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We present a detailed study of the partial and total cross sections for photon-induced electron emission from
H2

+. By comparing the results employing exact and approximate, bounded and continuum wave functions, for
one- and two-center basis functions, we find the origin and position of the Cooper-like minima in the partial cross
sections and their relationship with the Young-type interference pattern.
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I. INTRODUCTION

The original Young two-slit light diffraction and interfer-
ence experiment [1] established the wave nature of light. More
than a hundred years later, the same kind of experiment was
carried out with electrons [2–4], confirming that they also
behave as waves.

The same kind of interference phenomena can be observed
in the ionization of diatomic molecules, where the process
is called Young-type interference, since it involves only the
emission from two atomic centers without electronic wave
diffraction.

For photon-impact ionization of the ground state of H2
+,

Cohen and Fano [5] showed that the total cross section is
modulated by an oscillating function that gives rise to the
interference pattern. Employing approximate wave functions,
they found that the total cross section can be written as

σ CF
tot = σH

1 + S

(
1 + sin(kR)

kR

)
, (1)

where k is the electron momentum, R is the internuclear
distance between the nuclei, σH is the total photoionization
cross section for an equivalent H atom, and S is the overlap
integral arising from the normalization of the initial wave
function.

For ion impact on H2, Young-type interferences have been
observed experimentally in the electron emission spectra and
interpreted as due to the sum of coherent waves emitted from
each center of the molecule [6].

In a recent paper [7], the photoionization of H2 and H2
+ was

investigated for photon wavelengths comparable or smaller
than the internuclear distance. The total cross sections as a
function of photon energy for different partial waves show
distinct minima for values of the photoelectron momentum k

given by

kR � �π, (2)

where R is the internuclear distance and � the partial wave
quantum number. This only occurs for parallel alignment of the
molecular axis with respect to the polarization vector. As this
formula describes momentum quantization in a box of length
R, these authors suggested that the minima in the spectra can
be related to electron confinement at the given value of R.

Della Picca et al. [8] also studied these structures and
showed that for an initial 1sσg state the minima in the partial
cross section correspond to maxima in the phase shift of the
continuum wave k�σu and the transition matrix element is
exactly zero. This fact suggests that the effect is similar to the
Ramsauer-Townsend effect in elastic electron-atom collisions
[9], which can be explained in terms of one-dimension
resonance for an incident electron wave on a potential well
of width R. When the well size coincides with an integer
number of times of half electron de Broglie wavelength (or
equivalently kR = nπ ), a resonance occurs and the well is
transparent to the electron wave [10,11].

The minima in the partial cross sections are similar to the
Cooper minima appearing in atomic photoionization of states
which have at least one node [12]. Since the ground states of H2

and H2
+ molecules have no nodes, it was suggested that it is

due to the nonspherical character of the molecular potential
[8,13] and the minima were therefore called “Cooper-like
minima”. Della Picca et al. [8] found that these minima occur
in a wide range of k and R values satisfying only approximately
the relation (2) and they remain when the vibrational degree
of freedom of the target is taken into account. In the
following, we omit the term like to denote the Cooper-like
minima.

In a more recent work, Della Picca et al. [14] showed that
the Cohen and Fano oscillations due to interference effects are
related to the Cooper minima. It results therefore in that the
interpretation of the oscillations can be done equivalently with
these two different pictures. However, the relationship between
these two aspects was only investigated by comparison
(i) of the minima position in the cross-section ratio and in
the partial cross sections (see Fig. 4 of [14]), (ii) with the het-
eronuclear molecule HeH2+ case where the oscillations almost
disappear, and (iii) with ion-impact-induced ionization (cf.
also [15,16]).

The purpose of this work is to study in more detail the nature
of the Cooper minima and their relationship with Young-type
interferences. In Sec. II, we present the theoretical framework
and in Sec. III we analyze the molecular photoionization of
H2

+ using various approximations for the wave functions
to allow the calculation of the partial cross sections in
closed analytical form. We consider spherical (one-center
basis functions) and spheroidal partial waves (two-center basis
functions). In Sec. III A, we show that with the spherical waves
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the exact position of the Cooper minima can be obtained
and related with the interference factor 1 + sin(kR)/kR. In
Sec. III B, we show that with spheroidal waves we can deduce
the minima position from the interference oscillations in the
cross-section ratio and obtain an expression similar to Eq. (2).
Finally, in Sec. IV, we analyze the exact case and compare
with results obtained in the previous sections.

Atomic units will be used except when otherwise stated.

II. THEORY

We consider the photoionization of H2
+ by linearly po-

larized light from the 1sσg ground state within the Born-
Oppenheimer approximation. The nuclei of the molecule have
charge ZA = ZB = 1 and are fixed at the internuclear distance
R = 2 a.u. The differential cross sections are obtained in
the dipolar approximation as a function of the photoelectron
energy and angle,

dσ

dk̂ d�R

= (2π )2αωk|Tif |2
∣∣∣∣
E=Ei+h̄ω

, (3)

where k ≡ {k,θe,φe} (k̂ = k/k) is the ejected electron momen-
tum in the molecular frame, �R ≡ {θR,ϕR} is the orientation of
the molecule in the laboratory reference frame (defined with
ẑ axis parallel to the radiation field), α is the fine-structure
constant, h̄ω is the photon energy, and the transition matrix
Tif is given by

Tif = 〈�−
f (k,r)|ε̂ · D|�i(r)〉. (4)

The dipole operator D in Eq. (4) is given by D = ∇/ω or
D = r in the velocity and length gauges, respectively. The
electronic functions �i(r) and �−

f (k,r) are the initial and final
exact wave functions with correct asymptotic conditions for the
latter. Both are eigenfunctions of the electronic Hamiltonian,

H = −1

2
∇2

r − ZA

rA

− ZB

rB

, (5)

with eigenvalues Ei < 0 and E = k2/2, respectively.
The electronic Hamiltonian (5) commutes with the op-

erators Lz and � associated with constants of motion and
related to the cylindrical symmetry of the molecule. Lz is the
component along the molecular axis of the total electronic
orbital angular momentum L, with eigenvalue mh̄. The
operator � is related to the Runge-Lenz vector and is given
by [17]

� = L2+ R2

4

(
∇2− ∂2

∂z2

)
+R(ZA cos θA−ZB cos θB), (6)

where θA and θB are related to the angles of the electron
position vector with respect to the nuclei A and B, respectively.
The eigenvalues of � are numbered by the quantum number
�. As Lz and � commute, the set of observables H , �, and
Lz forms a complete set of commuting observables, and the
eigenfunctions �s with s ≡ E,�,m form a basis of the Hilbert
space. Since these basis functions take into account explicitly
the symmetry of the molecule, we call it a “two-center” (2C)
basis and it is given by functions of the form

�s(r) = JE�m(ξ )YE�m(η,ϕ), (7)

where (ξ,η,ϕ) are the spheroidal coordinates of the position
vector r and YE�m are the spheroidal harmonics.

A different representation can be obtained employing the
“one-center” (1C) basis that corresponds to the set of functions
�p with p ≡ q,L,m, which are eigenfunctions of L2, Lz with
eigenvalues L(L + 1)h̄2 and mh̄, respectively. In this case, L2

does not commute with H and the basis wave functions can
be written as the product of spherical harmonics and radial
functions numbered by q,

�p(r) = fq(r)YLm(θ,ϕ), (8)

where (r,θ,ϕ) are the usual spherical coordinates. In the united
atom limit, the operators � and L2 coincide, the spheroidal
harmonics become the spherical harmonics, and both bases
are equal.

The continuum wave function with well-defined momen-
tum �−

f (k,r) can be written as the sum, with appropriate
coefficients, over the index m and � of the elements of the
2C basis,

�−
f (k,r) =

∑
m�

c2C
s (k) �s(r), (9)

or over the index m, L, and q of the elements of the 1C basis,

�−
f (k,r) =

∑
mLq

c1C
p (k) �p(r), (10)

where c2C
s and c1C

p are the expansion coefficients for the 2C
and 1C basis functions. The transition matrix (4) can be
written therefore as the sum of these (conjugated) coefficients
multiplied by the partial transition matrix M�(L)m defined as

M�(L)m = 〈�s(p)(r)|ε̂ · D|�i(r)〉, (11)

which depends on the molecular orientation.
The selection rules �m = 0, ± 1 are independent of the

basis, since the basis functions �s and �p have the same
azimuthal dependence eimϕ . In the case of initial states
with zero angular momentum (σ states), we can make the
integration over the azimuthal angle ϕ in Eq. (11) and obtain

MJm = cos θR δm0
1

ω
MJ0 + sin θR (δm1 − δm−1)

1

2ω
MJ1,

(12)

with J ≡ � or L and δmn is the Kronecker’s delta. The reduced
transition matrix elements MJm only involve integrals over
the variables (ξ,η) or (r,θ ). Moreover, due to the symmetry of
the homonuclear molecule and the parity of the initial state,
only odd J values give nonzero values of the transition matrix.
The square module of the transition matrix (11) defines the
partial cross section depending on the molecular orientation,

dσJm

d�R

= (2π )2αω|MJm|2. (13)

To obtain the total cross section, we have to average over the
molecular orientation and sum over all partial contributions
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with m = 0, ± 1 and odd J . Then σtot is dependent only on
the reduced transition matrices,

σtot = 1

4π

∫
d�R

∑
J,m=0,±1

dσJm

d�R

(14)

= (2π )2α

3ω

∑
J

(|MJ0|2 + |MJ1|2), (15)

or, equivalently,

σtot =
∑

J

(σJ0 + σJ1), (16)

where we have introduced the partial cross sections (PCS) as

σJ� = (2π )2α

3ω
|MJ�|2, (17)

defined only with � ≡ |m| = 0 or 1. While the PCS (17)
depends on the chosen basis, the total cross section does not
when convergence is obtained and therefore we have

σσ =
∑

�

σ�0 =
∑
L

σL0, (18)

σπ =
∑

�

σ�1 =
∑
L

σL1, (19)

and

σtot = σσ + σπ . (20)

Note that the PCS σJ� defined in Eq. (17) with � = 1 cor-
responds to the sum of the m = 1 and m = −1 contributions
and therefore a factor 2 should not be added to σπ in Eq. (20)
to obtain the total cross section. In the following sections,
we discuss the properties of one- and two-center partial cross
sections.

III. ANALYSIS WITH THE LCAO-PW APPROXIMATIONS

The exact calculation of the differential and total cross
sections can only be done numerically. To gain further insight,
it is most convenient to obtain them in closed analytical
form, which is only possible when using approximate wave
functions. For this purpose, we consider the initial ground state
as the simplest linear combination of atomic orbitals (LCAO),

�i(r) = 1√
2(1 + S)

[
�

μ

1s(rA) + �
μ

1s(rB)
]

= N exp

(
− μR

2
ξ

)
cosh

(
μR

2
η

)
, (21)

where �
μ

1s(r) = e−μr
√

μ3/π with μ = 1.24, N2 =
2μ3/π (1 + S), and S is the overlap integral [18]. For the final
state, we consider the plane wave (PW) approximation, which
is obtained by setting ZA = ZB = 0 in Eq. (5); in this case,
H commutes with L2. The PW approximation can be written
using the 1C basis representation,

eik·r

(2π )3/2
= 4π

(2π )3/2

∑
Lm

iL jL(kr) Y ∗
Lm(�k) YLm(�), (22)

or the 2C basis representation [19],

eik·r

(2π )3/2
= 1√

k

∞∑
m=−∞

∞∑
�=|m|

i�J�m(c,ξ )

×Y∗
�m(c, cos θk,ϕk)Y�m(c,η,ϕ), (23)

where c = kR/2. We can identify the 1C (or spherical) partial
waves as

�p(r) = jL(kr)YLm(�)

√
2k

π
(24)

and the 2C (or spheroidal) partial waves as

�s(r) = Y�m(c,η,ϕ)J�m(c,ξ ). (25)

With these approximations to the initial and final wave func-
tions, gauge invariance is lost and thus the results employing
the velocity or length gauge are different. In this section,
we use the velocity gauge (D = ∇/ω) but, as discussed in
the following, our conclusions on the position of the Cooper
minima will be preserved in length gauge.

A. Calculation employing the 1C basis

In this section, we calculate the transition matrix (11)
employing the wave functions (21) and (24). Since the initial
LCAO state is the sum of two terms, the transition matrix can
be separated into two contributions. In what follows, it will be
convenient to expand the spherical partial waves �p in partial
waves centered on each nucleus. This can be done through
a translation of ±R/2 along the molecular axis, so they can
be written as linear combinations of one-center partial waves
but evaluated on each nucleus [5,20]. Thus both terms of the
transition matrix are integrals over the variables rA and rB and
are therefore proportional. The transition matrix can then be
factorized as

M1C
Lm = [1 − (−1)L]√

2(1 + S)
T

(m)∗
1L (kR/2) Matom

1m , (26)

where the translation operators T
(m)

1L are proportional to the
spherical Bessel functions and their first derivative

T
(0)

1L (c) =
√

3(2L + 1)j ′
L(c), (27)

T
(±1)

1L (c) =
√

3L(L + 1)(2L + 1)

2

jL(c)

c
, (28)

and

Matom
1m = 〈

�p=1,m(r)|ε̂ · D|�μ

1s(r)
〉 = −�̃1s(k)

k3/2

ω

√
2π

3

× [
√

2 cos θRδm0 + sin θR(δm1 − δm−1)]. (29)

Finally, averaging the square modulus of the transition
matrix over molecular orientation we obtain the PCS,

σ 1C
L0 = σH

1 + S

2

3

∣∣T (0)
1L (kR/2)

∣∣2
(30)

and

σ 1C
L1 = σH

1 + S

4

3

∣∣T (1)
1L (kR/2)

∣∣2
, (31)
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where

σH = (2π )3 2α

3ω
k3�̃2

1s . (32)

From the properties of the spherical Bessel functions,
Cohen and Fano [5] showed that the sum of the translation
operators over odd L and m = 0, ± 1 gives the interference
term

2

3

∑
L,m=0,±1

∣∣T (m)
1L (kR/2)

∣∣2 =
[

1 + sin(kR)

kR

]
. (33)

Finally, with this expression, they summed the PCS (30) and
(31) obtaining their Eq. (1), which showed for the first time
the interference effect.

The Cooper minima (zeros of the transition matrix) are
the zeros of the translation operators [21]. Therefore, they
are directly related to the molecular structure and occur
when the spherical Bessel function (|m| = 1 case) or their
first derivative (m = 0 case) are zero. Moreover, Eq. (33)
establishes the relationship between the Cooper minima and
Young-type interference: the zeros of the spherical Bessel
functions and their derivatives give the oscillatory feature of
the PCS and when these terms are summed the interference
pattern is obtained.

In Fig. 1, we present the 1C PCS as function of the
electronic momentum for different odd values of L and
� = 0,1. According to Eqs. (30) and (31), they correspond to
a monotonically decreasing atomic cross section multiplied by
the translation operators that are proportional to the spherical
Bessel functions or their derivatives. In Fig. 1, the zeros
of jL and j ′

L appear as deep minima and one can observe,
for example, that σ 1C

10 have Cooper minima when kR/2 =
2.08,5.94,9.2, . . ., which are the zeros of j ′

1. Finally, when we
sum all the PCS, we obtain the total cross section σtot, which
when divided by the atomic total cross section σH gives the
ratio plotted in the lower panel.

From Figs. 1(a) and 1(b), it is not straightforward to observe
that the PCS oscillations give rise to the oscillatory behavior
of the cross section ratio in Fig. 1(c). However, it is easy to
understand analytically from Eq. (33).

B. Calculation employing the 2C basis

In this section, we calculate the PCS employing the 2C
basis functions. This is done numerically in the same way
as described in our previous works [8,14], but setting ZA =
ZB = 0 to obtain the PW approximation. We evaluate Eq. (11)
with the wave functions (21) and (25).

The results are presented in Fig. 2: σ�0 in the upper panel
and σ�1 in the lower one. Unlike the 1C case, only the � = 0
case presents structures and each PCS has a unique minimum.
The sum over all PCS gives the same total cross section as in
the 1C case, and the interference function 1 + sin(kR)/kR is
obtained again after division by the atomic total cross section
σH [shown in Fig. 1(c)].

To understand the differences between the structures in the
PCS obtained with the 1C and 2C basis, it is convenient to
analyze both transition matrices. In the Appendix, we show
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FIG. 1. (Color online) 1C partial cross sections σ 1C
Lm using LCAO

and PW with L = 1 solid (red), L = 3 dashed (green), and L =
5 dashed dotted (blue) lines. (a) � = 0 case. (b) � = 1 case.
(c) Molecular and atomic total cross-section ratio.

that the 2C transition matrix can be written as the sum of 1C
transition matrices. According to Eqs. (26) and (A3), we have

M�0 = 2
√

3√
1 + S

Matom
10

∑
L(odd)=1

(−i)L−�dL(c,�,0)j ′
L(c), (34)

M�±1 = 2
√

3√
1 + S

Matom
1±1

∑
L(odd)=1

(−i)L−�

×L(L + 1)dL−1(c,�,1)
jL(c)√

2c
. (35)

The coefficients dn(c,�,|m|) are defined in the Appendix and
they relate the spheroidal and spherical harmonics. In Fig. 3,
we show the most significant coefficients as a function of the
parameter c = kR/2.

We begin with the m = 0 case. At low energy (or small
values of c), the coefficients dL(c,l,|m| = 0) are larger when
L = �. Thus the higher contribution to the transition matrix
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FIG. 2. (Color online) 2C partial cross sections σ�m using LCAO
and PW with � = 1 solid (red), � = 3 dashed (green), and � = 5
dashed dotted (blue) lines. (a) � = 0 case. (b) � = 1 case.

is due to the d�(c,�,0)j ′
�(c) term. For example, we can expect

a Cooper minimum in the PCS with � = 1 due to the zero
in the derivative of the spherical Bessel function of order 1,
and this happens when c = 2.08. As the energy increases,
the coefficients d�(c,�,0) and d�+2(c,�,0) become of the same
order and the contributions of the spherical Bessel function
derivatives with orders � and � + 2 are comparable. For
example, the minimum in the PCS with � = 3 at k = 4.9 a.u.
falls between the first zeros of j ′

3 and j ′
5, that are 4.51 and

6.76, respectively. As c increases, more coefficients dn become
important and there are contributions from many spherical
Bessel functions preventing therefore the transition matrix
from vanishing for another value of energy. The |m| = 1 case
is quite different, as the factor L(L + 1) appears in Eq. (35),
allowing the coupling of spherical Bessel functions of higher
order. Many comparable terms contribute to the summation
and therefore the matrix element is always nonvanishing.

Since for each � value the amplitudes (34) and (35) and
the coefficients dL depend on the energy only through the
parameter c = kR/2, we can infer that the Cooper minima in
the LCAO-PW approximation appear when kR ∼ β�, where
β� is some constant which depends only on � [21]. In spite
of these expressions, it is not straightforward to determine the
appropriate constant β� for each � value.

With the 1C basis, we could obtain analytically the shape
of the PCS and how their sum results in the interference factor.
On the contrary, with the 2C basis the PCS do not have a simple
analytical expression but minima can be seen graphically: the
total cross section results from the sum of PCS with a unique
structure in the energy range where each PCS gives the main
contribution to the total cross section. This Cooper minimum
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FIG. 3. (Color online) Coefficients dn(c,�,|m|) as functions of the
parameter c = kR/2 for � = 1 solid (red), � = 3 dashed (green), and
� = 5 dashed dotted (blue) lines. (a) m = 0 case, with coefficients d�

in thick lines and d�+2 with thin lines. (b) m = 1 case, with coefficients
d�−1 in thick lines and d�−3 with thin lines.

is therefore translated directly to the total cross section and
then to the cross-section ratio.

Unlike the 1C case, with the 2C basis we do not obtain
analytically the position of the minima. However, we know
that the minima in the cross-sections ratio occur when the
interference term in Eq. (1) is minimum, i.e., [1 + j0(kR)]′ = 0
with positive second derivative. Since j ′

0 = −j1, the minima
occurs when kR is a zero of the first-order spherical Bessel
function, with negative derivative. These zeros of j1 have
values very close to those for which sin(kR) = −1 or,
similarly, when kR = π (n + 1

2 ) with odd n. If we assume
that each minimum of the cross-section ratio comes from the
minimum in each PCS, one may conclude that the Cooper
minimum of the PCS σ�0 occurs when

kR = π
(
� + 1

2

)
(36)

is verified. Since the LCAO-PW approximation is expected to
be valid for large values of k, Eq. (36) will be verified when �

is large. In this case, � � � + 1
2 and the result thus agrees with

the qualitative findings of [7] given in Eq. (2).

IV. CALCULATION WITH EXACT WAVE FUNCTIONS

Finally, in this section we present 1C and 2C PCS employ-
ing exact initial and final wave functions, i.e., eigenfunctions
of the Hamiltonian (5) with ZA = ZB = 1; in this way, the
calculations preserve gauge invariance. The ground initial and
continuum final wave functions are the same as the ones we
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FIG. 4. (Color online) 2C PCS as in Fig. 2. Thin lines using
LCAO-PW and thick lines employing exact wave functions. Dots
from [22].

have used in previous works [8,14] where the 2C PCS were
obtained numerically.

In Fig. 4, we show the 2C PCS with thick lines and compare
with the results of the previous sections (LCAO-PW with thin
lines). We also include the results of Richards and Larkins
[22] with dots. In the lower panel, we show the cross-section
ratio σ

approx
tot /σH, as in Figs. 1(c) and 2(c) with thin lines and

σtot/σatom with thick line, where

σatom = (2π )2 2α

3ω

25

(1 + k2)3

exp [−4/ktan−1(k)]

1 − exp (−2π/k)
(37)

corresponds to the exact total cross section for photoionization
of the ground-state hydrogen atom.

We can observe that the behavior of the approximate PCS
(with LCAO-PW approximations) is similar to the exact ones,
except for � = 1 and energies close to 2 a.u., where the
approximate case presents a Cooper minimum that appears
below threshold in the exact case. This means that the
approximate cross-section ratio shows an extra minimum at
this energy. Moreover, the different behavior of the ratios at low

energies is due to the different denominators: in the exact case
Eq. (37) and in the approximate case σH, defined in Eq. (32).

The evaluation of 1C PCS must be done carefully since
the exact partial waves �p have not associated an eigenvalue
of H. However an alternative 1C PCS can be derived: given
a continuous wave function with defined momentum, we can
evaluate Tif from Eq. (4) and express it as a sum of two-body
fixed σ → σ and σ → π electronic dipole transition elements
(see [23,24])

Tif = cos θRmσ − cos ϕk sin θRmπ, (38)

where mσ and mπ can be written as a series of Legendre
associated functions,

mσ = 1√
2πkω

∑
L

f σ
L P 0

L(cos θk), (39)

mπ = 1√
2πkω

∑
L

f π
L P 1

L(cos θk). (40)
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FIG. 5. (Color online) 1C PCS as in Fig. 1. Thin lines using
LCAO-PW and thick lines employing exact wave functions.

033405-6



COOPER MINIMA AND YOUNG-TYPE INTERFERENCES IN . . . PHYSICAL REVIEW A 84, 033405 (2011)

Thus we can obtain the 1C PCS from the coefficients fL,

σ 1C
L0 = (2π )2 2α

3ω

∣∣f σ
L

∣∣2 1

2L + 1
, (41)

σ 1C
L1 = (2π )2 2α

3ω

∣∣f π
L

∣∣2 L(L + 1)

2L + 1
. (42)

In Fig. 5, we show these PCS with thick lines, and compare
with the results of the previous Sec. III A with thin lines. In the
lower panel, we show the cross-section ratio as in Fig. 4(c).
As in the 2C case, the exact and approximate PCS behave in
the same way, except for L = 1 and k ∼ 2, for which there is
no Cooper minima in the exact case.

In the works of Semenov et al. [25], Liu et al. [26], and
Fojón et al. [27] for photoionization of N2 and H2, the PCS
minima are located at an energy value close to a zero of the
spherical Bessel functions or their derivatives evaluated in
c = kR/2. This fact is in total agreement with the analysis
presented here.

Finally, we can observe from these figures that in
general the approximate Cooper minima appear at higher
energies than the exact ones. As presented previously, the
minima in the approximate case should occur when Eq. (36) is
satisfied. Thus the term 1/2 in this equation could be omitted
to deduce Eq. (2), since the minima are shifted to lower energy
values.

We note that this difference between the exact and approx-
imate values of the Cooper minima position is very important
in relation to recent studies of the strong-field approximation
(SFA) for high-order harmonic generation from molecules
by intense laser pulses. In the SFA, the corresponding yield
is written in terms of the photoionization cross section,
which can be employed for time-resolved dynamic chemical
imaging of transient molecules. In this context, the correct
calculation of these cross sections plays a critical role as
highlighted in a recent comparison between SFA and exact
calculations [28].

V. CONCLUSIONS

We have studied the partial and total cross section for pho-
toionization of H2

+. For approximate initial wave functions
and final state 1C basis functions, we find that the Cooper
minima are due to the molecular or geometric structure and
their position corresponds to the zeros of the spherical Bessel
functions and their first derivatives. Moreover, the relationship
with Young-type interference is established in an analytical
expression. After carrying out a change of basis (2C basis
functions), only one Cooper minima can be observed for each
� partial cross section and only for the � = 0 case. Since the
position of the minima in the Young-type oscillation of the total
cross-section ratio is known, we could calculate the position
of the Cooper minima. Finally, we showed that the results
employing exact wave functions present similar behavior with
a shift in the position of the Cooper minima.

In summary, we have shown that the qualitative “confine-
ment” rule kR = �π can be deduced from the Young-type
interference pattern or the position of the Cooper minima.
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APPENDIX: RELATIONSHIP BETWEEN 1 AND 2 CENTER
TRANSITION MATRIX

The spheroidal harmonics are quasiangular eigenfunctions
of the Hamiltonian (5). They can be obtained as a linear
combination of the spherical harmonics,

Y�m(c,η,ϕ) =
∞∑

L=|m|

√
2(L + |m|)!

(2L + 1)(L − |m|)!
× dL−|m|(c,�,|m|)YLm(η,ϕ), (A1)

where the real coefficients dn are determined by a recurrence
rule [19]. These coefficients depend on the quantum numbers
� and |m| and depend on the energy through the parameter
c = kR/2. In the homonuclear case, Eq. (A1) is the same for
the plane wave and exact continuum wave function, since the
quasiangular equation depends only on the difference of the
nuclear charges ZA−ZB . In this case, we only have coefficients
with even (odd) n if � − |m| is even (odd), respectively. In the
limit c → 0, the coefficients dn(c,�,|m|) are proportionals to
the Kronecker’s delta δn+|m|,�; thus both harmonics are the
same. In Fig. 3, we show some coefficients as functions of c

for � = 1, 3, 5 and m = 0, 1. We can see that for low c the
coefficient d�−|m|(c,�,|m|) is larger.

To relate the 1C and 2C partial wave expansions, we
utilize the expressions for the plane wave with spherical (22)
and spheroidal (23) harmonics. We multiply both equations
by YJM (�k) and integrate over the variable �k . Employing
the orthonormality condition for the spherical and spheroidal
harmonics and renaming the index appropriately, we obtain

J�m(c,ξ )Y�m(η,ϕ) =
∞∑

L=|m|
iL−�

√
2(L + |m|)!

(2L + 1)(L − |m|)!

×dL−|m|(c,�,|m|)
√

2k

π
jL(kr)YLm(θ,ϕ).

(A2)

Thus the 2C transition matrices (11) can be written as

M�m =
∞∑

L=|m|
(−i)L−�

√
2(L + |m|)!

(2L + 1)(L − |m|)!
× dL−|m|(c,�,|m|)M1C

Lm. (A3)
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X.-J. Liu, G. Prümper, T. Tanaka, M. Hoashino, H. Tanaka,
F. Gel’mukhanov, and K. Ueda, J. Phys. B 39, L261 (2006).

[26] X.-J. Liu, N. A. Cherepkov, S. K. Semenov, V. Kimberg,
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