in order to clarify properties of the various contributions
to the cross section, have to be reconsidered with relevant rela-
tivistic equations. The nonrelativistic analytic formulas we use
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are valid in second-order perturbation theory and are adequate
for the case of most xuv and x-ray sources under construction,
which are, in general, not too intense. Regarding the latter
point, it is worth recalling that the ponderomotive energy of
a quasifree electron in a focused x-ray beam (of the order of
keV), with a peak intensity of ∼1017 W cm−2 produced at the
Atomic Molecular and Optical Science (AMOS) end station at
Linac Coherent Light Source (LCLS) [4], is totally negligible
compared to the binding energy of the electron. Therefore
nonperturbative effects, like recollision processes, are absent.
This is the chief difference between nonlinear ionization in
the x-ray field and its counterpart under a long wavelength at
similar intensity. The immediate consequence is that lowest-
order perturbation theory (LOPT) applies in the present case.

The hydrogen case has been extensively discussed and
investigated in the low photon energy range, for energies close
to (or smaller than) the photoeffect threshold at 91.18 nm; to
our knowledge the shortest wavelength considered is 2 nm [5].
For details on the existing LOPT calculations, see the review
of Maquet et al. [6] and the paper of Karule and Moine [7]
(and references therein). An interesting analytic result is the
derivation of the ratio between the maximum values of the
cross sections for circular and linear polarization in the case of
two- and three-photon absorption [8] and then for N -photon
absorption [9,10]. Karule has obtained accurate values for
generalized cross sections of two-photon ionization of the
hydrogen ground state [5,11] and hydrogen excited states
with principal quantum number n ranging from 2 to 8 [12].
Recently, Karule also investigated above-threshold ionization
of ns hydrogen states with the absorption of up to four excess
photons [13] in an energy range that extends from 90 to 10 nm.

In a recent paper, Varma et al. [14] explore two-photon
ionization of H with photon energies up to 8 keV. LOPT
is used and retardation effects are partially included in the
nonrelativistic transition amplitude. It is expressed with two
terms: the first one, A2 (where A is the vector potential in the

033425-11050-2947/2011/84(3)/033425(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.033425


VIORICA FLORESCU, OLIMPIA BUDRIGA, AND HENRI BACHAU PHYSICAL REVIEW A 84, 033425 (2011)

Coulomb gauge), vanishes exactly in the dipole approximation
(DA); the second one, due to the second-order contribution
of the interaction term A · P (where P is the momentum
operator), is treated within the DA. We adopt this approach
in the present paper; we will put emphasis on the relative
role of the contributions coming from A2 and A · P terms,
using analytic formulas. As we will see, our conclusions differ
significantly from those of Varma et al. For the A2 term, we
also discuss the approximation where the final continuum state
is treated like a free wave (neglecting the Coulomb effect).

Regarding analytic results based on Coulomb’s Green’s
functions, a brief description of the situation of the problem
is the following: nonrelativistic closed-form analytic formulas
for the two-photon transition amplitude have been derived
by Klarsfeld, both with retardation included [15] and in DA
approximation [16]. The same expression of the transition
amplitude can be easily obtained from Gavrila’s analytic for-
mulas describing K-shell Compton scattering [17,18]. In the
nonrelativistic context the retardation effects related to the term
A · P have never been evaluated. On the basis of a relativistic
treatment, Koval et al. [19] and [20] have used the partial-wave
expansions of the relativistic Coulomb Green’s matrix and
the continuum-state bispinor in order to obtain exact analytic
expressions but not in closed form as in the nonrelativistic
case, which is not tractable analytically. They were primarily
interested in the case of medium- and high-Z hydrogen-like
ions at two photon energies: 5% and 40% above the two-photon
threshold. The effects of the nuclear charge Z on the cross
section and electron angular distributions have been studied
by the same authors [20], but not on their energy dependence.

This paper is organized as follows: the equations and
analytic formulas are briefly presented in Sec. II; most of them
are derived from previous works, and details are presented
in Appendixes A and B. In Sec. III we present and discuss
our results; they are compared with other calculations, and
we also show cross sections at photon energies for which
there are not available data in the literature. The figures and
Table I cover both the cases of linearly and circularly polarized
photons. When extending our calculation above 10 keV, we
are guided by the peculiar features of other fundamental
processes [21] in this energy domain. In particular, cancellation
of relativistic and retardation effects is known to occur in
one-photon absorption and Compton and Rayleigh scattering.
The situation is analyzed in Appendix B for the A2 contribution
to the total cross section, for which simple expressions based
on algebraic transformations are given.

II. THEORETICAL APPROACH

We consider here the case of a hydrogen-like atom with
a fixed nucleus of charge −Ze (with the electron charge
e < 0). As explained in the Introduction, LOPT is used,
which, for two-photon ionization, is of second order in the
atom-photon interaction. This leads to the well-known ex-
pression for the nonrelativistic transition amplitude associated
with two-photon ionization from a bound electron, including
retardation,

Mret
NR = 〈En− | e

2i
h̄

κ ·r s2 − 2

m
e

i
h̄
κ ·rs · P

×G(E1 + h̄ω+iε) s · P e
i
h̄
κ ·r | E1〉, ε→0+, (1)

G(�) =
∑

n

| n 〉〈 n |
En − �

, (2)

where E1 is the initial electron energy, κ is the photon
momentum, and h̄ω is its energy. The emitted electron has
an energy E and an asymptotic direction characterized by
the unity vector n; the corresponding energy eigenfunction
〈 r | En−〉 is normalized on the energy and solid-angle scales,
and it has the ingoing asymptotic behavior. This leads to
a matrix element with the same dimension as

√
1/E. The

vector s is the polarization vector of the photon, normalized
as s∗ · s = 1; it is real for linear polarization, and otherwise, it
is complex. As mentioned in the Introduction, in the case
of ground-state hydrogen-like atoms, analytic expressions
for the two-photon transition amplitude have been already
established.

The final energy of the electron is

E = E1 + 2h̄ω , ω � | E1 |
2h̄

,

(3)

E1 = − λ2

2m
, λ = αZmc,

where m is the electron mass, c is the velocity of light, and
α is the fine-structure constant. The two-photon absorption
threshold is half of the photoelectric threshold. For low-Z
elements this nonrelativistic threshold is low (it reaches
1.06 keV for Z = 13), so the absorption of two photons in
the low energy range is well described in DA. Given that
the contribution of the first term in the matrix element given
in Eq. (1) (i.e., the A2 contribution, called the sea-gull term
in the literature of Compton scattering) vanishes in DA, the
absorption of low-energy photons has been described in the
literature by using the second term in Eq. (1), taken in DA.

For photon energies ranging from the two-photon to the
one-photon (photoelectric) ionization thresholds, ionization is
energetically possible only through the absorption of at least
two photons. Above the second threshold one-photon and two-
photon ionization are both possible.

As mentioned in the Introduction, there are no published
results for photon energies above 2 nm (620 eV). In order to
extend the calculations to higher energies, we use a hybrid
approach where we consider the contribution of both terms in
Eq. (1), but retardation is included only in the first term. Under
the latter assumption the transition amplitude reads

Mhyb
NR = 〈En− | e

2 i
h̄

κ ·rs2 − 2

m
s · P

×G(E1 + h̄ω + iε)s · P | E1 〉 , ε → 0+. (4)

As already mentioned, our approach is close to the one adopted
by Varma et al. [14]; the difference is that we do not use
approximations to evaluate the different terms in Eq. (4). A
similar approach has been recently used by Drukarev et al. [22]
in a study of Compton scattering in the low-energy domain.

We reproduce here the structure of the matrix element (4),
using notations close to [17] and [18],

Mhyb
NR = MA2 + MDA

A·P, (5)

MA2 = Oabs−two s2 ,
(6)

MDA
A·P = − 2 [PDA s2 + T DA (s · n)2 ] .
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The analytic expressions used for the invariant amplitudes
Oabs−two ,PAD, and T AD are obtained from Eqs. (23), (81),
and (82) of [17], respectively, by using κ2 = −κ1 ≡ −κ (in
the case of radiation scattering κ1 is the absorbed photon
momentum and κ2 is the emitted photon momentum). The
invariant amplitudes PDA and T DA are given in Appendix A;
see Eq. (A1). They are expressed in terms of three Appell’s
functions F1 in which appropriate expressions are given to the
parameters and variables.

Appendix B gives the analytic expression of Oabs−two in
Eq. (B2). We define first the matrix element (B1), which
becomes Oabs−two if the explicit expression of the parameters
λ and η (related to the nuclear charge) appearing in the
initial (ground state) and final (continuum) wave functions,
respectively, are used together with the specification of K and
the use of the conservation energy law. This allows us to do two
different operations : (i) to distinguish easily the contributions
of the plane wave and first-order Born approximations and
(ii) to follow the effect of the energy conservation on σA2 ,
the contribution of A2 to the total cross section. As a result,
we show that the zero-order (plane wave) and first-order Born
approximations are of the same order in α Z. Then we derive
simple formulas for σA2 : Eq. (B15) in the nonrelativistic case
and Eq. (B18) based on the relativistic energy conservation.
The nonrelativistic formula has spurious poles, which are
not present in (B18). This situation is connected with the
more general problem of cancellation between relativistic and
retardation effects [21]. In Sec. III the particularities of σA2 ,
one connected with the Born approximation and the other with
the energy conservation, are illustrated (see Fig. 3).

The transition rate d	 for two-photon ionization is pro-
portional to the second power of the photon flux J , defined
as the number of photons crossing the unity surface in the
unity of time. In the literature one can find two definitions
for a “generalized cross section.” Dividing d	 by J leads to
a quantity d̃σ with the dimension of a surface. Some authors
divide it once more by J , getting a cross section independent
of the photon flux,

dσ = d̃σ

J
= d	

J 2
, (7)

leading to a generalized cross sections in cm4 s. Other authors
divide d̃σ by the radiation intensity I = h̄ω J and get

dσgen = d̃σ

I
= d	

h̄ωJ 2
. (8)

They express their results in cm4 W−1. We adopt definition
(7), which leads to

dσ hyb = 2π3α2

ω2

h̄3

m2

∣∣Mhyb
NR

∣∣2
d�n, E = E1 + 2h̄ω. (9)

For angular distributions, we use a Cartesian system of
reference with the z axis taken along the initial photon
momentum κ . In the case of linear polarization the x axis
is taken along the polarization vector. The polar angles of p
are denoted by θ and φ. The total cross section σ hyb is obtained
by integrating over the direction of the emitted electron. The
amplitude Oabs−two depends on the electron angle θ but not on
the azimuthal angle φ. The amplitudes PDA and T DA do not
depend on angles.

Following the work of Varma et al., one of our objectives is
to establish under which conditions the term MA2 comes into
play and to identify the energy region where the interference
with the term MDA

A·P becomes non-negligible. To this purpose,
we write the differential cross section (DCS) as the sum of
three terms:

dσ hyb = dσA2 + dσ DA
A·P + dσinterf . (10)

The same splitting is done for the total cross section

σ hyb = σA2 + σ DA
A·P + σinterf . (11)

The angular integration is performed analytically for the three
separate terms, but it is not straightforward to extract an
analytic expression for the interference term.

In the case of circular polarization, as s2 = 0, the DCS
reduces to

dσ hyb
circ = 2π3α2

ω2

h̄3

m2
| T DA |2 sin4 θd�. (12)

For the cross section σ DA
A·P, which dominates (at least up to

photon energies of 50 keV, as we shall see below), a simple
scaling low is valid: Z6σ DA

A·P(Z,ω) = σ DA
A·P(1,ω/Z2) [23].

III. DISCUSSION AND NUMERICAL RESULTS

The evaluation of MA2 is straightforward (see Ap-
pendix B); for MDA

A·P one needs to evaluate the three Appell
functions described in Appendix A; see Eq. (A2). We calculate
them by using their standard integral representation (an
integral on the real axis extended from 0 to 1 [24]), a method
we already tested in the past [25]. Note that the procedure
cannot be applied for τ � 2 [τ is defined in Eq. (A6)] due to
the presence of a singularity at the origin in the integrand. This
limit corresponds to a photon energy of 3/8| E1 | (| E1 | is the
photoeffect threshold).

Figure 1 refers to the low-energy region, ranging from 13.7
to 800 eV. The contributions σA2 and σ DA

A·P are shown separately.
The first quantity is smaller than the second one by orders of
magnitude, so it is shown multiplied by the factor 2 × 103.
It is evident that the nonrelativistic dipole approximation is
valid within this photon energy range. For circularly polarized
radiation there is no contribution from the A2 term of the
interaction. The comparison with other calculations for the
total cross section σ DA

A·P shows an excellent agreement, both
for linearly and circularly polarized photons. At the photon
energy of 620 eV (2 nm), our result for σgen, defined in Eq. (8),
coincides with that published by Jayadevan and Thayyullathil
[26] with four significant digits.

Our calculations disagree with the results presented by
Varma et al. [14] for the case of linear polarization. Our
cross sections are much larger than the ones presented in
Fig. 1 of [14], and the disagreement increases with the photon
energy: at 600 eV our results are two orders of magnitude
higher than theirs.

We present in Fig. 2 our results for photon energies
ranging from 0.8 to 50 keV, with the two contributions shown
separately since the interference term is negligible. Here we
compare with Fig. 2 of [14], which refers to linear polarization
and photon energies below 10 keV. Now the A2 term is in
agreement with the curve labeled A2 (Coulomb wave) in
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FIG. 1. The contribution σ DA
A·P to the total cross section [see

Eq. (11)] for linearly (solid line) and circularly (dashed line) polarized
photons vs the photon energy in the range 13.7–800 eV. Other
calculations are also presented; see the legend. The much smaller
contribution σA2 is also shown (magnified by a factor of 2 ×103).

Fig. 2 of [14], but the results for σ DA
A·P disagree again. Figure 2

shows that the nonrelativistic dipole term continues to give the
dominant contribution; the crossing displayed in Fig. 2 of [14]
is not observed in our data, with the two curves being almost
parallel. We illustrate the differences between our results for
σA·P (expressed in cm4 s) and those given in [14] at 5 and
8 keV, where our calculations give 2 × 10−65 for 5 keV and
1.5 × 10−66 for 8 keV. These two latter values have to be
compared with the cross sections extracted from Fig. 2 of [14],
which are close to 4.2 × 10−68 for 5 keV and 2 × 10−69 for
8 keV. The origin of such a large discrepancy is unclear;
nevertheless, we have to remark that the calculation of A · P
contribution in [14] is based on an approximation [see Eqs. (11)
and (12) of [14]], which requires a better justification, while
we use exact analytic expressions.

For the range 5–50 keV the difference between σA2 , ex-
pressed with the plane-wave approximation [see the discussion
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FIG. 2. The term σ DA
A·P in the total cross section [see Eq. (11)] for

linearly (solid line) and circularly (dashed line) polarized photons vs
the photon energy in the range 0.8–50 keV. The quantity σA2 is also
shown (dotted line).
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FIG. 3. The term σA2 of the total cross section [see Eq. (11)] vs
the photon energy in the range 5–50 keV and linear polarization.
Solid line: calculation with the nonrelativistic energy conservation
law [see Eq. (3)]; dashed line: calculation with the relativistic law [see
Eq. (B16)]. The dotted line is based on the plane-wave approximation;
see Eq. (B19).

in Appendix B and Eq. (B19)], and the exact result is shown
in Fig. 3.

Table I gives, at fixed photon energies, the total cross
section for circularly polarized photons (third column). For
linear polarization, the fourth column gives the contribution
σ DA

A·P, which up to 10 keV is practically identical to σ hyb, which
is shown in the fifth column (only when they are different). For
larger photon energies differences of the order of a few percent
appear.

Above 10 keV we enter a domain where both retardation
and relativistic effects have to be included, but we expect these

TABLE I. The total cross sections σ circ
A·P , σ lin

A·P, and σ hyb given in
cm4 s for photon energy in the 0.6–50 keV range.

E (keV) λ (Å) σ circ
A·P σ lin

A·P σ hyb

0.6 20.66 1.30 × 10−60 1.91 × 10−60

0.7 17.71 5.47 × 10−61 8.36 × 10−61

0.8 15.49 2.76 × 10−61 4.08 × 10−61

0.9 13.77 1.46 × 10−61 2.16 × 10−61

1 12.40 8.31 × 10−62 1.23 × 10−61

1.25 9.91 2.49 × 10−62 3.69 × 10−62

1.5 8.26 9.28 × 10−63 1.38 × 10−62

1.75 7.08 4.03 × 10−63 5.99 × 10−63

2 6.19 1.95 × 10−63 2.91 × 10−63

3 4.13 2.16 × 10−64 3.23 × 10−64

4 3.10 4.52 × 10−65 6.76 × 10−65

5 2.47 1.34 × 10−65 2.00 × 10−65

6 2.06 4.97 × 10−66 7.43 × 10−66

8 1.55 1.03 × 10−66 1.54 × 10−66

10 1.24 3.06 × 10−67 4.58 × 10−67 4.61 × 10−67

15 0.83 3.33 × 10−68 5.00 × 10−68 5.04 × 10−68

20 0.62 6.91 × 10−69 1.03 × 10−68 1.04 × 10−68

25 0.49 2.03 × 10−69 3.05 × 10−69 3.10 × 10−69

30 0.41 7.51 × 10−70 1.12 × 10−69 1.15 × 10−69

40 0.31 1.55 × 10−70 2.32 × 10−70 2.40 × 10−70

50 0.25 4.57 × 10−71 6.85 × 10−71 7.15 × 10−71
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effects to be small below 40–50 keV. The interaction of low-Z
hydrogen-like atoms with electromagnetic radiation up to
50-keV photon energy is usually treated within nonrelativistic
quantum theory and, for fields of moderate intensities, in
perturbation theory. The most studied case is that of one-
photon absorption (atomic photoeffect). For low energies,
the dipole approximation is usually adopted, with retardation
corrections being small. Relativistic calculations indicate a
cancellation between relativistic and retardation corrections
[21,27]. In the Coulomb case this cancellation was analyzed by
Costescu and Spanulescu [28] for K-shell Compton scattering
and by Costescu et al. [29] for K-shell Rayleigh scattering, and
the consequences on photoeffect were also discussed. When
handled directly, the cancellation occurring in the photoeffect
becomes very transparent. In the latter processes it appears that
the nonrelativistic total cross sections calculated within DA
provide a better approximation than the total nonrelativistic
cross sections including retardation. Angular distributions are
much more sensitive to retardation effects at photon energies
where relativistic effects are negligible.

A complete analysis of the case of two-photon absorption
would require working with the expression [Eq. (1)] of the
transition amplitude, which includes retardation in the A · P
contribution, leading to a more complicated analytic expres-
sion than in the DA version [15]. Nevertheless, as in the cases
mentioned before (K-shell Compton and Rayleigh scattering),
we have to also consider relativistic effects, in particular the
differences coming from the use of the relativistic instead
of nonrelativistic energy conservation formulas. In order to
illustrate this aspect, we have considered the simpler case of
σA2 . As already mentioned in Sec. II, using relation (B16),
which expresses the energy conservation for the relativistic
energies of the bound and final electrons, we end up with
Eq. (B18) instead of Eq. (B15), based on the nonrelativistic
Eq. (3). The comparison between the two expressions shows
that the differences become visible at a photon energy of
10 keV, as shown in Fig. 3, covering the photon energy range
5–50 keV. These differences increase with the photon energy
in the photon energy range 50–200 keV; see Fig. 4.

Figure 4 covers, for linearly polarized photons, energies
above 50 keV, beyond the expected region of validity of
nonrelativistic equations. The purpose is to show the behavior
with increasing energy of the three contributions to the total
cross section (11). We have considered the two possibilities
for the energy conservation (relativistic or nonrelativistic
energy conservation law) to calculate the first term on the
right-hand side of Eq. (5). They practically do not affect the
interference term in Eq. (11); therefore we show σ NR

A2 and
σ rel

A2 , which cause the differences in the total cross section.
The dominant contribution continues to be given by σ DA

A·P,
so the two curves for the total cross section are close. We
note that for the nonrelativistic quantity σ NR

A2 tends to increase,
leading to a crossing at 179 keV with the curve representing
σ DA

A·P. The increase is related to the presence of spurious
poles at mc2(1 ± iαZ), as explained in Appendix B. For the
same reason, at shorter wavelengths this term would show
a maximum if the nonrelativistic conservation energy law
is applied, while it decreases monotonically if relativistic
kinematics is considered. We expect a similar modification
in the second term of (1), which was treated here in DA.

50 75 100 125 150 175 200
Photon energy (keV)
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-74

10
-72
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-70

σ 
(c

m
4 s)

A·P

A
2

rel
+A·P

A
2

NR
+A·P

A
2

rel

A
2

NR

FIG. 4. The total cross section σ hyb and the term σA2 [see Eq. (11)]
using the relativistic and nonrelativistic conservation laws expressed
in Eqs. (B16) and (3), respectively. The photon energies vary from
50 to 200 keV, and linear polarization is considered.

Nevertheless, as below 50 keV the deviations from DA should
not be significant, at least for low Z, we expect that our results
for Z = 1, displayed in Figs. 1 and 2 and in Table I, should
be very close to the exact fully relativistic ones. Our next
objective is to investigate the case of hydrogen-like ions and
the retardation effects on the A · P contribution.

IV. CONCLUSIONS

Our study of two-photon ionization of hydrogen in a
fundamental state covers a photon energy range starting from
the infrared region, which has been extensively investigated in
the past, to a maximum value of 200 keV. The two-photon
amplitude has been expressed in analytic form, using the
nondipole approximation for the term A2. Although we have
found differences with the recent calculations of Varma et al.
[14], our values agree very well with the other calculations. The
main conclusion is that, at least up to 50 keV, the nonrelativistic
dipole approximation formula, based on the second-order
contribution of the A · P of the electron-photon interaction, is
valid. The A2 term of the interaction, which was suspected to
bring a retardation correction in the keV range [14], was found
to give a small contribution. Nevertheless, if the difference
between calculations based on dipole approximation and
full calculation is small at 50 keV, it is not negligible. We
have thoroughly investigated various approximations used to
calculate A2 in order to clarify the discrepancy with previous
results and to present its sensitivity to relativistic corrections.
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APPENDIX A: THE DIPOLE APPROXIMATION
ANALYTIC RESULTS

The dipole approximation result, coming from the term
A · P in the Hamiltonian, considered in second-order perturba-
tion theory, is determined by the two invariant amplitudes PDA

and T DA in (6). Their compact analytic expressions, obtained
using [17], as described after Eq. (6), are

PDA(�) = N (X − ip)−iη−3(X + ip)iη−1 τ

(1 + τ )4

f1

2 − τ
,

T DA(�) = 2N (X − ip)−iη−3(X + ip)iη−3 p2(1 − iη)(2 − iη)

(1 + τ )4

×
[

f2

2 − τ
−

(
1 − τ

1 + τ

)4
f3

4 − τ

]
, (A1)

with f1,f2, and f3 being the three Appell functions,

f1 = F1(2 − τ ; 3 + iη,1 − iη; 3 − τ ; x,y), (A2)

f2 = F1(2 − τ ; 3 + iη,3 − iη; 3 − τ ; x,y),
(A3)

f3 = F1(4 − τ ; 3 + iη,3 − iη; 5 − τ ; x,y),

depending on the variables

x = X − λ

X + λ

X + ip

X − ip
, y = X − λ

X + λ

X − ip

X + ip
. (A4)

The argument � of the amplitudes PDA and T DA comes from
the Green’s function in (4) and has the expression

� = E1 + h̄ω + iε , ε → 0+. (A5)

It determines the two quantities X and τ in the previous
expressions,

X2 = −2m�, ReX � 0 , τ = λ

X
. (A6)

The quantity η is introduced by the continuum wave function
(B5), and the constant factor N is

N = (32/π )(2λ5pm)1/2	(1 − iη) exp

(
π

2
η

)
,

(A7)
η = λ/p , λ = αZmc.

Between the two-photon and one-photon absorption thresh-
olds, one has � < 0, and consequently, X is real. Above
the photoelectric threshold X is purely imaginary, namely,
X = −i | X |.

APPENDIX B: ON THE CONTRIBUTION OF THE A2 TERM

The contribution of the A2 term comes from the first term
in (4). In order to discuss it in more detail, we consider the
integral

O = 〈En− | e
i
h̄

K·r | E1 〉 , E = p2/2m , n = p/p,

(B1)

with the continuum energy eigenfunction normalized in the
energy and solid-angle scale. Due to its behavior toward the
rotation, O does not depend on p and K separately but only on
their magnitudes and the angle between them.

The analytic expression of O was established almost 80
years ago [30] and has been used and rederived many times
in the literature. In the case of the absorption of two identical
photons, we have to replace K by 2κ . Then Eq. (23) of [17]
becomes

Oabs−two = N

8
O1O2O3 , O1 = K2 − (1 + iη)p · K,

(B2)

O2 = [K2 + (λ − ip)2]−1−iη ,
(B3)

O3 = [(K − p)2 + λ2]−2+iη , K = 2κ,

with N in (A7).
For reasons explained further we have redone the analytic

calculations of (B1). During the calculation we have consid-
ered λ, brought by the ground-state wave function,

〈 r | 1s 〉 = 1√
π

(
λ

h̄

)3/2

e− λ
h̄
r , (B4)

and η coming from the continuum-state eigenfunction,

〈 r | En−〉 =
√

mp

(2πh̄)3
eπη	(1 + iη)

× e
i
h̄

p·r
1 F1( − iη,1; − i

h̄
(pr + p · r)), (B5)

as independent parameters. The difference in our result and
that written in (B2) appears only in the factor O1; namely, we
find instead of it

Õ1 = 1

2λ
[(λ − ηp)(λ − ip)2 + (λ + ηp)K2

− 2η(p + iλ)p · K]. (B6)

As a matter of fact, if one uses of the relation η = λ/p, Õ1

and O1 coincide.
The expansion in η of the matrix element O gives the

successive terms of the Born approximation for the continuum
wave function. In the exact result (B2) η appears in the factor
N , in the exponents of O2 and O3, and in the quantity O1 we
are analyzing now.

By setting η = 0 in Õ1 we neglect the Coulomb effect on the
ejected electron, getting the contribution of the zeroth-order
term in the Born series, i.e., the contribution of the plane
wave:

Õ1|η=0 = 1
2 [(λ − ip)2 + K2]. (B7)

Indeed, based on it, with η = 0 in all terms, we get

O
∣∣∣∣∣ η=0 =

√
8λ5mp

π

1

[(p − K)2 + λ2]2
, (B8)

which is identical to the result obtained directly from (B1)
by using the plane wave (adequately normalized) as an
approximation for the final-state wave function 〈 r | En−〉.
At the same time, taking η = 0 in O1, we get

O1|η=0 = K2 − p · K. (B9)

Obviously, the expressions Õ1|η=0 in (B7) and O1|η=0 here
do not coincide. The difference comes from the fact that,
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using η = λ/p in Eq. (B6), the first term is 0 and, inside the
parentheses of the second one, the term with η has the same
contribution as the other term. One concludes that the zeroth-
and first-order Born approximations lead to contributions of
the same order αZ. The situation described here is similar to
the well-known case of the matrix element of r between initial
and final states similar to the ones used here. This is, in fact, due
to the particular behavior of the ground-state eigenfunction,
which, in momentum space, has the property (for λ → 0)

u0(p) → C0
π2

λ
δ(p) , C0 =

√
8λ5

π2
. (B10)

As shown in Fig. 3, the plane-wave approximation leads
to an overestimation of the integral (B1), and it is a poor
approximation, in agreement with the data displayed at lower
energies in Fig. 2 of Varma et al. [14] for the A2 contribution.

When integrating the differential cross section associated to
A2 over the electron direction, one gets, after some algebraic
manipulations, the expression of the cross section,

σA2 = 211π3

3

α2h̄5

mc2
λ6 exp(2ηφ)

1 − exp(−2πη)

12κ2 + p2 + λ2

(A2 − B2)3
,

(B11)

where

A = 4κ2 + p2 + λ2 , B = −4κp (B12)

and

cos φ = 4κ2 + λ2 − p2

√
A2 − B2

, sin φ = −2λp√
A2 − B2

. (B13)

If in the previous expressions the variables p and κ are
connected by the conservation law (3), the numerator in (B11)
becomes

A2 − B2 = 16κ2[(mc − κ)2 + λ2]. (B14)

The total cross section is then

σ NR
A2 = 2π3

3

α2h̄5

mc2
λ6 exp(2ηφ)

1 − exp(−2πη)

mc + 3κ

κ5[(mc − κ)2 + λ2]3
.

(B15)

One sees that the contribution of the A2 term to the total cross
section has another particularity: the denominator in (B15)
presents two poles in the complex plane of κ , located at mc ±
iλ. Its presence brings a fictitious maximum of the quantity
σ NR

A2 . It was remarked in the cases of photoeffect [21] and
Compton [27,28] and Rayleigh scattering [29] that this pole
disappears if the relativistic energy conservation law is used.
This is also our case: if p and κ are connected by the relativistic
relation√

m2c4 + c2p2 = E0 + 2cκ , E0 = mc2
√

1 − (αZ)2,

(B16)

then we get an expression free of poles,

(A2 − B2)rel = 16κ2m2c2; (B17)

the corresponding term in the total cross section is

σ rel
A2 = 2π3

3

α2h̄5

mc2
(αZ)6 exp(2ηφ)

1 − exp(−2πη)

E0
c

+ 4κ

κ5
.

(B18)

The differences between the results for σA2 obtained with the
two versions (nonrelativistic and relativistic) of the energy
conservation law are discussed in relation to Figs. 3 and 4.

Although it is a very poor approximation, for the sake of
completeness, we include the cross section σ

NR,p−w
A2 evaluated

with a plane wave, i.e., using (B7):

σ
NR,p−w
A2 = π2

12

α2h̄5

mc2
(αZ)5 p

mc

3m2c2 + 10mcκ − λ2 + 3κ2

κ6[(mc − κ)2 + λ2]3
.

(B19)
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