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In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite
duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling
strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of
nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the
two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific
accuracy thresholds.
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I. INTRODUCTION

Population transfer between energy levels with time-
dependent coupling has been studied for many decades.
From the pioneering works on the linear-crossing model by
Landau [1] and Zener [2] to the adiabatic rapid passage in
magnetic resonance [3], it has been shown in many studies
that with a slow level crossing the state follows instantaneous
energy eigenstate adiabatically. In the adiabatic limit where
the level crossing is infinitely slow, a complete population
inversion of a two-level system can be realized, provided that
the energy eigenstates are switched by the time-dependent
coupling. For faster level crossings, the population inversion
can be incomplete due to nonadiabatic transitions. We denote
the probability for not making the desired adiabatic transition
as Pnad.

Most literatures on level-crossing models investigated
single population transfers, which could be modelled by
infinite-time processes. Transitions of finite duration have
been studied by Vitanov and Garraway [4] and Bateman and
Freegarde [5], among others. In a recent laser experiment
by Miao et al. [6], helium atoms subject to a sequence of
counterpropagating chirped light pulses underwent multiple
adiabatic rapid passages. The coherent exchange of momen-
tum between pairs of counterpropagating light pulses produced
large optical forces. The optical force was proportional to
the population transfer over each light pulse. The application
of periodic light pulses make it necessary to use finite-time
level-crossing models to calculate the population transfer. The
nonadiabatic transition probability Pnad for various finite-time
level-crossing models was studied numerically in Ref. [7],
and an approximate formula for Pnad was derived using a
perturbation method in Ref. [8]. It was shown in Ref. [8] that
the distributions of Pnad for finite-time models in the parameter
space of the Hamiltonian were qualitatively different from
those for infinite-time models, such as the Landau-Zener
model and the Demkov-Kunike model [9].

The general form of a time-dependent Hamiltonian for a
two-level system (see Ref. [10]) is

H0(t) = h̄

2

(
δ(t) �(t)

�(t) −δ(t)

)
. (1.1)

If we take the electric dipole interaction between the light
and atoms as an example, in the frame that rotates at the
frequency of the light field, δ(t) would be the detuning of the

light frequency from the atomic resonance and �(t) would
be the Rabi frequency [11]. In an infinite-time model, the
transition is from t = −∞ to t = ∞, and the coupling �(t)
never vanishes. For example, in the Landau-Zener (LZ) model,

�(t) = b, δ(t) = at ; (1.2)

and in the Demkov-Kunike (DK) model,

�(t) = �0sech

(
πt

2τ

)
, δ(t) = δ0 tanh

(
πt

2τ

)
. (1.3)

In a finite-time pulse model, the transition is from t = −T/2
to t = T/2, where T is the duration of the coupling. We denote
the maximums of δ(t) and �(t) by δ0 and �0 respectively. The
constant pulse model, or the finite Landau-Zener model, in
which

�(t) = �0, δ(t) = δ0
2t

T
, (1.4)

has been studied extensively by Vitanov and Garraway [4].
In this paper, we study pulses that continuously vanish at the
beginning and the end of the finite duration. Typical examples
are the sinusoidal pulse model [6],

�(t) = �0 cos ωmt, δ(t) = δ0 sin ωmt, (1.5)

where ωm = π/T , and the triangular pulse model [8],

�(t) = �0

(
1 − 2|t |

T

)
, δ(t) = δ0

2t

T
. (1.6)

Assuming that δ0 and �0 can be scaled independently as
in the experiment by Miao et al. [6], we can map Pnad in the
two-dimensional parameter space of normalized δ0 and �0,
as shown in Fig. 1 a for sinusoidal and triangular pulses. In
contrast to the asymptotic method proposed by Dykhne [12]
and Davis and Pechukas [13] for infinite-time models and
its generalization to multiple singularities in the complex t

plane [14], which claimed that Pnad depends only on the
energy sheets (via their continuation into the complex t plane),
Pnad for finite-time models is not only determined by the
eigenenergies but also by the time dependence of δ(t) and
�(t). The problem of interest is how the pulse profile and pa-
rameters affect Pnad, and in particular, how to achieve a stable
inversion (i.e., Pnad = 0).
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FIG. 1. Map of Pnad in the pulse parameter space. The curves are for Pnad = 0.9, 0.5, 0.1, 0.01, 0.001, . . . . The darkest regions are for
vanishing Pnad. (a) Sinusoidal pulse. (b) Triangular pulse.

For �0T � 1 and/or δ0T � 1, it is more advantageous
to work in the rotating adiabatic frame [8], in which the
Hamiltonian is

H(t) = h̄

2

(
0 iθ̇ (t)eis(t)

−iθ̇ (t)e−is(t) 0

)
, (1.7)

where 0 � θ � π with tan θ (t) = �(t)/δ(t) and s(t) =∫ t

0 �′(τ )dτ with �′(t) =
√

�2(t) + δ2(t). Denote the propa-
gation matrix in the rotating adiabatic frame from 0 to t and
from −t to 0 by

O(t) =
(

α∗(t) −β(t)

β∗(t) α(t)

)
, O(−t) =

(
α∗(−t) −β(−t)

β∗(−t) α(−t)

)
.

(1.8)

If the pulse is symmetric in the sense that δ(−t) =
−δ(t), �(−t) = �(t), by time reversal we have

α(−t) = α(t), β(−t) = β∗(t). (1.9)

Denote the propagation matrix in the rotating adiabatic frame
over the entire pulse by

Oad = O(T/2)O(−T/2) =
(

α∗
ad −βad

β∗
ad αad

)
. (1.10)

For pulse profiles with adiabatic states at the end of the pulse
inverted from those at the beginning of the pulse, such as
sinusoidal or triangular pulses,

Pnad = |βad|2, βad = α(−T/2)β(T/2) + β(−T/2)α∗(T/2).

For a symmetric pulse, βad is a real number, and

Pnad = β2
ad = [α(T/2)β(T/2) + α∗(T/2)β∗(T/2)]2, (1.11)

which implies that the traces of Pnad = 0 in the map are curves
(cf. Fig. 1); while for a nonsymmetric pulse profile, βad is

complex and the traces of Pnad = 0 in the map are scattered
points. Since we are interested in stable inversions, we consider
only symmetric pulses.

As shown in Fig. 1 a, the maps of Pnad for finite-duration
pulses are divided into oscillatory and nonoscillatory regions.
In the nonoscillatory region, the nonadiabatic transition is
dominated by the Landau-Zener transition at resonance, which
gives

Pnad
∼= e−4πk1 , (1.12)

where k1 = �2
0/(8δ̇0). The factor of 8 is introduced for

convenience (see Appendix A). In the oscillatory region, the
phase of oscillation depends on the area swept by the difference
between the eigenenergies over the pulse duration. Let

s0 =
∫ T/2

−T/2
[E+(t) − E−(t)]dt, (1.13)

where E± = ± h̄
2

√
�2(t) + δ2(t) are the eigenenergies of the

Hamiltonian in Eq. (1.1). For nonchirped pulses, the area
theorem [11] states that

Pnad = cos2

(
s0

2

)
. (1.14)

Nonchirped inversion pulses require s0 = (2n + 1)π . In the
adiabatic limit, by the first-order perturbation in the rotating
adiabatic frame [8],

Pnad
∼=

(
�̇0

δ2
0

)2

sin2

(
s0

2

)
. (1.15)

Adiabatic inversion pulses require s0 = 2nπ . We explain the
change from s0 = (2n + 1)π for nonchirped inversion pulses
to s0 = 2nπ for adiabatic inversion pulses in Sec. II.
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Finite-duration chirped pulses can be compared with the
Demkov-Kunike model and finite Landau-Zener model. The
maps of Pnad for all these models consist of oscillatory
and nonoscillatory regions. However, the oscillations for
different models have distinct characteristics. The Demkov-
Kunike model is exactly solvable [15]. In the oscillatory
region, P DK

nad = cos2 τ
√

�2
0−δ2

0/ cosh2 τδ0. The condition for
population inversion is τ

√
�2

0−δ2
0 = (n + 1

2 )π , rather than
determined by the phase s0. The finite Landau-Zener model
differs from sinusoidal and triangular pulses in that the
pulse in the finite Landau-Zener model does not vanish
continuously at the ends of the duration. By the analysis
of Vitanov and Garraway [4], the condition for the popula-
tion inversion is s0 = (2n + 1)π throughout the oscillatory
region.

The map of Pnad for sinusoidal pulses also differs from
that for triangular pulses. In Fig. 1(a), the trace of sinusoidal
pulses with population inversion consists of a sequence of
loops; while in Fig. 1(b), the trace of triangular pulses with
inversion has an extra curve below the loops. In Sec. III, we
explain this difference using a split-level-crossing model. In
Sec. IV, the model is extended for the stability analysis of
adiabatic and nonadiabatic inversion pulses.

II. OSCILLATION PHASE OF Pnad

In the oscillatory region of the map, �0 � δ0, the nona-
diabatic transition is dominated by the avoided crossing at
the two ends of the duration. The pulse from 0 to T/2 can
be regarded as the half-LZ transition from −∞ to 0 with
adiabaticity k2 = δ2

0/(8�̇0). The propagation matrix of the
LZ transition from −∞ to 0 is related to that from 0 to
∞ by Eq. (1.9). In addition to that, the LZ model with
avoided crossing at the end of the pulse corresponds to

Eq. (1.7) with s(t) = ∫ t

T /2 �′(τ )dτ , which differs from the

actual s(t) = ∫ t

0 �′(τ )dτ by s0
2 . Therefore,

Oad =
(

α∗
LZ(k2) −β∗

LZ(k2)ei
s0
2

βLZ(k2)e−i
s0
2 αLZ(k2)

)
. (2.1)

By Eq. (1.11),

Pnad(k2,s0) = [
α∗

LZ(k2)βLZ(k2)e−i
s0
2 + αLZ(k2)β∗

LZ(k2)ei
s0
2
]2

= A(k2) cos2

[
s0

2
− φ(k2)

]
, (2.2)

where

A(k2) = |2α∗
LZ(k2)βLZ(k2)|2, φ(k2) = arg[2α∗

LZ(k2)βLZ(k2)].

From Eq. (A3),

2α∗
LZ(k2)βLZ(k2)

= e−πk2+2ik2(1−ln k2)

(
π

�2
(

1
2 − ik2

) + ik2π

�2(1 − ik2)

)
.

(2.3)

A(k2) and φ(k2) are the amplitude and the phase factor of
the oscillation. They are plotted in Fig. 2(a). φ(k2) increases
from 0 to π/2 as k2 varies, which explains the change from
s0 = (2n + 1)π for nonchirped inversion pulses to s0 = 2nπ

for adiabatic inversion pulses. As an example, the map of the
asymptotic Pnad given by Eq. (2.2) is plotted in Fig. 2(b) for
sinusoidal pulses. Figure 2(b) agrees very well with Fig. 1(a)
in the oscillatory region, though the nonoscillatory region is
missing in Fig. 2(b).
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FIG. 2. (Color online) (a) Amplitude (solid line) and phase factor (dashed line) of Pnad in Eq. (2.2). (b) Map of Pnad in Eq. (2.2) for
sinusoidal pulses. The curves are for Pnad = 0.9, 0.5, 0.1, 0.01, 0.001, . . . .
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We take a closer look at Eq. (2.2) in the adiabatic limit (i.e.,
for large k2). Substituting the following Stirling’s formulas for
� functions [16] into Eq. (2.3),

�(1 − ik) ∼=
√

2kπ exp

(
−πk

2
+ ik(1 − ln k) − i

π

4

)

×
(

1 + i

12k
− 1

288k2

)
,

�

(
1

2
− ik

)
∼=

√
2π exp

(
−πk

2
+ ik(1 − ln k)

)

×
(

1 − i

24k
− 1

1152k2

)
,

we have

2α∗
LZ(k2)βLZ(k2) ∼= i

8k2

(
1 − i

24k2

)
,

and so

A(k2) ∼=
(

1

8k2

)2

, φ(k2) ∼= π

2
− 1

24k2
,

Pnad
∼=

(
1

8k2

)2

sin2

(
s0

2
+ 1

24k2

)

=
(

�̇0

δ2
0

)2

sin2

(
s0

2
+ �̇0

3δ2
0

)
. (2.4)

It agrees with the adiabatic limit Eq. (1.15) except for a phase
factor of �̇0/(3δ2

0). To understand the discrepancy, we recall
that Eq. (1.15) was obtained from first-order perturbation in
the rotating adiabatic frame. Higher order unitary perturbation
can be obtained from the Magnus expansion [17],

O(t)= exp

{
−i

∫ t

0
dt1H (t1) − 1

2

∫ t

0
dt1

∫ t1

0
dt2[H (t1),H (t2)]

+ i

6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[H (t1),[H (t2),H (t3)]]

+[[H (t1),H (t2)],H (t3)] + · · ·
}
. (2.5)

Although Eq. (2.5) gives a good approximation of Pnad over
the entire parameter space [8], the computation is more
complicated than the Dyson expansion [18] of the same order.
To obtain the adiabatic limit of Pnad, it is more advantageous
to use the latter. With the Hamiltonian in Eq. (1.7), the
Schrödinger equation is

α̇(t) = θ̇ (t)

2
e−is(t)β(t), β̇(t) = − θ̇ (t)

2
eis(t)α(t).

The Dyson expansion gives

α(t) = 1 −
∫ t

0
dt1

∫ t1

0
dt2

θ̇ (t2)

2
eis(t2) θ̇ (t1)

2
e−is(t1) + · · · ,

β(t) = −
∫ t

0
dt1

θ̇(t1)

2
eis(t1) +

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

θ̇ (t3)

2

× eis(t3) θ̇ (t2)

2
e−is(t2) θ̇ (t1)

2
eis(t1) − · · · . (2.6)

In the adiabatic limit,

α(T/2) = 1 + i

∫ T/2

0

θ̇2

4�′ dt + O((�0T )−2),

β(T/2) = − θ̇ eis

2i�′

∣∣∣∣
T/2

0

−[
θ̇ (T/2)eis(T/2)

�′(T/2)
+ θ̇(0)

�′(0)

]∫ T/2

0

θ̇2

8�′ dt

−
(

eis

2�′
d

dt

θ̇

�′

) ∣∣∣∣
T/2

0

+ O((�0T )−3). (2.7)

Using the diabaticity defined as

ε(t) = −θ̇ (t)/�′(t),

and substituting Eq. (2.7) into Eq. (1.11), we find the Pnad up
to second order in ε,

Pnad
∼=

[
ε2 sin

(
s0

2
+

∫ T/2

0

θ̇2

2�′ dt + ε̇2

ε2δ0

)
− ε̇1

�0

]2

. (2.8)

Here ε1 and ε2 are the diabaticity at resonance and pulse ends,
respectively. In the region where ε2 � ε1, the avoided crossing
at resonance can be neglected, and the avoided crossing
at the pulse ends can be approximated by LZ transitions.
Equation (2.8) reduces to

Pnad
∼= ε2

2 sin2

(
s0

2
+ 1

2

∫ ∞

0

δ2
0�̇

2
0(

δ2
0 + �̇2

0t
2
) 5

2

dt

)

= ε2
2 sin2

(
s0

2
+ ε2

2

∫ ∞

0

dx

(1 + x2)
5
2

)

= ε2
2 sin2

(
s0

2
+ ε2

3

)
.

It is identical to Eq. (2.4), which indicates that second-order
perturbation in the rotating adiabatic frame is required to obtain
the asymptotic Pnad in Eq. (2.4).

Equation (2.8) can be verified in another way. If the
diabaticity ε(t) is a constant, the Hamiltonian in the adiabatic
frame [8],

H(t) = h̄

2

(
�′(t) iθ̇ (t)

−iθ̇ (t) −�′(t)

)
,

can be integrated exactly to give

Pnad = ε2

1 + ε2
sin2

∫ T/2

0

√
�′(t)2 + θ̇ (t)2dt. (2.9)

The particular case of sinusoidal pulses with �0 = δ0 has been
analyzed thoroughly in Ref. [19]. Expanding Eq. (2.9) in ε,
we get

Pnad =
{
ε sin

∫ T/2

0

(
�′(t) + θ̇ (t)2

2�′(t)

)
dt + O(ε3)

}2

∼=
{
ε sin

(
s0

2
+

∫ T/2

0

θ̇2

2�′ dt

)}2

,

which agrees with Eq. (2.8) as ε̇ = 0.

III. BOUNDARY BETWEEN OSCILLATORY AND
NONOSCILLATORY REGIONS

Having studied both the nonoscillatory and oscillatory
regions in the map of Pnad for finite chirped pulses, we switch
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FIG. 3. (Color online) Trace of Pnad = 0 in the map along the boundary between the oscillatory and nonoscillatory regions. (a) Sinusoidal
pulse. Black curves, exact Pnad; red (gray) curves, approximate Pnad given by Eq. (3.2); and dots, tips of loops given by Eq. (3.3). (b) Triangular
pulse. Black curves, exact Pnad; red (gray) curves, approximate Pnad given by Eq. (3.1); lower blue (thin) curve, approximate Pnad given by
Eq. (3.4); and dots, tips of loops given by Eq. (3.5).

the focus to the boundary between the two regions, where
neither the avoided crossing at resonance nor those at the
pulse ends are negligible. To take all the avoided crossings
into account, we introduce a split-level-crossing model that
combines the nonadiabatic transitions at the resonance and
away from the resonance. The pulse can be decomposed into
three segments, namely, before resonance, at resonance, and
after resonance. Since the nonadiabatic transition probability
is small in each segment, the total nonadiabatic transition
amplitude is approximately the sum of the amplitude in each
segment. At resonance, the nonadiabatic transition amplitude
is determined by the LZ transition. By Eq. (A3), the on-
resonance transition amplitude is

A1 = αLZ(k1)βLZ(k1) + α∗
LZ(k1)β∗

LZ(k1)

= πe−πk1

×
(

1

�
(

1
2 − ik1

)
�

(
1
2 + ik1

) − k1

�(1 − ik1)�(1 + ik1)

)

= e−2πk1 ,

which agrees with the nonadiabatic transition probability given
in the Landau-Zener formula, Eq. (1.12). The off-resonance
nonadiabatic transition amplitude in the adiabatic limit was
computed in Sec. II. The series Eq. (2.7) would not contain the
on-resonance transition amplitude e−2πk1 no matter how high
the order of perturbation is, because e−2πk1 has an essential
singularity at infinity and thus cannot be approximated by a
power series in 1/k1. By Eq. (2.8), the off-resonance transition

amplitude up to second order in ε is

A2 = ε2 sin

(
s0

2
+

∫ T/2

0

θ̇2

2�′ dt + ε̇2

ε2δ0

)
− ε̇1

�0
.

Since the boundary is in the region where ε1 � ε2, A2 can be
simplified to

A2 = ε2 sin
s0

2
− ε̇1

�0
.

As a result, the total nonadiabatic transition probability can be
approximated by

Pnad
∼= (A1 + A2)2 =

(
e−2πk1 + ε2 sin

s0

2
− ε̇1

�0

)2

. (3.1)

To justify Eq. (3.1), we plot the traces of Pnad = 0 obtained by
numerical integration against those determined by Eq. (3.1) in
Fig. 3.

Figure 3(a) is for the sinusoidal pulses. Since �(t) varies
smoothly at resonance, ε̇1 = 0. Eq. (3.1) becomes

Pnad
∼=

(
e−2πk1 + ε2 sin

s0

2

)2

. (3.2)

The domain in Fig. 3(a) consists of large �0/ωm and δ0/ωm

because Eq. (3.2) is only valid asymptotically. Figure 3(a)
shows that the trace of Pnad = 0 determined by Eq. (3.2)
is very close to the exact trace. On the other hand, if the
on-resonance transition amplitude e−2πk1 were omitted from
Eq. (3.2), it would lead to a qualitatively different trace of
Pnad, determined by sin s0 = 0, shown as the darkest regions
in Fig. 2(b). To quantify the boundary between the oscillatory
and nonoscillatory regions, we can define it as the envelope
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of the trace of Pnad = 0, connected by the “tips” of the loops,
which satisfy

sin
s0

2
= −1 ⇒ s0 = (4n − 1)π and e−2πk1 = ε2, (3.3)

according to Eq. (3.2). The tips are plotted in Fig. 3 a as well.
Figure 3(b) plots the triangular pulses with population

inversion. For triangular pulses, �(t) has a kink at resonance,
ε̇1 = −3ε1�̇1/�0 > 0, so Eq. (3.1) has to be used. In Fig. 3(b),
the trace of inversion pulses determined by Eq. (3.1) matches
very well with the exact trace. Compared with sinusoidal
pulses, the trace of triangular pulses with population inversion
contains an extra curve below the loops. It can be explained
by the difference between Eqs. (3.1) and (3.2). Equation (3.1)
has two sets of zeros. Along the lower curve, ε2 	 e−2πk1 , and
the approximate equation for the trace can be simplified to

e−2πk1 = ε̇1

�0
, (3.4)

the plot of which also agrees well with the exact trace
in Fig. 3(b). Along the loops, e−2πk1 	 ε2, and the trace
determined by the simplified approximate equation,

ε2 sin
s0

2
= ε̇1

�0
,

is indistinguishable from that determined by Eq. (3.1). Simi-
larly, the boundary is defined as the envelope connected by the
tips of the loops that are plotted in Fig. 3(b) a and determined
by

sin
s0

2
= 1 ⇒ s0 = (4n + 1)π and ε2 = ε̇1

�0
. (3.5)

Equations (3.1) through (3.5) explain the qualitative difference
between the traces of sinusoidal and triangular pulses with
population inversion. More generally, the boundary between
the oscillatory and nonoscillatory regions in the map of Pnad is
determined asymptotically by Eq. (3.2) for smooth pulses and
Eq. (3.1) for other pulses.

IV. STABLE INVERSION PULSES

In this section, we use the map of Pnad to design chirped
pulses to achieve stable inversion of quantum state. The
controlled inversion of quantum state can be used to generate
large optical force on atoms in laser cooling [6] or perform
the NOT operation on a qubit in quantum computing. The
pulse has to achieve not only an inversion (i.e., Pnad = 0) but
also a stable inversion (i.e., Pnad < Pth) as pulse parameter
vary, where Pth is the accuracy threshold that depends on
the application. In the interaction of counterpropagating light
pulses with atoms, the optical force F ∝ 1 − √

Pnad [6].
The accuracy threshold is Pth = 10−2 to achieve 90% of the
maximum force. Fault-tolerant quantum computation can run
reliably for an arbitrarily long time provided that the noise is
weaker than certain accuracy threshold. In Ref. [20], it was
proved that for quantum computation based on error detection
and postselection, the accuracy threshold was 1.04 × 10−3. A
larger threshold allows more variation in the pulse parameters.
It is well known that adiabatic pulses provide an efficient
method to achieve stable inversion. We quantify the stability
in this section.

For a given pulse profile, Pnad depends on the coupling
strength �0 and detuning δ0. In atomic experiments �0 and δ0

are stably controlled [6], so the sensitivity to δ0 does not pose a
problem. However, as pointed out in Ref. [5], the sensitivity to
�0 determines the usable cross section of Gaussian laser beam.
Only the portion of the cross section whose �0 is within the
allowed range for the accuracy threshold can be used reliably
for the inversion. The energy efficiency, ie, the proportion of
the usable energy, is

η = 1 − [(�0)min/(�0)max]2.

On the other hand, the sensitivity to the Doppler shift would
affect the velocity capture range of an inversion pulse. For an
atom moving at velocity v, the effective detuning is shifted by
δD = kv, where k is the wave number of the resonant light.

The classical way of adiabatic inversion consists of a
constant coupling strength �0 and a frequency sweep from
well below resonance to well above resonance. To obtain a
complete inversion that is insensitive to the transition time T ,
δ0 � �0 is needed, which requires a large detuning, and thus
is inefficient. Efficient methods of inversion include π pulses
and adiabatic pulses. We compare their stability under the
variation of coupling strength and Doppler shift with respect
to specific accuracy thresholds.

A. Stability of inversion pulses

Pnad for π pulses is given by Eq. (1.14). A perturbed pulse
with coupling strength �0 + �� must satisfy

Pnad = cos2

[
s0

(
1 + ��

�0

)]
= sin2

(
s0

��

�0

)
< Pth,

where the inversion condition Pnad = cos2 s0 = 0 of the un-
perturbed pulse is used. For Pth 	 1, the maximum allowed
�� is given by

T �� = C
√

Pth, (4.1)

where C = �0T/s0 is a constant of order 1 depending on
the pulse profile. C = π for sinusoidal pulses, and C = 4 for
triangular pulses.

Pnad for adiabatic pulses is given by Eq. (1.15). The
perturbed pulse must satisfy

Pnad ≈ ε2
2 sin2

(
s0 + ∂s0

∂�0
��

)
< Pth,

where s0 is regarded as a function of δ0 and �0. Using the
inversion condition Pnad = ε2

2 sin2 s0 = 0 of the unperturbed
pulse, we obtain the maximum allowed �� for Pth 	 1,

�� = C
δ2

0

�0

√
Pth, (4.2)

where C = (�0/�̇0)(∂�0/∂s0) is a number of order 1 de-
pending on the pulse profile and parameters. By comparing
Eqs. (4.1) and (4.2), the allowed �� for adiabatic pulses with
ε2 	 1 is much larger than that for π pulses under the same
threshold. Among adiabatic pulses, the pulses with larger δ0

and smaller �0 are preferred in order to allow larger ��.
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FIG. 4. Profiles of Doppler-shifted pulses. Dashed lines are the detuning without Doppler shift. (a) π pulse. (b) Adiabatic pulse.

The profiles of the π pulse and the adiabatical pulse with
Doppler shift are plotted in Fig. 4. For a Doppler-shifted π

pulse,

α(T/2) = αLZ(k2), β(T/2) = β∗
LZ(k2)eis ′

0 ,

α(−T/2) = αLZ(k2), β(−T/2) = −βLZ(k2)e−is ′
0 ,

where k2 = δ2
D/(8�̇0) is the adiabaticity at the two ends of the

Doppler-shifted pulse, and

s ′
0 = 1

2

∫ T/2

−T/2

√
�2(t) + [δ(t) − δD]2dt. (4.3)

Since the adiabatic states at the end of the pulse are the same
as those at the beginning of the pulse,

Pnad = |αad|2 = ∣∣α2
LZ(k2) + β2

LZ(k2)e−2is ′
0
∣∣2

.

Using the inversion condition Pnad = cos2 s0 = 0, the fact
that s ′

0 − s0 is of the order of k2, and the asymptotic forms
of αLZ(k2) and βLZ(k2) obtained from Eq. (A3), we have
for k2 	 1,

Pnad = ∣∣α2
LZ(k2) − β2

LZ(k2)
∣∣2 = 2πk2 < Pth.
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FIG. 5. (a) Magnified map of Pnad for sinusoidal pulses. The curves are for Pnad = 0.1, 0.01, 0.001, . . . . Point A is the π pulse, and points
B and C are the adiabatic pulses. (b) Pnad with Doppler shift for the points A, B, and C.
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Therefore, the maximum allowed Doppler shift is

δD =
√

4

π
�̇0Pth. (4.4)

For a Doppler-shifted adiabatic pulse, the perturbation method
in the rotating adiabatic frame still applies, except that
the detuning is no longer symmetric. By the first-order
approximation,

Pnad =
∣∣∣∣∣ ε(t)eis(t)

2i

∣∣∣∣
T/2

−T/2

∣∣∣∣∣
2

=
(

ε+ + ε−
2

sin s ′
0

)2

+
(

ε+ − ε−
2

cos s ′
0

)2

,

where ε± = �̇0/(δ0 ± δD)2 are the diabaticity at the two ends
of the Doppler-shifted pulse, and s ′

0 is defined by Eq. (4.3).
Using the inversion condition Pnad = ε2

2 sin2 s0 = 0 and the
fact that s ′

0 − s0 is of the order of T δ2
D/δ0, we have for δD 	 δ0,

Pnad =
(

2ε2
δD

δ0

)2

< Pth.

The maximum allowed Doppler shift is given by

δD

δ0
= δ2

0

�̇0

√
Pth

2
. (4.5)

By comparing Eqs. (4.4) and (4.5), adiabatic pulses have larger
velocity capture range than π pulses. Among adiabatic pulses,
the pulses with larger δ0 and smaller �0 are also preferred for
larger velocity capture range.

B. Examples of stable inversion pulses

We present and compare a few sinusoidal inversion pulses
with small coupling strength and detuning. The pulses are
shown in the magnified map of Pnad for sinusoidal pulses,
Fig. 5(a). Point A represents the first π pulse, whose δ0 = 0
and s0 = π/2. Points B and C represent two adiabatic pulses,
chosen as the pulses with the largest detunings on the first
and second “loops” in the map. Pnad for each pulse is plotted
against the Doppler shift in Fig. 5(b). The maximum allowed
deviation in the coupling strength, the corresponding energy
efficiency, and the maximum allowed Doppler shift are listed in
Table I for each pulse, with respect to the accuracy thresholds
10−3 and 10−2.

In Table I, �� and δD for the π pulse agree well with
Eqs. (4.1) and (4.4). �� and δD for the adiabatic pulses
agree with Eqs. (4.1) and (4.4) only qualitatively because the
pulses are close to the boundary between the oscillatory and
nonoscillatory regions in the map, where Pnad needs to be
approximated by the more complicated Eq. (3.1). According
to Table I, ��0 for the threshold Pth = 10−3 is more than
10 times bigger for the adiabatic pulses than for the π pulse,
and the energy efficiency is more than 5 times higher. The
energy efficiency is further boosted by half for the more relaxed
accuracy threshold Pth = 10−2. The adiabatic pulses allow
Doppler shifts 10 times bigger than the π pulse for the same
accuracy threshold. It is in contrast to the half adiabatic pulse
with constant adiabaticity in Ref. [5], because at the two ends

the sinusoidal pulses have detuning ±δ0, while the pulses in
Ref. [5] have vanishingly small detuning.

Similar adiabatic pulses can be selected from the map of
Pnad for triangular pulses, Fig. 1(b). For a generic pulse profile,
which may be neither sinusoidal nor triangular [6], an adiabatic
inversion pulse with relatively small coupling strength and
detuning can be selected from the corresponding map of Pnad,
with guidance by Eqs. (4.2) and (4.5). The adiabatic pulse has
higher power efficiency and larger velocity capture range than
the π pulse.

V. CONCLUSION

We studied the map of the nonadiabatic transition proba-
bility Pnad in the parameter space of the coupling strength and
detuning amplitude for chirped pulses. The oscillation of Pnad

is due to the interference of the nonadiabatic transitions at the
beginning and the end of the pulse. The boundary between the
oscillatory and nonoscillatory regions of the map is formed
by the interference between the on-resonance transition and
off-resonance transition. The map of Pnad can aid the design of
efficient chirped pulses to achieve stable population inversion.
We proved that adiabatic pulses with larger detuning amplitude
and smaller coupling strength are optimal both for high power
efficiency and for large velocity capture range. Finally, as
pointed out by Vitanov and Garraway [4], Pnad depends only on
the function θ (s). Therefore, the sinusoidal or triangular pulses
described in this paper can be generalized to fit a specified
coupling or detuning profile without altering the transition
probability.
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APPENDIX A: LANDAU-ZENER TRANSITION IN THE
ROTATING ADIABATIC FRAME

The Landau-Zener model defined by Eqs. (1.1) and (1.2) is
well known to be analytically solvable. For the applicability in
Sec. II, we derive the propagation matrix from 0 to ∞ rather
than from −∞ to ∞ as in most reports. Following Zener’s
paper [2], we write the wave function as

ψ(t) = e−i at2

4 c+(t)ψ+ + ei at2

4 c−(t)ψ−.

TABLE I. Maximum allowed deviation in coupling strength, en-
ergy efficiency, and maximum allowed Doppler shift of the sinusoidal
pulses with respect to the accuracy threshold. All frequencies are in
units of ωm.

Pnad < 10−3 Pnad < 10−2

Pulse parameters ��0 η δD ��0 η δD

A (δ0 = 0,�0 = π/2) 0.032 7.8% 0.043 0.100 22.5% 0.135
B (δ0 = 4.1,�0 = 3.4) 0.425 40% 0.57 0.775 60% 1.02
C (δ0 = 9.2,�0 = 6.0) 0.954 50% 0.86 2.055 75% 4.65
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c+(t) satisfies the following equation:

d2c+
dt2

− iat
dc+
dt

+ b2

4
c+ = 0.

Letting z = iat2/2, we can convert the equation above to
Kummer’s equation,

z
d2c+
dz2

+
(

1

2
− z

)
dc+
dz

− ib2

8a
c+ = 0.

The solution is

c+(t) = F

(
i
b2

8a
;

1

2
; i

at2

2

)
c+(0)

− i
bt

2
F

(
i
b2

8a
+ 1

2
;

3

2
; i

at2

2

)
c−(0), (A1)

where F is the confluent hypergeometric function [16].
Consequently, the propagation matrix from 0 to t is

O0(t) =
⎛
⎝ e−i at2

4 F
(
i b2

8a
; 1

2 ; i at2

2

) −i bt
2 e−i at2

4 F
(
i b2

8a
+ 1

2 ; 3
2 ; i at2

2

)
−i bt

2 ei at2

4 F
( − i b2

8a
+ 1

2 ; 3
2 ; −i at2

2

)
ei at2

4 F
( − i b2

8a
; 1

2 ; −i at2

2

)
⎞
⎠ .

As t → ∞, O0(t) does not converge because of the highly oscillating phases. However, the propagation matrix in the rotating
adiabatic frame converges as t → ∞ because the oscillating phases are canceled by the phases in the eigenstates. The quantum
state in the rotating adiabatic frame is associated with the state in the original frame by [8]

ψ(t) = U (t)ψ0(t) =
(

exp
(
i s(t)

2

)
0

0 exp
( − i s(t)

2

)
)(

cos
(

θ(t)
2

)
sin

(
θ(t)

2

)
− sin

(
θ(t)

2

)
cos

(
θ(t)

2

)
)

ψ0(t), (A2)

in which θ (t) and s(t) are defined after Eq. (1.7), with �(t) and δ(t) given in Eq. (1.2). As t → ∞, the propagation matrix in the
rotating adiabatic frame, denoted by OLZ, becomes

OLZ(∞) = lim
t→∞ U (t)O0(t)U †(0)

= lim
t→∞

(
exp

(
i
2

∫ t

0

√
b2 + (aτ )2dτ

)
0

0 exp
( − i

2

∫ t

0

√
b2 + (aτ )2dτ

)

)
O0(t)

(√
2

2 −
√

2
2√

2
2

√
2

2

)

= e− π
2 k

⎛
⎜⎜⎝

eik(1−ln k) �

(
1
2

)
�

(
1
2 −ik

) eik(1−ln k)−i π
4

√
k

�

(
1
2

)
�(1−ik)

−e−ik(1−ln k)+i π
4

√
k

�

(
1
2

)
�(1+ik) e−ik(1−ln k) �

(
1
2

)
�

(
1
2 +ik

)
⎞
⎟⎟⎠

(√
2

2 −
√

2
2√

2
2

√
2

2

)
,

where k = b2/(8a) is the adiabaticity at the avoided crossing. The asymptotic form of the confluent hypergeometric function [16]
has been used in the derivation of the last equality. Substituting OLZ(∞) into Eq. (1.8), we obtain the coefficients α and β for the
Landau-Zener model in the limit that t → ∞ as functions of k,

αLZ(k) =
√

π

2
exp

{
− π

2
k − ik(1 − ln k)

} [
1

�
(

1
2 + ik

) + ei π
4

√
k

�(1 + ik)

]
,

βLZ(k) =
√

π

2
exp

{
− π

2
k + ik(1 − ln k)

}[
1

�
(

1
2 − ik

) − e−i π
4

√
k

�(1 − ik)

]
. (A3)

It recovers the half-crossing transition probability [21], P = |αLZ − β∗
LZ|2/2 = (1 − e−2πk)/2.
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