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Second-order Born approximation for the ionization of molecules by electron and positron impact
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Second-order Born approximation is applied to study the ionization of molecules. The initial and final states
are described by single-center wave functions. For the initial state a Gaussian wave function is used while for the
ejected electron it is a distorted wave. Results of the present model are compared with recent (e,2e) experiments
on the water molecule. Preliminary results are also presented for the ionization of the thymine molecule by
electrons and positrons.
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I. INTRODUCTION

Ionization of molecules by light charged particles (electrons
and positrons) is a difficult problem and is a true challenge for
theoreticians. One of the difficulties is that the molecular states
are described by multicenter wave functions. A way to avoid
this difficulty is to replace the multicenter wave function by
a single-center one. For instance, Hafied et al. [1] and Dal
Cappello et al. [2] have been able to overcome this difficulty
in their calculations for the water molecule and for the cytosine
molecule, respectively. In the first case it was easy because the
center of the water molecule was considered to lie at the center
of the oxygen atom, and a good convergence was reached using
only two partial waves (i.e., L = 0 and L = 1). In the second
case the convergence was reached with an increasing number
of partial waves (i.e., with L = 0 to L = 5) in their study of
the ionization of cytosine by protons.

In this paper we extend our first Born model to the next
higher second Born model, because the energy of incident
electrons used in the recent (e,2e) experiments of Milne-
Brownlie et al. [3], Kaiser et al. [4], and Nixon et al. [5] for
the ionization of the water molecule is small (from 30 eV
to 250 eV). For this energy range one needs the use of
theories more appropriate than the first Born approximation.
For instance, the lack of symmetry about the momentum
transfer in the experimental data demands that the second
born approximation is at least necessary. Experiments on the
ionization of thymine by electron impact are in progress in
the laboratory of Lohmann (see for instance [6]) and are
planned to be performed at an incident energy of 250 eV.
In this kind of (e,2e) experiment the ejected electron is
detected in coincidence with the scattered electron. For the
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above kinematical arrangement the ejected electrons have low
velocities (their energies vary between 10 eV and 20 eV)
contrary to those of the scattered electrons (their energies are
close to 200 eV). This allows us to ignore the exchange effects.

At this time, there is no quantum mechanical theory for
the ionization of thymine or other DNA bases. Nevertheless
total cross sections for the four bases of DNA (adenine,
cytosine, guanine, and thymine) have been calculated by
using semiclassical models. Bernhardt and Paretzke [7] have
used the semiclassical Deutsch-Märk (DM) formalism [8] and
the binary-encounter-Bethe (BEB) theory [9]. These simple
models can be applied to determine the electron impact
ionization cross sections for various atoms, molecules, and
ions. They only need molecular structure information, which
can be provided by the Hartree-Fock method. However, we
notice that the BEB and the DM models are not quite successful
in describing the last experiments of Shafranyosh et al. [10]
for the ionization of the cytosine molecule by electrons. These
two models yield a maximum total cross section of 15 × 10−16

cm2 against 8 × 10−16 cm2 found in the experiments. Even
the more recently improved binary-encounter dipole (IBED)
model [11] gives a maximum total cross section of 17 × 10−16

cm2 [12] although this model perfectly reproduces the total
cross section of the water molecule [12]. The IBED model
differs from the BEB model in two main aspects. First, the
IBED treatment takes into account the long-range electron-
target dipole interaction (as in the BEB model) in addition
to the shielding of the dipole field as the scattering electron
comes inside the bonding region. Secondly, this model predicts
an (Ee)−3.5 ejected electron energy dependence instead of
(Ee)−3 as in the BEB model for the optical oscillator
strength.

It is worth stressing that all these models (DM, BEB,
and IBED) are unable to calculate triple differential cross
sections (TDCSs) which are measured in (e,2e) experiments.
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To date the most accurate model to calculate the TDCS is
the molecular three-body distorted-wave approach (M3DW)
[13,14], which is a generalization of the three-body distorted-
wave approximation (3DW) [15] for molecules. In the 3DW
any interaction included in the calculation of both the initial
state and the final state is contained to all orders of perturbation
theory while all interactions contained in the perturbation
operator are of first order in perturbation theory. As the TDCS
depends on molecular orientation, the usual (e,2e) measure-
ments provide an average over all molecular orientations.
However, the M3DW model needs a lot of computer time and
Gao et al. [13] proposed the orientation-averaged molecular
orbital (OAMO) where a single average molecular orbital is
used to approximate the average over all orientations. This
approximation is only successful for a few highly symmetric
states. For instance, this approximation is not valid for the 1b1

state of the water molecule [14]. For the case of the ionization
of the water molecule other less sophisticated models were
applied. Champion et al. [16] used the distorted-wave Born
approximation (DWBA) where the incident and scattered
electrons are described by plane waves while the ejected
electron is described by a distorted wave. But this model
was unable to reproduce the recoil peak in the experiments
of Milne-Brownlie et al. [3] because Champion et al. [16]
neglected the interaction between the incident electron and the
nucleus of the target. When this last interaction was included
in the DWBA model a better agreement was found [17].
Champion et al. [17] also introduced the well-known Brauner-
Briggs-Klar (BBK) model [18] where all the interactions have
been taken into account: the interaction of the ionized target
with the projectile electron as well as the ejected electron
and the repulsion between the outgoing electrons. In this
BBK model the scattered electron and the ejected electron
are described by a Coulomb wave while in the M3DW model
distorted waves are used.

In this paper we decided to use the second Born approx-
imation, which is more tractable than the BBK model for
complex molecules such as DNA bases. The ionization of
such a molecule is important for life science because it is now
known [19] that low-energy secondary electrons (less than
20 eV) strongly interact with biological molecules in the DNA
via dissociative electron attachment [20]. These interactions
lead to single or double DNA strand breakage.

In Sec. II we present our theoretical model to describe the
ionization of a molecule by electrons or positrons. Then, in
Sec. III, the TDCS results are compared with experimental
data for the ionization of water. We also present preliminary
results for the ionization of thymine. Finally, conclusions about
the modelling of the ionization of molecules by electrons and
positrons are outlined in Sec. IV.

Atomic units are used throughout unless otherwise
indicated.

II. THEORY

The ionization of a molecule M by an electron (or a positron)
can be considered as a pure electronic transition since the
closure relation over all possible rotational and vibrational
states of the residual target can be applied. This is justified by
the values of the collision time compared to the characteristic

time of rotation and vibration. The exchange effects will be
neglected since the scattered electron is much faster than the
ejected one in all the cases considered here.

The single ionization of a molecule M by an electron is
written as

M + e− → M+ + e− + e−. (1)

In the second Born approximation (SBA), the four-fold
differential cross section (4DCS) is written, for a given
molecular orientation defined by the Euler angles (α; β; γ ),
as

σ (4)(α; β; γ ) = d4σ (α; β; γ )

d�Eulerd�sd�edEe

= kske

ki

|fB1 + fB2|2, (2)

where d�Euler = sin βdβdαdγ and d�s and d�e denote the
elements of solid angles for the scattered and the ejected
electron, respectively, whereas the energy interval of the
ejected electron is represented by dEe. The momenta of the
incident, the scattered, and the ejected electrons are denoted
by �ki , �ks , and �ke, respectively.

In an (e,2e) reaction the conservation of energy imposes
k2
i

2 = k2
s

2 + k2
e

2 + Ii where Ii represents the energy needed to
eject one electron from the molecule.

The first Born term fB1 is written as

fB1 = − 1

2π
〈exp(i�ks · �r0)�f (�ke,�r1,...,�rn)|

×V |exp(i�ki · �r0)	i(�r1,...,�rn)〉, (3)

where 	i(�r1,...,�rn) is the wave function of the initial state of the
molecule while �f (�ke,�r1,...,�rn) represents the wave function
for the single continuum state of the molecule.

In Eq. (3), the potential V represents the Coulomb inter-
action between the incoming electron and the target and is
written as

V = −Z

r0

−
N∑

j=1

1

|�r0 − �Rj |
+

n∑
i=1

1

|�r0 − �ri | , (4)

where �ri is the position vector of the ith bound electron of the
target with respect to the centre of the molecule, �r0 denotes the
coordinate of the incident particle and �Rj is the position of
the jth nucleus.

The second Born term fB2 is given by

fB2 = 1

8π4

∑
m

∫
d �q

q2 − k2
m − iε

×〈exp(i�ks · �r0)�f (�ke,�r1,...,�rn)|
×V |exp(i �q · �r0)	m(�r1,...,�rn)〉 (5)

×〈exp(i �q · �r0)	m(�r1,...,�rn)|
×V |exp(i�ki · �r0)	i(�r1,...,�rn)〉,

where the summation over m means that we take into account
all the contributions of the m discrete and continuum states
of the molecule, 	m(�r1,...,�rn) being the wave function for a
discrete or continuum state of the molecule. It means that the
incident electron collides two times with the target.
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The reduction of this difficult n-electron target problem to
a single electron target may be done within the well-known
frozen-core approximation. In this case this target electron will
be ejected during the single ionization process. Moreover, it
is worthwhile to note that the electrons in the singly charged
ion core are assumed to remain unaffected by the ionization
process. This is a reasonable approximation provided that our
study is limited to the ejection of valence shell electrons.

Note that the integration over the projectile coordinates (r0)
can be performed analytically so that the second Born term,
by applying the closure approximation [21], becomes

f̄B2 = 2

π2

∫
d �q

q2 − p2 − iε

1

K2
i K2

f

×〈�−
C (�ke,�r1)| exp(i �Kf · �r1) − 1

× |exp(i �Ki · �r1) − 1|	i(�r1)〉 (6)

where �Ki = �ki − �q and �Kf = �q − �ks , and �K = �Ki +
�Kf = �ki − �ks is the momentum transfer.

We have also

p2

2
= k2

i

2
− w̄, (7)

where w̄ refers to the average excitation energy. In our study
we have w̄ = Ii which corresponds to the usual choice for the
single ionization of an atom or a molecule [28].

When we consider a single electron target it is also
possible to apply the eikonal approximation (EA) [22]. This
approximation is valid for small momentum transfer to the
target and sufficiently high incident energy [23]. The 4DCS in
the eikonal approximation [23] is given by

σ (4)(α; β; γ ) = d4σ (α; β; γ )

d�Eulerd�sd�edEe

= kske

ki

|Tf i |2, (8)

where

Tf i = − 1

2π
〈exp(i�ks · �r0)�−

C (�ke,�r1)

×
∣∣∣∣ 1

r01
− 1

r0

∣∣∣∣exp(i�ki · �r0)	i(�r1)〉 (9)

×
[
r01 − �r01 · ẑ

r1 − �r1 · ẑ

]i/ki

,

with ẑ = �ki

ki
. In contrast to the first Born approximation (FBA),

the EA, which has been applied with success to a wide variety
of atomic collisions including elastic scattering, excitation,
and ionization has contributions from projectile-target nucleus
interaction and multiple scattering effects. In fact, the eikonal
amplitude contains terms of all orders in V (i.e., the sum
of the projectile-nucleus interaction and the projectile-bound
electron interaction) in its phase in an approximate way.

The water and thymine wave functions have been obtained
using the GAUSSIAN 03 program [24] as follows. In the
case of water, the wave function has been computed at the
Hartree-Fock level of theory using the augmented, correlation-
consistent, polarized-valence quadruple-zeta basis set (aug-
cc-pvQZ) employed in our previous work [1]. Geometry
optimization has been done including electronic correlation

energy at the second-order Møller-Plesset perturbation theory
(MP2). For thymine, we have chosen a lower computational
level that we previously used for cytosine [2]. The geometry
of the molecule has also been optimized at the MP2 level
but using now the 6-31G(d) basis set that includes a double-
zeta valence shell and polarization orbitals on nonhydrogen
atoms. The molecular orbitals hereafter correspond to the
Hartree-Fock calculations. The multicenter wave function is
then converted to a single-center expansion (see Appendix) of
usual Slater-type functions by using partial-wave expansion
techniques [1,25]. Here we restrict this study to the valence
electrons because inner shell electrons need many partial
waves for the expansion.

All the one-center molecular wave functions 	i(�r) (with
i ranging from 1 to 48 for thymine), containing the valence
electrons, can be expressed by linear combinations of Slater-
type functions and are written as

	i(�r) =
Ni∑

k=1

aikφ
εik

nik likmik
(�r), (10)

where Ni is the number of Slater functions used in the
construction of the jth molecular orbital and aik the weight
of each complex atomic component ϕ

εik

nik likmik
(�r).

In Eq. (10), ϕ
εik

nik likmik
(�r) is written as

φ
εik

nik likmik
(�r) = [

Rξik

nik
(r) + iSξik

nik
(r)

]
Y

mik

lik
(r̂), (11)

where the radial part [Rξik
nik

(r) + iS
ξik
nik

(r)] can be given
by the usual radial Slater-type functions such as
bnik

rnik−1 exp(−εikr). We notice that here the generated wave
function is generally complex whereas it was real in the case
of Moccia’ wave functions [26].

In our present model the scattered electron is described by a
plane wave, whereas the ejected electron can be described by a
distorted wave or a Coulomb wave. Owing to the prohibitively
long time needed for the calculation of the second Born term
we only use a Coulomb wave for the ejected electron

φC(�ke,�r1) = exp(i�ke · �r1)

(2π )3/2 1F1

× [−iZe/ke,1, − i(�ke · �r1 + ker1)]

× exp

(
πZe

2ke

)
�(1 + iZe/ke). (12)

The effective ionic charge Ze is taken to be equal to 1
(Brothers and Bonham [27]).

For the positron impact the only change in our model is to
write V as

V = Z

r0

+
N∑

j=1

1

|�r0 − �Rj |
−

n∑
i=1

1

|�r0 − �ri | , (13)

Under these conditions, it is clear that exactly the same
4DCS will be obtained for electrons and positrons when the
single ionization process is described within the first Born
approximation. On the contrary, when the second term of Born
series is used, differences will appear between electron and
positron 4DCSs since the sign of the second Born term does
not depend on the charge of the particle.
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Finally, it is important to note that in the second Born term
the integrals over d �q must be performed numerically with great
care [28] since the integrand is singular at q = km [Eq. (5)] or
q = p [Eq. (6)].

The wave functions 	i(�r) correspond to a particular
orientation of the molecular target given by the Euler angles (α,
β, γ ) [29,30]. Thus, the four differential cross sections we have
calculated with Eqs. (2)–(10) correspond to the ionization of an
oriented molecule. Under these conditions, we need to average
these differential cross sections in order to compare with
experiment. The averaging is accomplished by an analytical
integration over the Euler angles, owing to the property of the
rotation matrix [17,29,30].

1

8π2

∫
d�Dl

μ,m(α,β,γ )Dl′∗
μ′,m′ (α,β,γ )

= 1

2l + 1
δl,l′δm,m′δμ,μ′ , (14)

where Dl
μ,m(α,β,γ ) represents the rotation matrix with

Y l
m(r̂) = ∑l

μ=−l D
l
μ,m(α,β,γ )Y l

μ(r̂) for the transformation of
the molecular orientation from the molecular frame to the
laboratory frame. Equation (14) can also be applied to our
models including the second Born approximation with the
closure approximation [Eq. (6)] as for other sophisticated
models as the continuum distorted wave (CDW) eikonal initial
state (EIS) approximation [31,32] or BBK [17]. These two
models (CDW-EIS and BBK) need a six-dimensional integral.
In general, the DWBA model gives reasonable agreement with
the TDCS measurements for electron-impact ionization of
atoms and molecules if the incident electron has an energy
of about 100 eV or larger [14].

III. RESULTS AND DISCUSSION

Our model is first applied to the ionization of the water
molecule. Recently (e,2e) experiments were performed by
Milne-Brownlie et al. [3] for the 2a1 state, the 1b1 state, the
1b2 state and the summed 3a1 + 1b1 states for 250 eV incident
particles and slow ejected electrons (8 eV and 10 eV). Kaiser
et al. [4] reported results only for the 1b1 state at incident
electron energies varying between 30 eV and 110 eV. Nixon
et al. [5] were able to measure TDCSs for the 3a1 state at low
energies (from 4 eV to 40 eV above threshold). We restrict
our present study to the higher incident energy (250 eV)
where several models have been applied. The DWBA model of
Champion et al. [3,16] was able to reproduce the binary peak
but not the recoil structure experimentally observed. When the
interaction between the incident electron and the target nucleus
was taken into account the agreement was better [17] but some
discrepancies still remained. Finally, when the BBK [17,18]
and the DS3C model (BBK with effective charges) [17,33,34]
were applied, the agreement improved particularly for the
ionization of the 2a1 state. These models were applied using the
one-center wave function of Moccia [26]. Our aim is to show
that the present models (eikonal approximation and second
Born approximation) are also able to predict TDCSs in good
agreement with experiment. All the TDCSs are given in atomic
units.

(a)

(b)

FIG. 1. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the 2a1 orbital of the water
molecule. The theoretical calculation is performed in the first Born
approximation (L = 0 partial-wave contribution). The energy of the
ejected electron is Ee = 10 eV and the scattered angle is 15

◦
.

(b) Triple differential cross section for 250 eV electron-impact
ionization of the 2a1 orbital of the water molecule. The theoretical
calculation is performed in the first Born approximation. The energy
of the ejected electron is Ee = 10 eV and the scattered angle is 15

◦
.

Contribution of L = 1 (solid line), of L = 2 (dashed line), of L = 3
(dotted line), and of L = 4 (dashed-dotted line).

Figures 1(a) and 1(b) show that the partial wave expansion
of the multicenter wave function corresponding to the initial
state 2a1 is simply reduced to L = 0, the other terms (L = 1
to L = 5) being negligible. It is interesting to notice that the
wave function of Moccia for the initial state 2a1 is mainly
built of L = 0 too. Figure 2(a) shows the results of the first and
second Born approximations together with those of the eikonal
approximation. The shift of the binary peak is well reproduced
by our second Born approximation. The eikonal approximation
without the post collisional interaction (PCI) is not able to
reproduce such a shift. Compared to the BBK or DS3C models,
our models including the second Born approximation or the
eikonal approximation slightly underestimate the magnitude of
the recoil peak. Figure 2(b) presents an interesting comparison
between the TDCS obtained for the electron impact and for
the positron impact. As in the case of the ionization of the
atomic hydrogen [18,28] we find that the magnitude of the
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(a)

(b)

FIG. 2. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the 2a1 orbital of the water
molecule. The energy of the ejected electron is Ee = 10 eV and the
scattered angle is 15

◦
. The theoretical calculations are performed

in the first Born approximation (solid line), in the second Born
approximation (dashed line), and with the eikonal approximation
(dotted line). The experimental data are those of Milne-Brownlie
et al. [3]. (b) Triple differential cross section for 250 eV electron-
impact and positron-impact ionization of the 2a1 orbital of the water
molecule. The energy of the ejected electron is Ee = 10 eV and the
scattered angle is 15

◦
. The theoretical calculations are performed

in the first Born approximation (solid line) and in the second Born
approximation for electron impact (dashed line) and for positron
impact (dotted line).

binary peak increases for the positron impact while that of the
recoil peak decreases.

Figure 3(a) shows the summed TDCS of our second Born
approximation for the ionization of the sum of the two states
3a1 and 1b1. We find good agreement between our model
and the data of Milne-Brownlie et al. [3]. We notice that the
symmetry around the momentum transfer is destroyed and
that a double lobe of the binary peak appears. The magnitude
of the second peak increases while that for the first peak
decreases. This is admittedly a typical characteristic feature
of the second Born approximation for the p orbital. In the
present case, both the 3a1 and the 1b1 are mainly dealt
with the L = 1 partial-wave expansion. When we consider the

(a)

(b)

FIG. 3. (Color online) (a) Summed triple differential cross section
for 250 eV electron-impact ionization of the 1b1 and 3a1 orbitals of
the water molecule. The energy of the ejected electron is respectively
Ee = 10 eV for the 1b1 orbital and 8 eV for the 3a1 orbital. The
scattered angle is 15

◦
. The theoretical calculations are performed in

the first Born approximation (solid line) and in the second Born
approximation (dashed line). The experimental data are those of
Milne-Brownlie et al. [3]. (b) Summed triple differential cross section
for 250 eV electron-impact ionization of the 1b1 and 3a1 orbitals of
the water molecule. The energy of the ejected electron is respectively
Ee = 10 eV for the 1b1 orbital and 8 eV for the 3a1 orbital. The
scattered angle is 15

◦
. The theoretical calculations are performed

in the first Born approximation (solid line) and in the second Born
approximation for electron impact (dashed line) and for positron
impact (dotted line).

ionization of the two states 3a1 + 1b1 by positrons [Fig. 3(b)]
we see a complete change in the structure of the binary peak:
The first peak increases while the second peak decreases.
We notice that the recoil peak decreases too. Due to many
parametric differentiations [35] the eikonal approximation
is not applied for the ionization of the 1b1, 1b2, and 3a1

states.
Figure 4(a) for the ionization of the 1b1 state by electrons

gives the same pattern as in Fig. 3(a). We nevertheless see
that the agreement with experiment is not quite as good in the
small-ejected angle region. Figure 4(b) displays a comparison
of the TDCSs for the 1b1 state obtained in the FBA and SBA
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(a)

(b)

FIG. 4. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the 1b1 orbital of the water
molecule. The energy of the ejected electron is Ee = 10 eV and the
scattered angle is 15

◦
. The theoretical calculations are performed in

the first Born approximation (solid line) and in the second Born
approximation (dashed line). The experimental data are those of
Milne-Brownlie et al. [3]. (b) Triple differential cross section for
250 eV electron-impact and positron-impact ionization of the 1b1

orbital of the water molecule. The energy of the ejected electron is
Ee = 10 eV and the scattered angle is 15

◦
. The theoretical calculations

are performed in the first Born approximation (solid line) and in the
second Born approximation for electron impact (dashed line) and for
positron impact (dotted line).

for electron and positron impact. Here we also observe that the
first peak of the binary peak increases while the second peak
decreases for the positron impact.

Figure 5(a) shows the results for the ionization of the
1b2 state by electron impact. The SBA results are in better
agreement with the experimental data of Milne-Brownlie et al.
[3] than the FBA. Figure 5(b) for the electron and positron
impact shows the same results as in Figs. 3(b) and 4(b): The
symmetrical double-peak structure of the binary peak given
by the first Born approximation is destroyed when the second
Born approximation is applied. This result was also obtained
with the BBK and DS3C models [17]. As a matter of fact,
the three states (3a1, 1b1, and 1b2) are mainly built by the
L = 1 partial-wave expansion of the initial state of the wave

(a)

(b)

FIG. 5. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the 1b2 orbital of the water
molecule. The energy of the ejected electron is Ee = 10 eV and the
scattered angle is 15

◦
. The theoretical calculations are performed in

the first Born approximation (solid line) and in the second Born
approximation (dashed line). The experimental data are those of
Milne-Brownlie et al. [3]. (b) Triple differential cross section for
250 eV electron-impact and positron-impact ionization of the 1b2

orbital of the water. The energy of the ejected electron is Ee = 10 eV
and the scattered angle is 15

◦
. The theoretical calculations are

performed in the first Born approximation (solid line) and in the
second Born approximation for electron impact (dashed line) and for
positron impact (dotted line).

function. We also observe that our second Born model with
the closure approximation practically reproduces the same
results as those given by the BBK or DS3C models. The
agreement between these models and the experimental data [3]
is very good. This good agreement is found in the vicinity of
the Bethe ridge [36]. In this case the momentum transfer is
close to the value of the momentum of the ejected electron
K ≈ ke.

We now investigate the ionization of the thymine mol-
ecule [6]. Thymine has 66 electrons but our model can only
be applied for the 48 electrons of the valence shells. For the
remaining 18 electrons of the inner shells the convergence
of our single-center expansion compared to the multicenter
wave function is very slow. In this paper we investigate the
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(a)

(b)

FIG. 6. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the first valence orbital of the
thymine (ionization energy: Ii = 9.14 eV). The energy of the ejected
electron is Ee = 20 eV and the scattered angle is 15

◦
. The theoretical

calculations are performed in the first Born approximation: partial
wave L = 1 (thin solid line), partial waves L = 1 to L = 2 (dashed
line), partial waves L = 1 to L = 3 (dotted line), partial waves L = 1
to L = 4 (dashed-dotted line), partial waves L = 1 to L = 5 (dash-dot
dotted line), partial waves L = 1 to L = 6 (short dashed line), and
partial waves L = 1 to L = 10 (thick solid line). (b) Triple differential
cross section for 250 eV electron-impact ionization of the first valence
orbital of the thymine (ionization energy: Ii = 9.14 eV). The energy of
the ejected electron is Ee = 20 eV and the scattered angle is 15

◦
. The

theoretical calculations are performed in the first Born approximation:
partial waves L = 1 to L = 8 (thick solid line) and partial waves L = 1
to L = 10 (dashed line).

ionization of the last four shells for which the ionization
potentials are estimated to be 9.14 eV, 11 eV, 11.4 eV, and
12.16 eV, respectively [7]. The experimental conditions are the
following: The incident energy is Ei = 250 eV and the energy
of the ejected electron is Ee = 20 eV while the geometrical
conditions are given by φs = 180◦, φe = 0◦, and θs = 15◦ or
θs = 10◦. The choice of θs = 15◦ practically corresponds to
the Bethe ridge.

Next we check the convergence of our partial-wave expan-
sion of the multicenter wave function by applying the first
Born approximation for θs = 15◦ and for the last valence shell

(a)

(b)

FIG. 7. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the first valence orbital of the
thymine (ionization energy: Ii = 9.14 eV). The energy of the ejected
electron is Ee = 20 eV and the scattered angle is 10

◦
. The theoretical

calculations are performed in the first Born approximation: partial
wave L = 1 (thin solid line), partial waves L = 1 to L = 2 (dashed
line), partial waves L = 1 to L = 3 (dotted line), partial waves L = 1
to L = 4 (dash and dotted line), partial waves L = 1 to L = 5 (dash-dot
dotted line), partial waves L = 1 to L = 6 (short dashed line), and
partial waves L = 1 to L = 10 (thick solid line). (b) Triple differential
cross section for 250 eV electron-impact ionization of the first valence
orbital of the thymine (ionization energy: Ii = 9.14 eV). The energy of
the ejected electron is Ee = 20 eV and the scattered angle is 10

◦
. The

theoretical calculations are performed in the first Born approximation:
partial waves L = 1 to L = 8 (thick solid line) and partial waves L = 1
to L = 10 (dashed line).

(Ii = 9.14 eV). Figures 6(a) and 6(b) clearly show that the
convergence is reached at L = 8 (from L = 1 to L = 8). In Fig. 6
we see a double-peak structure for the binary peak as in the
cases of the ionization of the water molecule (3a1, 1b1, and
1b2 states). When we change the scattering angle (θs = 10◦),
Figs. 7(a) and 7(b) give the same curves as those in the previous
case (θ5 = 15◦) except the magnitude, which increases here.
The convergence of our partial-wave expansion is reached at
L = 8 too. Another interesting fact is the small magnitude of
the recoil peak contrary to the case of the ionization of water.
It is certainly due to the higher value of the energy of the
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(a)

(b)

FIG. 8. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the second valence orbital of
the thymine (ionization energy: Ii = 11eV). The energy of the ejected
electron is Ee = 20 eV and the scattered angle is 15

◦
. The theoretical

calculations are performed in the first Born approximation: partial
wave L = 1 (thin solid line), partial waves L = 1 to L = 2 (dashed
line), partial waves L = 1 to L = 3 (dotted line), partial waves L = 1
to L = 4 (dashed- dotted line), partial waves L = 1 to L = 5 (dash-dot
dotted line), partial waves L = 1 to L = 6 (short dashed line), and
partial waves L = 1 to L = 10 (thick solid line). (b) Triple differential
cross section for 250 eV electron-impact ionization of the second
valence orbital of the thymine (ionization energy: Ii = 11eV). The
energy of the ejected electron is Ee = 20 eV and the scattered angle
is 15

◦
. The theoretical calculations are performed in the first Born

approximation: partial waves L = 1 to L = 8 (thick solid line) and
partial waves L = 1 to L = 10 (dashed line).

ejected electron here (20 eV instead of 8 eV or 10 eV) because,
generally speaking, the magnitude of the recoil peak increases
when the energy of the ejected electron decreases. The results
are very similar in the case of the ionization of the second outer
shell (Ii = 11eV). The convergence is again reached at L = 8
in the two cases (θs = 15◦ or θs = 10◦) and the magnitudes
are very close (Figs. 8 and 9). More interesting is the case of
the third outer shell (Ii = 11.4 eV). We observe a complete
change in the shapes of the curves when we consider θs = 15◦
[Figs. 10(a) and 10(b)] and θ5 = 10◦ [Figs. 11(a) and 11(b)].

(a)

(b)

FIG. 9. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the second valence orbital of the
thymine (ionization energy: Ii = 11 eV). The energy of the ejected
electron is Ee = 20 eV and the scattered angle is 10

◦
. The theoretical

calculations are performed in the first Born approximation: partial
wave L = 1 (thin solid line), partial waves L = 1 to L = 2 (dashed
line), partial waves L = 1 to L = 3 (dotted line), partial waves L = 1
to L = 4 (dash and dotted line), partial waves L = 1 to L = 5 (dash-dot
dotted line), partial waves L = 1 to L = 6 (short dashed line), and
partial waves L = 1 to L = 10 (thick solid line). (b) Triple differential
cross section for 250 eV electron-impact ionization of the second
valence orbital of the thymine (ionization energy: Ii = 11 eV). The
energy of the ejected electron is Ee = 20 eV and the scattered angle
is 10

◦
. The theoretical calculations are performed in the first Born

approximation: partial waves L = 1 to L = 8 (thick solid line) and
partial waves L = 1 to L = 10 (dashed line).

In the first case (θs = 15◦) we get a minimum in the direction
of the momentum transfer (binary peak) while we get a plateau
in the second case θs = 10◦. The convergence is reached for
L = 9 (from L = 0 to L = 9). More exciting are the results for
the ionization of the fourth outer shell (Ii = 12.16 eV). A rich
complex structure is observed for the binary peak (four peaks)
in Fig. 12 (θs = 15◦) while we have only a single peak for
θs = 10◦ (Fig. 13). The convergence is reached at L = 8 for
the binary peak but the recoil peak needs more terms (from
L = 0 to L = 15).
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(a)

(b)

FIG. 10. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the third valence orbital of
the thymine (ionization energy: Ii = 11.4 eV). The energy of the
ejected electron is Ee = 20 eV and the scattered angle is 15

◦
. The

theoretical calculations are performed in the first Born approximation:
partial wave L = 0 (thin solid line), partial waves L = 0 to L = 1
(dashed line), partial waves L = 0 to L = 2 (dotted line), partial waves
L = 0 to L = 3 (dashed-dotted line), partial waves L = 0 to L = 4
(dash-dot dotted line), partial waves L = 0 to L = 5 (short dashed
line), partial waves L = 0 to L = 6 (short dotted line), and partial
waves L = 0 to L = 10 (thick solid line). (b) Triple differential cross
section for 250 eV electron-impact ionization of the third valence
orbital of the thymine (ionization energy: Ii = 11.4 eV). The energy
of the ejected electron is Ee = 20 eV and the scattered angle is
15

◦
. The theoretical calculations are performed in the first Born

approximation: partial waves L = 0 to L = 8 (solid line), partial waves
L = 0 to L = 9 (dashed line), and partial waves L = 0 to L = 10 (dotted
line).

From the above analysis it seems very interesting to study
the third and fourth outer shells, which exhibit very complex
structures for the binary peak in the Bethe ridge (θs = 15◦).
This complex structure disappears for θs = 10◦.

The second Born approximation requires a large amount
of computer time. Typically the second Born approximation
for the ionization of the water molecule needs six hours
for one point while for the thymine molecule it is around
40 days. So we present only one figure for the ionization of the

(a)

(b)

FIG. 11. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the third valence orbital of
the thymine (ionization energy: Ii = 11.4 eV). The energy of the
ejected electron is Ee = 20 eV and the scattered angle is 10

◦
. The

theoretical calculations are performed in the first Born approximation:
partial wave L = 0 (thin solid line), partial waves L = 0 to L = 1
(dashed line), partial waves L = 0 to L = 2 (dotted line), partial waves
L = 0 to L = 3 (dashed-dotted line), partial waves L = 0 to L = 4
(dash-dot dotted line), partial waves L = 0 to L = 5 (short dashed
line), partial waves L = 0 to L = 6 (short dotted line), and partial
waves L = 0 to L = 10 (thick solid line). (b) Triple differential cross
section for 250 eV electron-impact ionization of the third valence
orbital of the thymine (ionization energy: Ii = 11.4 eV). The energy
of the ejected electron is Ee = 20 eV and the scattered angle is
10

◦
. The theoretical calculations are performed in the first Born

approximation: partial waves L = 0 to L = 8 (solid line), partial waves
L = 0 to L = 9 (dashed line), and partial waves L = 0 to L = 10 (dotted
line).

first valence orbital of the thymine by electron and positron
impacts. In Fig. 14 we notice that the symmetry around the
momentum transfer is destroyed and that a double lobe of the
binary peak appears. As in the case of the ionization of water
the magnitude of the second peak increases for the electron
impact. When we consider the ionization by positrons we see
a change in the structure of the binary peak: The first peak
increases.
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(a)

(b)

FIG. 12. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the fourth valence orbital of the
thymine (ionization energy: Ii = 12.16 eV). The energy of the ejected
electron is Ee = 20 eV and the scattered angle is 15

◦
. The theoretical

calculations are performed in the first Born approximation: partial
wave L = 0 (thin solid line), partial waves L = 0 to L = 1 (dashed
line), partial waves L = 0 to L = 2 (dotted line), partial waves L = 0
to L = 3 (dashed-dotted line), partial waves L = 0 to L = 4 (dash-dot
dotted line), partial waves L = 0 to L = 5 (short dashed line), partial
waves L = 0 to L = 6 (short dotted line), and partial waves L = 0
to L = 10 (thick solid line). (b) Triple differential cross section for
250 eV electron-impact ionization of the fourth valence orbital of the
thymine (ionization energy: Ii = 12.16 eV). The energy of the ejected
electron is Ee = 20 eV and the scattered angle is 15

◦
. The theoretical

calculations are performed in the first Born approximation: partial
waves L = 0 to L = 10 (solid line), partial waves L = 0 to L = 12
(dashed line), and partial waves L = 0 to L = 30 (dotted line).

IV. CONCLUSION

Triple differential cross sections for the ionization of water
and thymine molecules obtained in the second Born and
eikonal approximation methods are presented and discussed.
Our models use single-center wave functions and provide
results in good agreement with other models (BBK and
DS3C) and with the experimental data of Milne-Brownlie
et al. [3] for the ionization of the water molecule. In this case
the convergence of our partial-wave expansion of the initial
multicenter wave function is very fast and limited to one term

(a)

(b)

FIG. 13. (Color online) (a) Triple differential cross section for
250 eV electron-impact ionization of the fourth valence orbital of the
thymine (ionization energy: Ii = 12.16 eV). The energy of the ejected
electron is Ee = 20 eV and the scattered angle is 10

◦
. The theoretical

calculations are performed in the first Born approximation: partial
wave L = 0 (thin solid line), partial waves L = 0 to L = 1 (dashed
line), partial waves L = 0 to L = 2 (dotted line), partial waves L = 0
to L = 3 (dashed-dotted line), partial waves L = 0 to L = 4 (dash-dot
dotted line), partial waves L = 0 to L = 5 (short dashed line), partial
waves L = 0 to L = 6 (short dotted line), and partial waves L = 0
to L = 10 (thick solid line). (b) Triple differential cross section for
250 eV electron-impact ionization of the fourth valence orbital of the
thymine (ionization energy: Ii = 12.16 eV). The energy of the ejected
electron is Ee = 20 eV and the scattered angle is 10

◦
. The theoretical

calculations are performed in the first Born approximation: partial
waves L = 0 to L = 8 (solid line), partial waves L = 0 to L = 9 (dashed
line), and partial waves L = 0 to L = 10 (dotted line).

(L = 0 or L = 1). In the case of thymine the ionization of the
four last outer shells needs more terms in the expansion of
the initial wave function (generally up to L = 8 or L = 9). We
observe in some cases a rich complex structure in the curves
in the Bethe ridge. All these results can now be an impetus
for future experiments about the ionization of the thymine
molecule by electrons. We also study the ionization of water
and thymine molecules by positrons. When we compare the
present cross sections with the results given by the first Born
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FIG. 14. (Color online) Triple differential cross section for
250 eV electron-impact and positron-impact ionization of the first
valence orbital of the thymine (ionization energy: Ii = 9.14 eV). The
energy of the ejected electron is Ee = 20 eV and the scattered angle
is 10

◦
. The theoretical calculations are performed in the first Born

approximation (solid line) and in the second Born approximation
for electron impact (dashed line) and for positron impact (dotted
line).

approximation it is observed that the magnitude of the recoil
peak decreases while that of the binary peak increases.

We hope that this work opens the way to experiments,
especially for triple differential cross sections, which give
the most accurate information about the mechanism of the
ionization of an atom or a molecule. A knowledge of this
mechanism is essential for the study of the penetration of
charged particles through biological matter.
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APPENDIX

In ab initio calculations of molecular electronic structure,
the functions which are almost universally used by quantum
chemists are the so-called contracted Gaussian-type orbitals
(cGTOs), more specifically contracted Cartesian Gaussian-
type orbitals (cCGTOs) of the form

ϕi =
np∑

j=1

dijχj , (A1)

where the coefficients dij are the contraction coefficients and
the functions χj are the primitive Cartesian Gaussian-type
orbitals (CGTOs) called also Cartesian Gaussian. Generally
the number of CGTOs varies between 1 and 7 (i.e., 1 � np �
7). These functions are defined as

χa(x,y,z) = Nα,i,j,k(x − xA)i(y − yA)j (z − zA)k

× exp(−α|�r − �RA|2), (A2)

where a denotes the parameter set a = (α, �RA,i,j,k), �r =
(x,y,z), �RA = (xA,yA,zA) and Nα,i,j,k is a normalization
constant such as

Nα,i,j,k =
(

2α

π

)3/4 (
22(i+j+k)αi+j+k

(2i − 1)!! (2j − 1)!! (2k − 1)!!

)1/2

.

(A3)

In the above expression the following definition is
used: (2n)!! = 2 × 4 × 6 × ... × (2n), (2n + 1)!! = 1 × 3 ×
5 × ... × (2n + 1) and 0!! = (−1)!! = 1!! = 1. The parameter
α controls the width of the orbital (a large (small) value
gives a tight (diffuse) function) and i,j,k, control the angular
momentum, l = i + j + k. Generally, quantum chemistry
calculations are restricted to l � 4 (i.e., g orbitals). Here 	i

denotes a molecular orbital (e.g., 1b1 of the water molecule)
and is defined by

	i(x,y,z) =
nc∑

k=1

aikϕk, (A4)

where nc is the number of cCGTOs, which is of the order
of few hundred. The coefficients aik are obtained from the
program GAUSSIAN 03.

A spherical Gaussian-type orbital (SGTO) is defined as

φb(�r) = Nα,n,l |�r − �RA|2n+lYl,m(��r− �RA
)

× exp(−α|�r − �RA|2), (A5)

with b = (α, �RA,n,l,m), and

Nα,n,l =
(

2
(2α)2n+l+3/2

T(2n + l + 3/2)

)1/2

(A6)

a normalization constant.
The functions χa defined in Eq. (A2) and φb defined in

Eq. (A5) are linked together through the transformation

χa(x,y,z) =
∑
n,l,m

A(ijk; nlm)φb(�r), (A7)

where the summation is restricted by the condition 2n + l =
i + j + k.

Most of the computer programs in the field of atomic
and molecular collisions use the partial-wave expansion
techniques. This means that the molecular wave functions must
be expanded around a common center as follows:

	i(�r) =
∑
λ,mλ

R̃i
λ,mλ

(r)Yλ,mλ
(��r ). (A8)

The molecular orbitals coming out from a quantum chem-
istry program (such as GAUSSIAN 03) are expressed in terms
of linear combination of cCGTOs [ϕk in Eq. (A4)], which are
themselves linear combination of CGTOs [χj in Eq. (A1)].
As we have seen previously these latter functions can be
expressed in terms of SGTOs [φb in Eq. (A7)] therefore
the expansion in Eq. (A8) can be obtained by performing a
single-center expansion of the SGTOs. Following [25,37] we
have

φb(�r) =
l̃max+l∑
l′=0

l′∑
m

′ =−l′

Rl′,m′ (r)Yl′,m′(��r ), (A9)
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or more explicitly

φb(�r) = 4πNα,n,lR
2n
A exp

[−α
(
r2 + R2

A

)] l∑
l1,l2=0

l̃max∑
l̃=0

∑
l′,l′′

∑
m′,m′′

C(l1,l2,l̃,l
′,m′,l′′,m,l,m)rl1R

l2
Aς

(2n)
l̃

(α,r,RA)Yl′′,m′′ (� �RA
)Yl′,m′(��r )

(A10)

with

C(l1,l2,l̃,l
′,m′,l′′,m′′,l,m) = (−1)l+l̃+mδl1+l2,lG(l1,l2,l)H (l1,l̃,l

′)H (l2,l̃,l
′′)

√
(2l + 1)(2l′ + 1)(2l′′ + 1)

(
l′ l′′ l

m′ m′′ −m

) {
l′ l′′ l

l2 l1 l̃

}

(A11)

and

G(l1,l2,l) = (−1)l2
(

4π (2l + 1)!

(2l1 + 1)!(2l2 + 1)!

)1/2

, (A12)

and

H (l1,l̃,l
′) =

(
(2l1 + 1)(2l̃ + 1)

4π (2l′ + 1)

)1/2

〈l1 l̃00|l′0〉, (A13)

where 〈l1 l̃00|l′0〉 is a Clebsch-Gordan coefficient.
Moreover

ς
(2n)
l̃

(α,r,RA)=4π

n∑
l′′=0

l̃+l′′∑
l′=|l̃−l′′|

H 2(l′,l′′,l̃)R(2n)
l′′ (r,RA)il′(2αrRA) (A14)

with

R
(2n)
l′′ (r,RA) =

2n−l′′∑
i=l′′

T
(2n)
l′′,i

(
r

RA

)i

, (A15)

and

T
(2n)
l′′,i = (−1)l

′′ (2n + 1)!

(i − l′′)!!(i + l′′ + 1)!!(2n − i − l′′)!!(2n − i + l′′ + 1)!!
. (A16)

In the above equation the summation is performed in steps of 2. In Eq. (A14) the functions il(r) are the modified spherical Bessel
functions [38] defined as

il(r) =
√

π

2r
Il+1/2(r). (A17)

The presence of the 3j and 6j symbols in Eq. (A11) and the Clebsch-Gordan coefficient in Eq. (A13) leads to the following
selection rules |l̃ − l1| � l′ � l̃ + l1, |l̃ − l2| � l′′ � l̃ + l2, −l′ � m′ � l′, and −l′′ � m′′ � l′′. The value of l̃max is chosen in
order to ensure the convergence of Eq. (A10). Typically, l̃max ≈ 10 is required for not too large molecules such as water.
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