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Quantum beat oscillations in the two-color-photoionization continuum of neon and their
dependence on the intensity of the ionizing laser pulse
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We investigate quantum beat oscillations in the photoionization continuum of Ne atoms that are photoionized
by absorption of two photons via a group of excited bound states using ultrashort extreme ultraviolet and
infrared laser pulses. The extreme ultraviolet pulse starts an excited-state wave packet that is photoionized by
a high-intensity infrared pulse after a variable time delay. We analyze the continuum quantum beats from this
two-step photoionization process and their dependence on the photoelectron kinetic energy. We find a pronounced
dependence of the quantum beat amplitudes on the photoelectron kinetic energy. The dependence changes
significantly with the applied infrared laser-pulse intensity. The experimental results are in good qualitative
agreement with a model calculation that is adapted to the experimental situation. It accounts for the intensity
dependence of the quantum beat structure through the coupling of the excited-state wave packet to other bound
Ne states induced by the high-intensity infrared laser pulse.
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I. INTRODUCTION

Quantum beats in the total photoionization yield are found
when a time-dependent bound-state electron wave packet is
photoionized using a laser pulse that is short compared to
the time evolution of this wave packet. The beating of the
photoionization yield reflects the energy differences between
the involved bound states that make up this wave packet.
These quantum beats have been used to trace, for example, a
Rydberg electron on its orbit [1] and electron spin precession
in coherently excited fine structure levels [2]. They are also
detectable in differential photoelectron-kinetic-energy and
angular distributions [3,4].

Here we describe and interpret quantum beat oscilla-
tions observed in the photoelectron-kinetic-energy distribution
when an atomic system is photoionized by absorption of two
laser photons via bound electronic states. The model system
we used in this investigation is the neon atom. We find that
the quantum beats map bound-state dynamics induced by
a high-intensity ionizing laser pulse into the kinetic-energy
distribution of the photoelectrons. This specifically means
that the quantum beat structures sensitively depend on the
intensity of the ionizing laser pulse, which simultaneously
induces population transfer among bound states and ac Stark
shifts of these states.

Quantum beats in the photoionization continuum at specific
electron kinetic energies are found, provided that the same final
state of the system consisting of the photoion and the photo-
electron can be reached via several distinct quantum paths. In
our case, this is accomplished by employing spectrally broad
ultrashort laser pulses. A first pulse excites a group of bound
states (i.e., starts a wave packet), which is then photoionized
after a tunable delay by a second high-intensity pulse [see
Fig. 1(a)]. The first pulse is weak and can be treated in a
perturbative way. In case of sufficient spectral width it is
possible to arrive at the same ionic state and photoelectron
kinetic energy via several distinct quantum paths. This is
equivalent to saying that the pulse width is short compared
to the time scale of the wave-packet dynamics in the group of
bound states excited by the first pulse. The specific situation is

shown in the inset in Fig. 1(a). In the spectral overlap region
of two quantum paths, beat oscillations are observed in the
photoelectron-kinetic-energy distribution when scanning the
ionizing laser pulse delay. In the simplest case, the amplitudes
of the quantum beats are basically products of the Fourier
amplitudes of the two laser pulses multiplied by corresponding
transition dipole matrix elements; i.e., they are independent of
atomic dynamics. In this case, atomic bound-state dynamics
only enters via the beat frequencies that represent the energy
differences between the unperturbed bound electronic states
involved. This behavior changes significantly when the second
ionizing laser pulse becomes strong, as is the case in our
investigation. The pulse modifies the unperturbed bound-
state dynamics when it is turned on after a delay with
respect to the first exciting laser pulse. Depending on the
intensity of the ionizing pulse, the quantum beat ampli-
tudes in the photoelectron-kinetic-energy distribution change
accordingly.

The paper is organized as follows. In the next section
we present a theoretical model that is able to describe the
spectral distribution of the quantum beat amplitudes and
their dependence on the ionizing laser-pulse intensity. Our
experimental setup is described in Sec. III. In Sec. IV the
experimental results are presented and in Sec. V they are
compared with specific model calculations that are based on
the theoretical model introduced in Sec. II.

II. THEORETICAL MODEL

The resonant two-photon ionization of neon, which we
are investigating, is schematically shown in the energy level
diagram in Fig. 1(b). From the neon ground state φ0 we
first excite a coherent superposition of bound states φi (i =
2, . . . ,n) with an xuv laser pulse. Its spectral bandwidth
covers several Ne absorption lines from the ground state. An
ir pulse follows the xuv pulse after a variable delay δ [see
Fig. 1(b)]. This pulse probes the group of excited states via
one-photon photoionization. The broad spectral width of the
ir pulse allows reaching each final continuum state via several
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FIG. 1. (Color online) (a) Schematic view of the investigated
photoionization mechanism. An xuv pulse excites the atomic system
to a coherent superposition of states |φi〉. A high-intensity ir pulse
then couples the wave packet formed to a lower-lying state |φ1〉 while
ionizing the system at the same time. As the inset shows, quantum
beat oscillations may only occur in the photoelectron-kinetic-energy
distribution in those energy regions that can be reached from several
of the involved intermediate states. (b) Schematic view of the pulse
sequence that is applied to the atomic system. The delay δ between
the pulses is variable.

of the intermediate bound states. The corresponding different
quantum paths to a specific continuum final state therefore give
rise to interference phenomena in the ionization continuum
[see the inset in Fig. 1(a)]. These interferences depend on the
delay of the ir with respect to the xuv pulse. In addition to
ionizing the group of states φ2, . . . ,φn, the ir pulse couples
these states nearly resonantly to a lower-lying bound state φ1

[see Fig. 1(a)]. As described in the following, this bound-bound
state coupling gives rise to a dependence of the interference
phenomena in the photoelectron-kinetic-energy distribution on
the ir pulse intensity.

In order to model this situation, we assume that the
xuv excitation and similarly the ir ionization step of the
intermediate bound states φ2, . . . ,φn may be described by
lowest-order perturbation theory. The final continuum states
are assumed to be unaffected by the ir radiation. However,
we assume that the coupling of the bound states φ2, . . . ,φn

to the lower-lying state φ1 through the intense ir pulse has
to be described in a nonperturbative way. The starting point
for the theoretical analysis is the integral equation for the
propagator U (t,t0) for a system described by the Hamiltonian
H = H0 + V (t):

U (t,t0) = U0(t,t0) − i

∫ t

t0

dt ′ U (t,t ′)V (t ′)U0(t ′,t0)

with U0(t,t0) being the propagator that corresponds to H0 in
the decomposition of the total Hamiltonian H given above
(atomic units are assumed; see, for example, [5,6]). Using
this equation, the exact transition amplitude a(λ,ε)(T ) from the

atomic initial state φ0 to a final continuum state φ(λ,ε) at the
end of the xuv-ir pulse sequence can be expressed in the form

a(λ,ε)(T ) = −i

∫ T

0
dt〈φ(λ,ε)|Ũ0(T ,t)V (t)U0(t,0)|φ0〉

−
∫ T

0
dt

∫ T

t

dt ′〈φ(λ,ε)|U (T ,t ′)Ṽ (t ′)Ũ0(t ′,t)

×V (t)U0(t,0)|φ0〉 (1)

after iterating the above integral equation once. Here U (t2,t1)
is the exact propagator for the atomic system in the externally
applied laser pulses; (λ,ε) characterizes the final continuum
state of the unperturbed atomic Hamiltonian H0 with energy
ε and λ representing further discrete quantum numbers; and H̃0

and Ṽ correspond to a second decomposition of H = H̃0 + Ṽ

with Ũ0(t2,t1) the propagator corresponding to the Hamiltonian
H̃0.

Using the dipole approximation for the atom–light pulse
interaction, the Hamiltonian for this system reads

H (t) = H0 + FX(t)d + FI (t)d,

with H0 the Hamiltonian of the unperturbed atom, d the dipole
operator, FX(t) the time-dependent electric field of the xuv
pulse, and FI (t) that of the ir pulse. V (t) in Eq. (1) is then
assumed to be given by

V (t) = FX(t)d + FI (t)d.

U0(t2,t1) is the propagator of the unperturbed atomic system
that is characterized by the Hamiltonian H0.

The light intensities used in the experiment allow the fol-
lowing approximations to be made in the transition amplitude
a(λ,ε)(T ). Given the specific choice of Ũ0(T ,t) below, the
integral in the first line of Eq. (1) can be neglected. With this
choice, the integral represents basically a one-photon transition
from the ground state to the ionization continuum. Such a
transition practically does not contribute to the transition
amplitude in the energy range of interest. Furthermore, we
assume that the continuum states are not modified by the
laser pulses and that continuum-continuum transitions have
a negligible probability. Accordingly, in the double integral
of Eq. (1) we replace the exact propagator U (T ,t ′) by the
propagator of the unperturbed atomic system, U0(T ,t ′). In
V (t) only the xuv-pulse contribution gives rise to transitions
from φ0 to the bound excited states φi (i = 2, . . . ,n). The
expression for the transition amplitude to the continuum can
thus be approximated by

a(λ,ε)(T ) ≈ −
n∑

i=2

∫ T

0
dt

∫ T

t

dt ′ eiε(t ′−T )−iE0t 〈φ(λ,ε)|Ṽ (t ′)

×Ũ0(t ′,t)|φi〉[FX(t)di,0]. (2)

Here the di,0 = 〈φi |d|φ0〉 represent the dipole matrix elements
for the transition from the atomic ground state to the states
φi (i = 2, . . . ,n).

The interaction potential Ṽ (t) and the propagator Ũ0(t2,t1)
that appear in the expressions for the transition amplitude in
Eqs. (1) and (2) correspond to a second partitioning of the full
Hamiltonian H (t). This partitioning is adapted to describe the
effect of the ir laser pulse on the excited atomic states. If P
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represents the projector that projects on the space spanned by
the unperturbed excited atomic states {φi, i = 1, . . . ,n} and
Q = I − P (with I the identity operator) projecting on the
corresponding orthogonal space, H (t) may be written as

H (t) = PHP + PHQ + QHP + QHQ.

We now partition H (t) into H = H̃0 + Ṽ with

H̃0 = PHP,
(3)

Ṽ = PHQ + QHP + QHQ.

Ũ0(t2,t1) is the propagator that corresponds to the Hamiltonian
H̃0. Substituting this partitioning into Eq. (2), the transition
amplitude to the continuum can be written as

a(λ,ε)(T ) ≈ −
n∑

i=2

n∑
j=1

∫ T

0
dt

∫ T

t

dt ′ eiε(t ′−T )−iE0t

×〈φ(λ,ε)|Ṽ (t ′)|φj 〉〈φj |Ũ0(t ′,t)|φi〉[FX(t)di,0].

(4)

With its definition in Eq. (3) the matrix element of Ṽ (t) in
Eq. (4) reduces to

〈φ(λ,ε)|Ṽ (t)|φj 〉 = 〈φ(λ,ε)|QHP |φj 〉
= 〈φ(λ,ε)|[FX(t)d + FI (t)d]|φj 〉
≈ 〈φ(λ,ε)|FI (t)d|φj 〉
= FI (t)d(λ,ε),j , (5)

with d(λ,ε),j the dipole matrix element for bound-free transi-
tions. The approximation made here is based on the fact that
continuum transitions induced by the xuv pulse starting from
the bound excited atomic states are negligible.

With all approximations introduced, the transition matrix
element to the continuum reads

a(λ,ε)(T ) ≈ −
n∑

i=2

n∑
j=1

∫ T

0
dt

∫ T

t

dt ′ eiε(t ′−T )−iE0t

×[FI (t ′)d(λ,ε),j ][FX(t)di,0]〈φj |Ũ0(t ′,t)|φi〉.
(6)

The dynamics in the intermediate bound excited states is driven
by the ir laser pulse alone. This means that

H̃0 = PHP ≈ P [H0 + FI (t)d]P.

This Hamiltonian determines the propagator Ũ0(t2,t1) in
Eq. (6).

In what follows we assume that the ir follows the xuv pulse.
The xuv pulse is assumed to be restricted to the time interval
from t = 0 to t = TX and the ir pulse to the interval from
t = δ to t = δ + TI with δ > TX. The integration limit T in
Eq. (6) is thus equal to T = δ + TI ; δ can be viewed as the
ir pulse delay with respect to the xuv pulse with time zero
indicating synchronicity of the xuv and ir pulses [see Fig. 1(b)].
Equation (6) for the transition amplitude then can be rewritten
as

a(λ,ε)(δ + TI ) ≈ −e−iεTI

n∑
i=2

e−iEiδAi(λ,ε) (7)

with

Ai(λ,ε) = [F̃X(Ei − E0)di,0]
n∑

j=2

∫ δ+TI

δ

dt ′ eiε(t ′−δ)

× [FI (t ′)d(λ,ε),j ]〈φj |Ũ0(t ′,δ)|φi〉. (8)

In the derivation of this expression, only the justifiable
assumption was made that photoionization of the atomic state
φ1 by absorption of one ir photon can be neglected [see
Fig. 1(a)]. In the amplitude Ai(λ,ε) in Eq. (8),

F̃X(ω) =
∫ ∞

−∞
dt eiωt FX(t)

is the Fourier transform of the xuv pulse evaluated at
the individual transition frequencies ωi = Ei − E0 from the
atomic ground state to the respective excited state φi . The
remaining integral in Eq. (8) involves the ir laser-pulse-driven
dynamics in the intermediate bound states via the matrix
elements of the propagator Ũ0(t ′,δ) (with Ũ0(δ,δ) = I). In
modeling our experimental data we calculate the temporal
evolution of these matrix elements numerically by taking
into account the relevant excited bound states. Despite its
occurrence in the integration limits in Eq. (8), the value of the
integral does not depend on the delay δ. The final continuum
amplitudes a(λ,ε)(δ + TI ) depend on δ only via the exponentials
exp(−iEiδ), i.e., via the unperturbed evolution of the excited
bound states in between the two laser pulses.

In the most simple situation, the ir laser pulse does not
modify the intermediate state dynamics but only serves to
ionize the system. In this case the matrix elements of the
propagator Ũ0(t ′,δ) reduce to their unperturbed values given
by

〈φj |Ũ0(t ′,δ)|φi〉 = δi,j exp[−iEi(t
′ − δ)].

Consequently, the amplitude Ai(λ,ε) in Eq. (8) at the end of
the pulse sequence is simply given by

Ai(λ,ε) = [F̃I (ε − Ei)d(λ,ε),i][F̃X(Ei − E0)di,0]. (9)

Here F̃I (ω) is the Fourier transform of the ir pulse evaluated at
the transition frequencies ε−Ei from the intermediate state i

to the final continuum state with energy ε. The photoelectron-
kinetic-energy distribution corresponding to Eq. (7) is given by
|a(λ,ε)(δ + TI )|2. In this simple case, the distribution depends
on the delay δ of the ir with respect to the xuv pulse in
those regions of the photoelectron spectrum where the product
|F̃I (ε − Ei)||F̃I (ε − Ej )| is different from zero for i �= j [see
Eq. (9)]. These are just those regions where it is impossible to
distinguish between the quantum paths from the initial state φ0

to the final continuum state φ(λ,ε) via two of the intermediate
states i or j with different energies Ei �= Ej . Depending on
the electron kinetic energy ε, different periods 2π/|Ej − Ei | in
the delay dependence of the electron yield, the quantum beats,
may be found according to the intermediate states involved.

This simple quantum beat structure in the photoelectron
spectrum becomes significantly modified when the ir laser
pulse influences the bound-state dynamics with increasing
light-pulse intensity. Now Eq. (7) determines the structure.
Accordingly, the continuum quantum beats map the laser-
driven bound-state dynamics to the photoelectron spectrum.
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The kinetic energy distribution can thus be used to get insight
into the bound-state dynamics. According to Eq. (7) the
photoelectron-kinetic-energy distribution Y (δ,ε) is always of
the form

Y (δ,ε) =
∑

λ

|a(λ,ε)(δ + TI )|2

≈
∑

λ

n∑
i,j=2

e−i(Ej −Ei )δAi(λ,ε)A∗
j (λ,ε), (10)

i.e., a superposition of periodic functions in the delay δ

(Fourier series) having periods 2π/|Ej − Ei | determined by
the unperturbed energy differences of the bound excited states
involved. The excited bound-state dynamics that is induced
by the ir laser pulse is encoded in the Fourier coefficients
Ai(λ,ε)A∗

j (λ,ε) of the discrete Fourier series in Eq. (10). They
depend sensitively on the intensity of the ir laser pulse, which
modifies the intermediate bound-state dynamics. Thus, in a
situation where the ir pulse couples the bound states φ2, . . . ,φn

nearly resonantly to the state φ1, ac Stark shifting of the bound
states in the ir laser pulse as well as population transfers are
mapped to the Fourier amplitudes.

Experimental access to bound-state dynamics via pho-
toelectron spectroscopy is thus possible by measuring the
dependence of the photoelectron-kinetic-energy distribution
as a function of the delay between the pulse exciting the
intermediate bound states and the one inducing the strong-
field dynamics and serving as the photoionization pulse.
The Fourier coefficients Ai(λ,ε)A∗

j (λ,ε) can then be deduced
by Fourier transformation of measured spectra Ye(δ,ε) with
respect to the time delay δ. This Fourier transform will show
sharp resonances at the quantum beat frequencies |Ei − Ej |.
Their amplitudes are just the absolute values of the Fourier
coefficients Ai(λ,ε)A∗

j (λ,ε).

III. EXPERIMENTAL SETUP

We used a chirped-pulse amplified Ti:sapphire laser system,
delivering pulses at a repetition rate of 3.3 kHz with a pulse
width of 25 fs. The pulse central wavelength was 790 nm
(1.57 eV) with a spectral width of 63 nm (0.125 eV) full width
at half maximum (FWHM) (see the inset in Fig. 6).

Using a mirror with a drilled central hole, the laser beam
was split into two parts. A central part with a diameter of 8 mm
was carrying most of the energy (300 μJ per pulse). This pulse
was used for high-order harmonic generation. The annular part
with up to 60 μJ pulse energy was used as an infrared probe
pulse. The delay between the two parts was controlled with a
precision of ≈100 as by a motorized pair of silica glass wedges
in the beam path of the central part. Behind the delay stage,
both parts were recombined on a second mirror with a drilled
central hole and propagated further collinearly.

An xuv pulse was generated through high-order harmonic
generation by focusing the ir beam into a gas cell filled with
krypton, using a lens with a focal length of 1.2 m. The krypton
density was adjusted to efficiently generate harmonics up
to order 15. The photon energy of the 13th harmonic (to
be referred to as H13 hereafter), which is responsible for
populating bound excited states of the neon atom, was centered
at 20.4 eV. It had an estimated spectral width of 0.4 eV FWHM.

MBES

EM
NeKr

CF
L

BSD

MCP

FIG. 2. (Color online) Schematic view of the experimental setup:
BSD, beam splitting and delay stage; L, focusing lens; CF, combined
xuv-ir filter; EM, grazing incidence elliptic mirror; MBES, magnetic
bottle electron spectrometer; MCP, microchannel plate detector for
the photoelectrons.

Subsequently, separation of the xuv from the generating ir
beam was accomplished by a combined aluminum-glass filter.
It consisted of a 200-nm-thick aluminum foil with 4.5 mm in
diameter, which completely blocked the ir radiation from the
central part of the beam. Additionally, any xuv radiation below
15 eV photon energy (ninth harmonic and less) was stopped
by the foil. Annularly surrounding this foil, a 200-μm-thick
BK-7 glass plate was installed to block any overly divergent
xuv radiation and pass the annular ir probe beam. The xuv and
probe ir radiation were then focused by a gold-coated elliptic
grazing incidence mirror into an effusive jet of neon gas.
The kinetic energy of photoelectrons resulting from ionization
of that gas was measured in a magnetic bottle-type time-of-
flight spectrometer. A schematic view of the setup is shown
in Fig. 2.

The delay imposed by the glass part of the combined filter
on the ir probe, yet not on the xuv pulses, ensured that the
harmonic-generating part of the ir beam and the probe part
did not overlap temporally at the source point for harmonic
generation when the xuv and ir probe pulses overlapped in
time within the magnetic bottle spectrometer. Moreover, it was
possible to delay the ir probe with respect to the xuv pulse by
up to 750 fs before interfering with the harmonic generation.
A second, wider accessible delay range with no interference
with the harmonic generation started at a delay of the ir pulse
of 1100 fs with respect to the xuv pulse.

IV. EXPERIMENTAL RESULTS

Figure 3 shows the dependence of the kinetic energy
distribution of the observed photoelectrons on the xuv-ir pulse
delay after application of the pulse sequence to the neon
atom in a grayscale two-dimensional plot. The kinetic energy
range shown, from 0 to 4 eV, covers photoelectrons resulting
from direct photoionization by harmonic H15 at an excess
energy of ≈2 eV as well as electrons with kinetic energies
separated by one ir photon energy from these. The delay
between the two pulses ranges from −50 to 200 fs, with
positive delays referring to the ir following the xuv pulse. From
the predominant structure in this plot, the narrow maximum
close to 2 eV, the overlap in time of the two pulses can be easily
identified. In the case of temporal overlap a slight reduction
in kinetic energy of the photoelectrons appears. This is due to
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FIG. 3. Two-dimensional plot of the photoelectron yield as a
function of the delay δ and the photoelectron kinetic energy. Clearly
visible is the delay range where the two pulses overlap in time.
Here the kinetic energy of the photoelectrons originating from
photoionization of Ne by the harmonic H15 around 2 eV slightly
decreases. Around 0.6 eV the two-step ionization mechanism shown
in Fig. 1 via intermediate bound Ne states contributes for positive
delay settings.

a small ponderomotive rising of the Ne ionization threshold
through the ultrashort, high-intensity ir laser pulse (pulse peak
intensity in this case is ≈2.2 TW/cm2) [7]. The simultaneous
reduction in the electron yield is due to the redistribution
of photoelectrons in the spectrum because of formation of
sidebands while the xuv and ir pulses overlap in time [8].

The second salient feature in Fig. 3, which is in the focus
of this investigation, is an onset of ionization around 0.6 eV
photoelectron kinetic energy when the ir follows the xuv pulse,
i.e., for positive delays. These photoelectrons originate from
photoionization of bound excited neon states that have before
been populated by absorption of one H13 photon from the
xuv beam. The bound states that can be populated through a
dipole-allowed transition from the ground state by the H13
part of the xuv pulse are compiled in Table I. For the sake
of brevity we frequently use the shortcut notations 2-5, also
given in the table, when referring to these states. They all have
a total angular momentum of J = 1 and are photoionized by
absorption of one further photon of the applied ir probe laser
pulse.

For a detailed examination of this ionization channel, we
have chosen xuv-ir pulse delay settings starting at 1100 fs
and ranging up to 2250 fs, which was the maximum range
accessible to our experimental setup. For these settings the
xuv pump and ir probe pulses were temporally separated in the

TABLE I. Overview of the excited states in neon relevant in the
experiment, their respective excitation energies from the Ne ground
state [9], and the shortcut notations used in this paper.

Shortcut Configuration Term J Energy (eV)

1 2s22p5(2P o
1/2)3p 2[1/2]o 0 18.966

2 2s22p5
(

2P o
3/2

)
5s 2 [3/2]o 1 20.571

3 2s22p5
(

2P o
1/2

)
5s 2 [1/2]o 1 20.663

4 2s22p5
(

2P o
3/2

)
4d 2 [1/2]o 1 20.702

5 2s22p5
(

2P o
3/2

)
4d 2 [3/2]o 1 20.709

harmonic generation cell, thus avoiding interference of the ir
probe pulse with the harmonic generation. A detailed grayscale
two-dimensional plot of the energy-resolved photoelectron
yield for this range of delay times is shown in Fig. 4(a)
in the kinetic energy range between 0.3 and 0.9 eV. The
figure reveals an intricate delay-time-dependent structure in
the photoelectron-kinetic-energy distribution that is caused by
the quantum beat oscillations introduced in Sec. II. Figure 4(b)
gives a quantitative impression of the dependence of the total
photoelectron yield in the energy range from 0.3 to 0.9 eV
on the delay δ. Similar to the delay dependence of the kinetic
energy distribution, also the total photoelectron yield shows the
quantum beat structure. Since several quantum paths via the
bound excited Ne states interfere (see Table I), no completely
regular oscillation structure is found in the total photoelectron
yield.

In the experiment, the ir intensities have been kept at a level
so as to avoid strong-field effects on the ionization step of
the bound excited states that were populated by the xuv laser
pulse. In fact we find a linear relation between the cumulated
photoelectron yield in the kinetic energy range between 0.3 and
0.9 eV and the ir probe pulse intensity, as Fig. 5 shows. This
confirms that it is feasible to approximate the ir photoionization
step perturbatively. The theoretical analysis presented in Sec. II
relies on this experimental finding.

Two photoionization channels, the Ne+2P
3/2 (ionization

potential Ip = 21.5654 eV) and the Ne+2P
1/2 (Ip = 21.6613 eV)

channels, are open after absorption of one H13 and one ir
photon. In order to reveal the different contributions to the
photoelectron-kinetic-energy distribution, Fig. 6 shows a cut
through Fig. 4(a) at a specific delay (δ = 1750 fs). Above
the photoelectron spectrum the numbered marks on the two
lines drawn indicate the kinetic energies where one expects
to detect photoelectrons in the respective ionization channel
after ir photoionization of intermediate bound states 2-5. Since
these bound states all have a total angular momentum of
J = 1, the final continuum states reached must have J = 0
or J = 2. The J = 1 ionization continuum cannot be reached
since the directions of polarization of the ir and the xuv beams
are parallel [10,11]. For any of the individual intermediate
states there are further restrictions concerning the ionization
continuum that can be reached; however, neither of these
is strict. For every intermediate state we have collected the
accessible ionization continua in Table II. The notation in
the table assumes the j l coupling scheme for noble gases
with the intermediate angular momentum quantum number K

given in square brackets (see, for example, [10]). Primarily,
the photoelectron can be left with two angular momentum
quantum numbers, l = 1 or l = 3, that cannot be distinguished
experimentally with a magnetic bottle spectrometer. The main
ionization channels for each intermediate state are highlighted
with bold letters. This assertion is based on the supposition
that the respective bound state and the ionization continua
have well-defined core states (2Pj with j = 1/2 or j = 3/2),
which are not changed in the ionizing transition.

From the photoelectron-kinetic-energy distribution in
Fig. 6, the actual contributions of the different possible
ionization channels cannot be directly extracted. As can be
seen already from the width of the ir laser pulse spectrum
shown in the inset of Fig. 6, the structures that appear in
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(a) (b)

FIG. 4. (a) The xuv-ir delay dependence of the photoelectron-kinetic-energy distribution in the energy range 0.3 to 0.9 eV where
photoelectrons result from the two-step ionization process of Ne. (b) Energy-integrated yield of the photoelectrons detected in the energy
range 0.3 to 0.9 eV. The photoelectron spectra were taken in a delay range from 1100 to 2200 fs.

the photoelectron-kinetic-energy distribution are to a great
deal not due to resolving the energy differences between
intermediate bound states 2-5. The interference phenomena
due to different possible quantum paths leading to the same
final continuum state that were introduced in Sec. II are mainly
responsible for the structure.

In order to quantify the oscillations of the photoelectron
yield with the delay δ that can be observed in Fig. 4, we Fourier-
transformed the cumulated photoelectron yield between 0.4
and 0.8 eV kinetic energy with respect to δ,

Ỹe(�) =
∫ δ1

δ0

dδ ei�δ

∫ 0.8 eV

0.4 eV
dε Ye(δ,ε),

using the limits of the delay scan in Fig. 4 as upper and
lower limits for the time integration. Here Ye(δ,ε) denotes
the measured delay-dependent photoelectron spectrum with
ε being the photoelectron kinetic energy. The absolute value
of the amplitude of the Fourier transform |Ỹe(�)| is shown
in Fig. 7. For easily establishing the connection to the energy
spacings of the involved intermediate bound states, the Fourier

FIG. 5. (Color online) The cumulated photoelectron yield in the
energy region 0.3 to 0.9 eV plotted vs the ir probe pulse intensity.
In the intensity range used, the yield depends linearly on the ir light
intensity.

frequency � has been converted to energy units in the plot. The
range of delays of 1150 fs covered in the experiment allowed
for an energy resolution in the Fourier frequency of ≈4 meV.
As the energy separation of intermediate states 4 and 5 is only
7 meV, some peaks are not completely resolved. However,
six peaks in total are discernible at precisely the energy-level
differences |Ei − Ej | of all combinations of the involved
intermediate states. They can be attributed to quantum beat
oscillations stemming from ionization pathways via excited
bound-state pairs [see Eq. (10)]. The respective state pairs
are indicated in the graph, using the notation i-j to name the
two states involved (i and j being the shortcut state notations
from Table I). The quasidiscrete structure that is found in the
Fourier transform at the expected energies corroborates that
the quantum beat mechanism introduced in Sec. II actually
causes the observed oscillations.

The appearance of a specific line i-j in the Fourier spectrum
in Fig. 7 indicates that the same final continuum state can

FIG. 6. (Color online) Sample photoelectron spectrum for a fixed
xuv-ir delay setting of δ = 1750 fs. The marks at the top with labels
2-5 indicate the excess energy that photoelectrons have when they are
promoted to the ionization continuum from excited bound states 2-5
by absorption of one ir photon (energy, 1.57 eV). This is indicated
for both ionization channels 2P1/2 and 2P3/2. The boxes A, B, and C
indicate the energy intervals used for integration in Fig. 8. The inset
shows the measured spectrum of the ir laser pulse.
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TABLE II. Final continua reached by photoionization of the bound excited states 2-5 in Table I. Continua with total angular momentum
J = 0,2 can be reached with the ion core left either in the 2P3/2 ground or in the 2P1/2 excited state. The photoelectron may have either angular
momentum l = 1 (εp continuum) or l = 3 (εf continuum) with ε its kinetic energy. The expressions in brackets give the K angular momentum
quantum number according to the j l coupling scheme for noble gas atoms (see, for example, [10]). Bold letters highlight those continua that
can be reached without changing the core state of the neon atom in the ionizing transition.

Initial Final

Shortcut J = 1 J = 0 J = 2

2 (2 Po
3/2)5s[3/2] (2 Po

3/2)ε p[1/2], (2 Po
1/2)ε p[1/2] (2 Po

3/2)ε p[3/2], (2 Po
3/2)ε p[5/2], (2 Po

1/2)ε p[3/2]

3 (2 Po
1/2)5s[1/2] (2 Po

3/2)ε p[1/2], (2 Po
1/2)ε p[1/2] (2 Po

3/2)ε p[3/2], (2 Po
3/2)ε p[5/2], (2 Po

1/2)ε p[3/2]

4 (2 Po
3/2)4d[1/2] (2 Po

3/2)ε p[1/2], (2 Po
1/2)ε p[1/2] (2 Po

3/2)ε p[3/2], (2 Po
3/2)ε p[5/2], (2 Po

1/2)ε p[3/2]

(2 P3/2)ε f [3/2], (2 P3/2)ε f [5/2], (2 P1/2)ε f [5/2]

5 (2 Po
3/2)4d[3/2] (2 Po

3/2)ε p[1/2], (2 Po
1/2)ε p[1/2] (2 Po

3/2)ε p[3/2], (2 Po
3/2)ε p[5/2], (2 Po

1/2)ε p[3/2]

(2 P3/2)ε f [3/2], (2 P3/2)ε f [5/2], (2 P1/2)ε f [5/2]

be reached via these two states. The final continuum state
is determined by the final ionic state and the state of the
free photoelectron. In the case of the low-energy line 4-5,
photoionization can obviously reach the same final continuum
states (see Table II). Both bound states have the same ion core
2P3/2, and the excited electron is a 4d electron in both cases.
Ionization into the final continua (2P3/2 εp) and (2P3/2 εf )
without changing the ion core configuration contributes to
this quantum beat line. Also, core-changing transitions may
contribute, however, possibly to a lower extent. The lines 2-3,
3-4, and 3-5 also appear in the Fourier-transform spectrum
(Fig. 7). For these lines core-changing transitions are definitely
necessary, since bound state 3 has a 2P1/2 and the others have a
2P3/2 ion core. It is only such a transition that allows reaching
the necessary identical final state. A core-changing transition
in the ionization step may have two possible reasons. Either
the excited bound states involved do not have a unique ion core
state, or the nearly resonant coupling of the group of states 2-5
to state 1 (2P1/2 3p) via the ir laser pulse efficiently mixes the
two core states. This point is discussed in more detail below in
connection with the kinetic-energy-resolved Fourier spectra.

FIG. 7. Fourier transform of the cumulated photoelectron yield
in the energy range 0.4 to 0.8 eV from the measurement in Fig. 4.

The same discrete line structures that appear in the energy-
integrated Fourier transform of Fig. 7 can also be found in
photoelectron-kinetic-energy-resolved Fourier transforms

Ỹe(�,ε) =
∫ δ1

δ0

dδ ei�δ Ye(δ,ε)

of the xuv-ir delay-dependent photoelectron spectra. In any
subinterval within the kinetic energy range of interest, from 0.4
to 0.8 eV, these structures appear at the same beat frequencies
� = |Ei − Ej |. The line intensities |Ỹe(|Ei − Ej |,ε)|, how-
ever, depend sensitively on the photoelectron kinetic energy
ε. This dependence can immediately be seen in the Fourier
spectra derived from the experimental data in Figs. 8(a), 8(c),
and 8(e). In the latter sequence, the ir probe pulse peak intensity
has been varied. The light intensities used are 0.5, 0.9, and
1.3 TW/cm2, respectively. In each graph in the figure, we
show the amplitude |Ỹe(�,ε)| of the Fourier transform with
respect to the delay δ in three photoelectron-kinetic-energy
intervals. These intervals [0.5 eV, 0.55 eV], [0.6 eV, 0.65 eV],
and [0.7 eV, 0.75 eV] are referred to by capital letters A, B,
and C, respectively. They are also indicated as boxes in Fig. 6.
As can be seen from the marks at the top of that graph, the
energy intervals have been chosen such that, in interval A,
primarily the 2-3 beating in the 2P1/2 ionization channel should
contribute, while in interval C the 4-5 beating in the 2P3/2

channel should prevail. In the central interval B, all beating
frequencies are expected to occur.

According to Table II we expect to find the 4-5 quantum
beat at 7 meV at all ir light intensities, particularly also for
vanishing intensities, since identical final continuum states
in the 2P3/2 ionization channel can always be reached in
the ionization transition from either intermediate state 4 or
5. In the experimental spectra in Fig. 8 this is confirmed.
The beating is present at all investigated intensities and
appears most pronounced in the kinetic-energy intervals B
and C, whereas the amplitude vanishes in interval A. This
behavior is independent of the ir light intensity in the range we
investigated. It is striking that the amplitude peaks in interval
B at low ir light intensity, whereas it becomes increasingly
pronounced with intensity in interval C.
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(a) (b)

(c) (d)

(e) (f)

FIG. 8. (Color online) (a, c, e) Fourier transforms of the oscillating electron yield for different intervals of photoelectron kinetic energy
and different ir pulse intensities. For the position of the intervals within the photoelectron spectrum, see Fig. 6. (b, d, f) Results of the model
calculation of the amplitudes of the quantum beat oscillations obtained for the same parameters that were used in the experiment for comparison.
In (b) each peak is provided with the notation i-j to name the two intermediate states responsible for the corresponding quantum beat. This
assignment can be transferred to all other spectra shown here.

At first glance the appearance of 2-3 quantum beats in the
experimental Fourier spectra in Fig. 8 at 92 meV is unexpected
as the intermediate states 2 and 3 have differently coupled
ion cores (2P3/2 and 2P1/2, respectively) with the excited
electron in the 5s state. Only a negligible admixture of 2P1/2 5s

character in state 2 is expected [12]. According to Table II,
one thus expects that ionization of these states exclusively
ends up in differing final continuum states. Indistinguishable
quantum paths, the prerequisite for quantum beats to appear,

thus seemingly do not exist. In the experimental spectra,
the 2-3 beat amplitude is weak at the lowest ir intensity
[Fig. 8(a)] and appears only in the low-kinetic-energy interval
A. However, the amplitude increases strongly with the light
intensity and appears distributed over the whole kinetic energy
distribution, with the maximum amplitude found in the central
kinetic-energy interval B. This beat structure thus seems to be
induced by the ir field. It couples both intermediate states 2 and
3 to state 1 with a 2P1/2 ion core during photoionization (see
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Table I). This admixture enables reaching the 2P3/2 ionization
continuum also from intermediate state 3, thus inducing
quantum beat oscillations. This point is further discussed
below in conjunction with our model calculation.

For the same reasons as with the 2-3 quantum beat
structure, one does not expect the 3-4 and 3-5 structures to
appear in the Fourier transform spectra (Fig. 8). Nevertheless,
they are readily found in the spectra at 39 and 46 meV
Fourier frequency, respectively. As they also show a sensitive
dependence on the ir light intensity, with the tendency to
disappear for low light intensity, they also seem to be induced
by a mixing of bound states by the ir laser pulse during
photoionization.

The 2-4 and 2-5 beat structures show a similar behavior
as the 2-3 beating, being almost absent in the low-ir-intensity
measurement in Fig. 8(a) and becoming more pronounced
relative to the other structures with increasing intensity. At first
glance this seems to contradict our model, since all involved
intermediate states have a 2P3/2 ion core and can thus end up in
the same ionization channel. Analogous to the 4-5 beating, one
would therefore expect quantum beats to occur, even at low ir
pulse intensities. However, the 2-4 and 2-5 energy separations
are 131 and 138 meV, respectively (see Table I). This is larger
than the FWHM of the ir laser pulse (125 meV, see Fig. 6).
The spectral overlap of the photoelectron distributions starting
from these states is thus small, and the associated quantum
beats in the low-ir-intensity limit is correspondingly weak.
With increasing ir intensity the coupling to state 1 facilitates
ac Stark shifts, which may lead to a smaller energy separation
of the states in turn. Also mixing of the bound states may occur,
similar as with the 2-3, 3-4, and 3-5 beat amplitudes. These
effects may therefore explain the more pronounced occurrence
of the 2-4 and 2-5 quantum beats at higher ir intensity.

V. COMPARISON WITH MODEL CALCULATION

Within the model developed in Sec. II, we can identify the
photoelectron-kinetic-energy-resolved Fourier line intensities
|Ỹe(|Ei − Ej |,ε)| derived from the experimental data with
the theoretically derived Fourier coefficients Ai(λ,ε)A∗

j (λ,ε)
appearing in Eq. (10) via∣∣∣∣∣

∑
λ

Ai(λ,ε)A∗
j (λ,ε)

∣∣∣∣∣ ∝ |Ỹe(|Ei − Ej |,ε)|.

The sum over λ extends over all open final ionization channels.
According to this relation, the sensitive dependence of the
experimentally determined amplitudes of the quantum beat
oscillations on the ir laser intensity becomes obvious. The
theoretically derived amplitudes Ai(λ,ε) are affected by the
possible coupling of the group of bound states excited by the
xuv pulse to other bound states through the ir photoionization
laser pulse [see Fig. 1(a)]. Through these couplings the ir laser
pulse modifies the excited-state wave packet while ionizing it.
As the experiment corroborates, this modification may create
new indistinguishable quantum paths to the final continuum
states, which in turn give rise to new quantum beat oscillations.
These are expected to vanish in the limit of negligible ir light
intensity.

The computer simulation of the investigated process im-
plements the model outlined in Sec. II. It thus involves the
coupling of the wave packet excited by the xuv pulse to
lower-lying bound states. For such a coupling to be efficient at
the ir intensities used in our experiments, a coupled state needs
to be separated from states 2-5, of which the wave packet is
composed, by roughly one ir photon energy (1.57 eV). The
states populated by the xuv pulse all have a total angular
momentum of J = 1. Since the ir and xuv beams are polarized
parallel with respect to each other, the only possible candidates
for the coupling are excited states (2Pj )3p with an ion core
with j = 1/2 or j = 3/2 and a total angular momentum of
either J = 0 or J = 2 [10,11]. Altogether five 3p states qualify
for these criteria. However, only for the (2P1/2)3p[1/2] state
with J = 0, which is listed in Table I with shortcut notation
1, a partial overlap of the transition frequencies to states 2-5
with the spectrum of the ir laser pulse exists. Due to the more
pronounced off-resonance character, the influence of the other
four 3p states is expected to be much smaller. Therefore only
this state is incorporated in the model calculation. Although
state 1 has a 2P1/2 ion core, it has nonzero transition dipole
matrix elements to all states 2-5, i.e., also to those with ion
core 2P3/2 [13]. This fact and a quantum defect analysis by
Starace [12] indicate that the (2P1/2)3p[1/2], J = 0 state
does not have a pure 2P1/2 ion core but admixtures of 2P3/2

character. On the other hand, states 2-5 are expected to have
quite pure ion cores [12,14] with either j = 3/2 or j = 1/2.

The Hamiltonian matrix consisting of the four states 2-5
and the lower state 1 (see also Table I) as well as the coupling
of the intermediate states to state 1 that is induced by the ir
laser pulse is given by

H̃0 (t) =

⎛
⎜⎜⎜⎜⎜⎝

E1 FI (t) d1,2 FI (t) d1,3 FI (t) d1,4 FI (t) d1,5

FI (t) d2,1 E2 0 0 0

FI (t) d3,1 0 E3 0 0

FI (t) d4,1 0 0 E4 0

FI (t) d5,1 0 0 0 E5

⎞
⎟⎟⎟⎟⎟⎠

. (11)

This Hamiltonian determines the evolution in time of the
corresponding bound-state wave packet while the ir ionizing

laser pulse is applied. The dipole matrix elements di,1

appearing in H̃0(t) are assumed to be real.

033424-9



GEISELER, ROTTKE, STEINMEYER, AND SANDNER PHYSICAL REVIEW A 84, 033424 (2011)

The time-dependent Schrödinger equation for the propaga-
tor matrix Ũ0(t,δ) corresponding to the Hamiltonian H̃0(t) is
solved numerically, using for each time step t → t + δt the
unitary propagator

[
i + δt

2
H̃0 (t + δt/2)

] [
i − δt

2
H̃0 (t + δt/2)

]−1

. (12)

This approximates the exact propagator Ũ0(t + δt,t) for each
time step [15]. With the so-determined matrix elements of the
propagator, the transition amplitude from the atomic ground
state φ0 to the final continuum states characterized by a
photoelectron kinetic energy ε was then determined using
Eqs. (7) and (8). This step needs to be carried out independently
for each possible ionization channel. As discussed in Sec. IV
we assumed that the ion core coupling of bound states 2-5 is
not changed in the ionizing transition and that no coupling
of ionization channels with different ion core exists. We
also replaced the ionization channels listed in Table II by
two effective ionization channels, one with ion core 2P3/2

and one with 2P1/2. These are model assumptions made to
reduce the complexity of the calculation. The assumptions
made imply that we set the transition dipole matrix elements
d(λ,ε),j in Eq. (8) for bound states 2, 4, and 5 to zero when
calculating ionization into the 2P1/2 channel and similarly for
state 3 when calculating ionization into the 2P3/2 channel. The
photoelectron-kinetic-energy distributions that we calculate in
this way have to be added up incoherently to determine the
total distribution. The quantum beat amplitudes at the beat
frequencies |Ej − Ei | are then given by |∑λ Ai(λ,ε)A∗

j (λ,ε)|
[see Eq. (10)]. They correspond to the respective exper-
imentally determined quantum beat oscillation amplitudes
|Ỹe(|Ei − Ej |,ε)|. The entire procedure was repeated for
different values of the ir pulse peak intensity, which enters
in Eqs. (8) and (11) via the electric ir field strength FI (t). The
intensities used in the calculations matched the ones employed
in the experiment.

The numerical simulation needed the input of several
parameters, which were chosen according to the following
considerations. For the temporal envelope of the ir pulse we
assumed the function

FI (t) = sin2

(
π t

TI

)
, t ∈ [0, TI ] .

The duration TI was set to 68 fs, corresponding to a FWHM in
intensity of the pulse of 25 fs, which matched the pulse width
of the ir pulse used in the experiments. The transition dipole
matrix elements d1,j needed to quantify the Hamiltonian in
Eq. (11) are unknown. However, theoretically determined
values for the respective oscillator strengths are given in [13].
From these we determined the absolute values of one of the
Cartesian components of the d1,j . In the model calculation we
then used these absolute values. Since they were not accessible,
possible phases have been neglected. A rather large uncertainty
enters through the choice of the amplitudes for bound states
2-5 in the bound-state wave packet with which to start the
propagation in time. They are determined by the transition
matrix elements from the ground state to the respective excited
states as well as by the spectral distribution of the xuv pulse
[see Eq. (8)]. The transition matrix elements can also be taken

from [13]. However, the spectral xuv intensity distribution can
only be estimated. We therefore assumed starting amplitudes
based on an xuv spectral intensity distribution estimated
from a measured photoelectron spectrum from single-photon
ionization of Ar atoms using the harmonic H13. Starting with
this basic choice, we varied the xuv spectral distribution to
best approximate the experimental data. The best qualitative
agreement was found for the following choice of the spectral
amplitudes F̃X(Ei − E0) of the xuv H13 pulse: 0.32 (i = 2),
0.28 (i = 3), and 0.2 (i = 4,5). Here, we have chosen the
arbitrary normalization that the F̃X(Ei − E0) add up to 1.

The results of the numerical simulation are presented in
Figs. 8(b),8(d), and 8(f) face to face with the experimental
data for the three different peak intensities used in the
experiments. The comparison shows a remarkable overall
qualitative agreement. Minor deviations are expected given
the specific simplifications and estimations that were assumed
here. Specifically, the first peak at 7 meV beat frequency
(the 4-5 beat amplitude) shows exactly the same behavior in
both the experimental and the simulated spectra. This beating
is most pronounced in the central kinetic-energy interval
B of the photoelectron-kinetic-energy distribution at low ir
light intensity, with a shift toward the high–energy side C
at higher intensities. Similarly, for the double peak structure
between 39 and 46 meV beat frequency (the 3-4 and 3-5 beat
amplitudes), the predominant contributions at 0.5 TW/cm2

are found in interval B. As also observed in the experiments,
these oscillations become more pronounced in interval C with
increasing ir intensity, though this increase is not as rapid in
the simulation as it is in the experiments. The relative heights
of the 3-4 and the 3-5 peaks are reproduced correctly in energy
interval C. In interval B, however, this ratio appears reversed
in the experiments. Similar to the experimental finding, the
model calculation gives rise to significant 3-4 and 3-5 beat
amplitudes already at the lowest ir light intensity [Figs. 8(a)
and 8(b)], despite the fact that in the calculation we assumed
that ionization of a state with core angular momentum j can
only terminate in a continuum with the same ion core angular
momentum. This means that the calculated quantum beat
amplitudes 3-4 and 3-5 vanish for the ir intensity approaching
zero. The result of the model calculation indicates that the
coupling of states 3, 4, and 5 to state 1 via the ir laser field with
the accompanying j = 1/2, 3/2 core state mixing suffices to
account for the appearance of the 3-4 and 3-5 quantum beats
in the experiment already at the lowest light intensity.

The experimental 2-3 beat amplitude at 92 meV beating
frequency is rather weak at 0.5 TW/cm2 and appears equally
pronounced in intervals A and B, while with increasing
intensity a dramatic increase, especially in the kinetic energy
interval B, is found. Also, in interval C, a small contribution
emerges. In the simulation this beat amplitude appears already
at low ir intensity slightly more pronounced than observed, yet
the general behavior in all three energy intervals is reproduced
very well. Similar to the increase of the 3-4 and 3-5 beat
amplitudes in interval C with the ir light intensity, the increase
of the 2-3 amplitude in interval B appears to be more rapid
in the experiments than can be explained by the simulation.
The physical reason for the absence of these beatings at low
ir intensity is the differently coupled ion core of the states
involved. As discussed in Sec. IV, they emerge with rising ir
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intensity due to an amplitude transfer among bound states 2-5
induced by their coupling to state 1.

The 2-4 and 2-5 beating frequencies appear not very well
resolved in the experimental spectra. In Figs. 8(c) and 8(e),
however, they are identifiable, while in the low-ir-intensity
measurement in Fig. 8(a) they are almost absent. Also in
the simulations one can observe only weak quantum beat
oscillations at these frequencies at 0.5 TW/cm2 and a moderate
increase at higher intensities. As previously discussed, the
absence of these beatings at low ir intensity is due to the
limited bandwidth of the ir pulse, while their increase at higher
intensity is caused by effects that are induced by the coupling.
This interpretation is supported by the simulation.

From the theoretical side, we expect that the assumptions
made upon independent continuum channels with the ion
core coupled to either 2P3/2 or 2P1/2 and upon reducing the
actual number of channels to two should explain most of the
deviations between the experiments and calculations. Despite
these approximations, the overall qualitative agreement is
already astonishingly good.

From the experimental side, possible reasons for deviations
of the calculated beat amplitudes from the measured ones are
uncertainties regarding the weighting of the different ioniza-
tion channels, the spectral distribution of the xuv H13 light,
deviations of the actual ir pulse shape from the assumed one,
and also several not precisely known experimental parameters
of the magnetic bottle spectrometer. To a certain degree the
spectrometer performs spatial averaging since photoelectrons
are always detected from a finite volume of space. Due to
the focusing geometry, the ir pulse peak intensity is position
dependent and varies over this volume. The incorporation of
these effects into the simulation would require knowledge of
the precise focusing conditions of both the ir and the xuv beams
together with their overlap in space as well as the beam overlap
with the detection volume of the spectrometer. Unfortunately,
neither of these are precisely accessible.

VI. CONCLUSION

Summarizing, we investigated quantum beat phenomena
found in the photoelectron-kinetic-energy distribution after

photoionization of an atomic system by a laser-pulse sequence,
with the first pulse starting a bound-state wave packet that
is photoionized by a second high-intensity ultrashort pulse.
The results show that the quantum beat amplitudes sensitively
depend on the kinetic energy of the leaving photoelectron and
on the light intensity of the photoionization laser pulse.

Altogether, the model we presented to analyze the observed
phenomena is well adapted to describe the effects that the
ionizing ir laser pulse has on the composition of the quantum
beat oscillations in the investigated two-color ionization
process. With the model at hand, it is thus also possible to
predict and tailor the quantum beats and thus the outgoing
photoelectron wave packet. Moreover, the dependence of
the quantum beat amplitudes on the ir light intensity can
serve as a means to map bound-state dynamics modified
by, in our case, the ionizing laser pulse itself to the ion-
ization continuum. There this strong-field-induced dynamics
can be analyzed through the quantum beat oscillations in
the photoelectron-kinetic-energy distribution. The model is
adapted to the situation that the ionization step of the atom
can still be treated perturbatively while bound-state couplings
induced by one of the applied laser pulses already have to be
treated nonperturbatively. The photoelectron-kinetic-energy-
resolved quantum beat amplitudes contain information on the
population redistribution in the bound states and on Stark shifts
of these states while an intense laser pulse is applied to the
atom.

Our experimental results also show that in strong-field
ionization experiments, which make use of a pump-probe
pulse sequence, quantum beat structures in the photoionization
continuum, as they were observed, for example, in [4],
can significantly be influenced through modifications to the
bound-state system of the atom or molecule that is being
ionized.
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