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J-matrix calculation of electron-helium S-wave scattering
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The J -matrix approach to electron-atom scattering is revised by merging it with the Fano’s multiconfiguration
interaction matrix elements [U. Fano, Phys. Rev. 140, A67 (1965)]. The revised method is then applied to the
S-wave model of the e-He scattering problem demonstrating remarkable computational efficiency and accuracy.
In particular, the method is in complete agreement with the convergent-close-coupling elastic, 21,3S excitation and
single ionization cross sections for impact energies in the range 0.1–1000 eV. The S-wave resonance structures
in the elastic and 21,3S excitation cross sections are highlighted.
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I. INTRODUCTION

It has been known since at least 1994 that the J -matrix (JM)
approach [1–3] to electron-atom scattering is comparable in
accuracy to other scattering methods for elastic and excitation
processes [4–6]. Most recently, it was demonstrated that the JM
method is also capable of describing ionization processes when
applied to the S-wave model of e-H scattering problem [7].
Encouraged by this success on the well-researched and ar-
guably completely solved e-H model problem, we now proceed
to the more complicated S-wave model of e-He scattering,
with the goal of solving the ionization-with-excitation and
double-ionization problems.

The step from e-H to e-He scattering is not trivial as the
complexity of the problem increases from a three-body to a
four-body problem. While the e-H model remains an important
test bed of any new or past scattering methods [4,8–13],
the focus of current state-of-the-art ab initio computational
methods has shifted to the model of e-He scattering [14–21].
The presented here extension of the JM method combines
the strengths of the R-matrix [22] and the convergent-close-
coupling (CCC) [23] methods by efficiently obtaining results
on a fine energy mesh and allowing the usage of large Laguerre
expansion sets, respectively.

The S-wave model implies that only states with zero
orbital angular momentum are retained in the calculation. This
brings to the fore the complexities associated with treating the
infinite discrete target spectrum, the target continuum, and the
long-ranged nature of the Coulomb potential. In particular,
the primary complexity of Coulomb few-body problems is
retained as it is known that the S-wave elastic scattering cross
section dominates over higher partial waves at the challenging
region of low energies.

In the case of e-He scattering, the model can be further
simplified by ensuring that all (two-electron) target states have
the “inner” electron described by the He+ 1s orbital, subject to
appropriate symmetrization. We refer to this as the frozen-core
approximation, and it is ideal for the present “proof-of-
principle” calculations for the dominant one-electron excita-
tion and single-ionization processes. However, when consider-
ing ionization-plus-excitation or double-ionization processes,
this approximation will need to be removed, but how to

correctly formulate such processes remains problematic for
any theory.

The presented JM results are calculated using Java program-
ming language, which is freely available for MS Windows,
Mac OSX, and many versions of Linux or Unix. See [24]
for information on availability of the source code used in this
paper.

II. THEORY

A. Many-electron atomic systems

The focus of this study is the S-wave model of electron-
helium (e-He) nonrelativistic collision with zero total angular
momentum [20,21]. In a general case of an atomic system with
the total number of electrons a and the nuclear charge Z, the
S-wave term of the total Hamiltonian becomes

Ha =
a∑

b=1

hb +
a∑

b=1

b−1∑
b′=1

vbb′ , hb = Kb − Z/rb,

(1)
vbb′ = 1/ max (rb,rb′ ), Kb = −1

2
d2

/
dr2

b ,

where the subscript and superscript labeling of electrons is
sometimes omitted hereafter to simplify notation, and atomic
units are used throughout this manuscript.

The JM formalism [1,3] relies on the JM functions
{ξp(r)}∞p=0, such that ξp(r = 0) = 0 and (K − E)’s matrix is
tridiagonal,

Jpp′ = 〈ξp|K − E|ξp′ 〉,
(2)

Jpp′ = 0, 〈ξp|ξp′ 〉 = 0, |p − p′| > 1.

It is convenient to define an additional one-electron radial
basis of Nt orthonormal functions {Pλ(r)}Nt

λ=1 to describe the
target electrons. Such a target basis is created from linear
combinations of the first Nt JM functions

Pλ(r) =
Nt−1∑
p=0

Dλpξp(r), 〈Pλ|Pλ′ 〉 = δλλ′ . (3)

Under the considered frozen-core model of helium, one
electron is frozen to be the core electron in the ground state
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of the helium ion, which could be naturally obtained by
diagonalizing the one-electron Hamiltonian h:

〈Pλ|h|Pλ′ 〉 = ελδλλ′ . (4)

Note that λ’s values start from one, while the JM function’s
index p starts from zero.

Following Fano [25], in the context of many electrons,
each radial Pλ function could be used as the radial component
of a subshell’s wave function. The subshell may contain aλ

equivalent electrons spin coupled into a state with the total spin
sλ and its z component μλ, and described by antisymmetrized
wave function denoted by

|ψλ〉 ≡ |(λ)aλsλμλ〉, 1 � λ � Nt . (5)

Since only l = 0 orbitals are considered, then aλ ∈ {0,1,2} and
sλ ∈ {0, 1

2 ,1}. Note that empty subshells are permitted (aλ = 0,
sλ = 0) as they somewhat simplify notation and bookkeeping
as per Cowan [26].

For a general case of a electrons and n available subshells,
a particular electron configuration is labeled by index β and
specified by an unsymmetrized wave function

|φβ〉 ≡ |aβsβSβμβ〉, (6)

where the vectors aβ and sβ describe electrons in n subshells
via

aβ = (aβ1,aβ2, . . . ,aβn),
n∑

λ=1

aβλ = a,

(7)
sβ = (sβ1,sβ2, . . . ,sβn).

Vector Sβ denotes a coupling procedure by which the subshell
spins sβ are consecutively coupled into the final total spin Sβ

and its z component μβ . After omitting β labeling for brevity,
the S-coupling procedure is expressed via

S = (S1 ≡ s1,S2, . . . ,Sn ≡ S), (8)

|Sλ−1sλSλμ〉 =
∑
μ′,μλ

C
Sλμ

Sλ−1μ′sλμλ
|Sλ−1μ

′〉 |sλμλ〉, (9)

where C
jm

j1m1j2m2
≡ 〈j1m1j2m2|jm〉 are the Clebsch-Gordan

coefficients. To reiterate, |φβ〉 is antisymmetric in regard to
the electrons from the same subshell and has all subshell spins
consecutively coupled into the total spin S. The |φβ〉 states
could be made fully antisymmetric via the antisymmetrization
operator Â, denoting the result by |Âφβ〉.

B. JM method

This section uses the JM interpretation of Konovalov and
Bray [7], which is here generalized to many-electron targets.
For the specific case of the scattering problem, let a denote
the number of electrons in the target. Then the a-electron
square-integrable (L2) target wave functions {ψγ } are obtained
by diagonalizing Ha [Eq. (1)] using Fano’s subshell-structured
electron configurations {φβ} from the preceding section:

〈ψγ |Ht |ψγ ′ 〉 = eγ δγ γ ′ , 〈ψγ |ψγ ′ 〉 = δγ γ ′ ,

|ψγ 〉 =
∑

β

Ct
γβ |Âφβ〉, (10)

where Ht ≡ Ha , Ct
γβ are commonly referred to as the

configuration-interaction (CI) coefficients, and where the set
of {φβ} [Eq. (6)] is labeled by index β in some arbitrary but
fixed order.

The scattering problem is described by

(H − E)|
E〉 = 0,

where H ≡ Ha+1 and E is the given total energy of the (a + 1)-
electron system. If the target is assumed to be in the γ0 state
before the collision, then

E = eγ0 + E0, E0 = k2
0/2,

where E0 is the incident electron energy.
Following Broad and Reinhardt [3] as much as relevant,

the {χ�
γ } channels are defined by spin coupling the target

eigenstates |ψγ 〉 and the spin of the scattering electron s ≡ 1
2 :

∣∣χ�
γ

〉 =
∑
μμ′

C
S�μ�

Sγ μ′sμ|ψγμ′ 〉 |sμ〉,
(11)∣∣φ�

β

〉 =
∑
μμ′

C
S�μ�

Sβμ′sμ|φβμ′ 〉 |sμ〉,

where |sμ〉 is Pauli spinor, and where the corresponding basis
channels {φ�

β } are defined to be used later on [see Eq. (52)].
For the considered S-wave model, each scattering channel is
labeled by a {γ,�} pair, where � = {S�,μ�}.

Within the JM method, the complete (and infinitely large)
set of JM functions {ξp(r)}∞p=0 is split into two subsets, defining
the outer (a + 1)-electron JM functions as

∣∣
�
γp

〉 = ∣∣χ�
γ

〉 |ξp〉,∣∣
�
γp

〉 = Âa
a+1

∣∣
�
γp

〉
, (12)

p = N,N + 1, . . . ,∞
where N is a key parameter of the JM method controlling the
number of first JM functions omitted from the outer space,
Âa

a+1 denotes antisymmetrization of the (a + 1)th electron
in relation to already fully antisymmetrized a electrons, and
where the explicit expression for Âa

a+1 is given later [see
Eq. (45)]. The antisymmetrization Âa

a+1 could be accom-
plished in a practical fashion only if the target basis {Pλ(r)}Nt

λ=1
defining the subshells in {φβ} [Eq. (6)] is orthogonal to all outer
JM functions {ξp(r)}∞p=N . This forces [7]

Nt < N (13)

when using tridiagonal JM functions such as the original
nonorthogonal Laguerre basis [1,3]. Note that an orthogonal
JM basis [27] is not considered hereafter, but modifications
of the presented formalism to accommodate such a basis are
expected to be straightforward.

To reproduce the original JM formulation [3], the inner
(a + 1)-electron basis should be constructed as

∣∣
�
γλ

〉 = ∣∣χ�
γ

〉|Pλ〉,∣∣
�
γλ

〉 = Âa
a+1

∣∣
�
γλ

〉
, (14)

λ = 1,2, . . . ,N
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where the initial target basis {Pλ(r)}Nt

λ=1 [Eq. (3)] is expanded
by adding (N − Nt ) transitional basis functions created as
linear combinations of the first N JM functions such that

Pλ(r) =
N−1∑
p=0

Dλpξp(r), Nt < λ � N

(15)
〈Pλ|Pλ′ 〉 = δλλ′, λ,λ′ = 1,2, . . . ,N.

The derivation of the final JM equations as well as some
of the equations could be simplified if the (a + 1)-electron
eigenvectors of H are used instead of {
�

γλ} as the inner
(a + 1)-electron basis [7]. For a given �, such eigenvectors
are obtained by diagonalizing H using all available distinct
(a + 1)-electron configurations {
�

γλ}:
〈

�

i

∣∣H ∣∣
�
j

〉 = Eiδij ,
〈

�

i

∣∣
�
j

〉 = δij ,
(16)∣∣
�

j

〉 =
∑

γ

N∑
λ=1

C�
jγλ

∣∣
�
γλ

〉
.

Having constructed eigenstate basis {
�
j } functionally

equivalent to {
�
γλ} [Eq. (14)], the full scattering wave function

|
E〉 is approximated by the JM multichannel expansion [3,7]

|
E〉 ≈
∑

�

∣∣
�
N

〉
,

∣∣
�
N

〉 =
∑

j

∣∣
�
j

〉
aj +

∑
γ

∞∑
p=N

∣∣
�
γp

〉
f γγ0

p , (17)

f γγ0
p = (π |kγ |/2)−1/2

(
sγ
p δγ γ0 + cγ

pRγγ0

)
,

where kγ = √
2(E − eγ ), and Rγγ0 is the unknown reactance

matrix. Note that since the total spin S� and its z projection
μ� are preserved in the considered scattering model, the � ≡
{S�,μ�} labeling will be mostly omitted but implied by the
context. For example, all components in the last line of Eq. (17)
are defined for a specific value of �.

The open channels are defined by (E − eγ ) > 0, while
for the closed channels, (E − eγ ) � 0, s

γ
p = 0, and cα

p is
replaced by (cγ

p + isγ
p ) evaluated at i|kγ |. The index of the

incident channel γ0 is defined only for the open channels
in Eq. (17). The aj and Rγγ0 coefficients are found by
simultaneously solving the following equations for the inner
and outer functional spaces, respectively:

〈

�

i

∣∣H − E
∣∣
�

N

〉 = 0,
(18)〈


�
γ ′p′

∣∣H − E
∣∣
�

N

〉 = 0, p′ � N.

The two key JM multichannel approximations [3], denoted
by JM1 and JM2, could be summarized as

JM1 :
〈

�

γ ′p′
∣∣H − E

∣∣
�
γp

〉 ≈ δγ γ ′J
γ

p′p, (19)

JM2 :
〈

�

i

∣∣H − E
∣∣
�

γp

〉 ≈ δpNJ
γ

N−1,NX
γ

i , (20)

where Eq. (20) defines X
γ

i , and where

J
γ

p′p = 〈ξp′ |K − (E − eγ )|ξp〉. (21)

Using the JM1 and JM2 approximations, Eq. (18) is reduced
to

(Ei − E)ai = −
∑

γ

X
γ

i J
γ

N−1,Nf
γγ0
N ,

∑
j

X
γ ′
j aj = f

γ ′γ0
N−1,

and after elimination of ai to

∑
γ

Wγ ′γ J
γ

N−1,Nf
γγ0
N = −f

γ ′γ0
N−1,

Wγ ′γ =
∑

j

X
γ ′
j X

γ

j

/
(Ej − E).

(22)

Solving Eq. (22) for the reactance matrix yields

Rγγ0 = −
∑
γ ′

Z−1
γ γ ′Yγ ′γ0 ,

Yγ ′γ = (
Wγ ′γ J

γ

N−1,N s
γ

N + δγ γ ′s
γ

N−1

)
/
√|kγ |,

Zγ ′γ = (
Wγ ′γ J

γ

N−1,Nc
γ

N + δγ γ ′c
γ

N−1

)
/
√|kγ |.

Using only the open-channel portion of R, the scattering matrix
Ŝ and cross sections are given by [3]

Ŝ�
γ γ0

=
∑

γ ′:eγ ′�E

(1 + iR)γ γ ′(1 − iR)−1
γ ′γ0

,

σ�
γγ0

= πk−2
γ0

∣∣Ŝ�
γ γ0

− δγ γ0

∣∣2
,

σγ γ0 = [2(2Sγ0 + 1)]−1
∑
S�

(2S� + 1)σ�
γγ0

,

where only the open scattering channels (eγ ′ � E) are used
in

∑
γ ′ , and where σγγ0 is the cross section for the transition

from γ0 to γ states of the target.
In the case of the considered frozen-core model, the total

single-ionization cross section (TSICS) is naturally defined as

σI ≡ σTSICS ≈
∑

γ :eγ >ε1s

σγ γ0 , (23)

where ψγ0 is the state of the target helium atom with the
lowest eigenvalue from Eq. (10), and where ε1s ≡ ε[He+(1s)]
is the lowest eigenvalue from Eq. (4). Since one of the target
electrons is always in the He+(1s) state, any two-electron target
state ψγ [Eq. (10)] with its energy eγ > ε1s is interpreted as
an L2-continuum state contributing to TSICS [7].

C. Many-electron matrix elements

This section summarizes the general equations of Fano [25],
Shore [28], and Cowan [26] for multiconfiguration matrix
elements. Let qb denote the radial rb and spin νb coordinates of
the bth electron and q denote the naturally ordered arrangement
of a-electron coordinates

q ≡ (q1,q2, . . . ,qa), qb ≡ (rb,νb). (24)
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Let n denote the number of available subshells, then the first
a1 coordinates are assigned to the first subshell [Eq. (5)], the
next a2 coordinates to the second, and so on:


(q) ≡ 〈q|
〉 =
∑

spin coupling as per S

× 〈
q1,q2, . . . ,qa1

∣∣(1)a1s1μ1
〉

× 〈
qa1+1,qa1+2, . . . ,qa1+a2

∣∣(2)a2s2μ2
〉

. . .

× 〈
qa−an+1,qa−an+2, . . . ,qa

∣∣(n)ansnμn

〉
.

The antisymmetrization equation for |Â
〉, corresponding to
Fano’s Eq. (8), becomes

Â
(q) = N (a)−1/2
∑
Q

(−1)PQ
(Q), (25)

where Q denotes a particular rearrangement or permutation
of the natural order q, N (a) is the number of such distinct
permutations, and a parity PQ is the minimum number of
pairwise permutations required to arrive at Q from q. By its
construction, 
(q) is already antisymmetric in regard to the
electrons from the same subshells; therefore, Q must be limited
only to the cases when the electrons are swapped between
different subshells rather than within the subshells. The
corresponding combinatorics problem is the partitioning of a
set containing a elements into subsets containing a1,a2, . . . ,an

elements, arriving at

N (a) = a!

/ n∏
λ=1

aλ!.

Given fully antisymmetric a-electron basis Â
(q), each
element of the one- and two-electron summation terms in
Eq. (1) contributes equally arriving at

〈Â
|Ha|Â
′〉 = 〈h〉 + 〈v〉,
〈h〉 = a〈Â
|ha|Â
′〉, (26)

〈v〉 = a(a − 1)〈Â
|va,a−1|Â
′〉/2,

where only the last electron coordinate qa (in both 〈h〉 and
〈v〉) and electron coordinate qa−1 (in 〈v〉) are left as the
interacting electrons, and where the remaining (first a − 1 or
a − 2) electrons are referred to as the spectator electrons [25].

Focusing on 〈v〉 and using Eqs. (25) and (26), 〈v〉 becomes

〈v〉 = 1
2a(a − 1)[N (a)N (a′)]−1/2

×
∑
Q,Q′

(−1)PQ+PQ′ 〈
(Q)|v|
′(Q′)〉,

which is equivalent of Fano’s Eq. (12), and where v ≡ va,a−1.
By the orthogonality of one-electron radial wave functions of
different subshells, the distribution of the spectator electrons

ā = (ā1,ā2, . . . ,ān),
n∑

λ=1

āλ = a − 2, (27)

must be identical on both sides of 〈v〉 obtaining potentially
nonzero contributions only when ā ≡ ā′. By explicitly specify-

ing subshell location of the interacting electrons, the following
parametrization becomes possible:

āλ = aλ − δλρ − δλσ , ρ � σ
(28)

ā′
λ = a′

λ − δλρ ′ − δλσ ′ , ρ ′ � σ ′

where (ρ,σ ) and (ρ ′,σ ′) are the subshells of the two interacting
electrons from the respective sides of 〈v〉. Then, for each
valid (potentially nonzero matrix element) distribution of the
interacting electrons, there are

N (ā′) ≡ N (ā) = (a − 2)!

/ n∏
λ=1

(aλ − δλρ − δλσ )!

valid and equally contributing distributions of the spectator
electrons arriving at [Fano’s Eqs. (18) and (22)]∑

Q,Q′
→

∑
ρ�σ,ρ ′�σ ′

[N (ā)N (ā′)]1/2

×
∑

ε,ε′=0,1

(1 − εδρσ )(1 − ε′δρ ′σ ′),

〈v〉 = 1

2

∑
ρ�σ,ρ ′�σ ′

Nρσ (a)Nρ ′σ ′(a′) (29)

×
∑

ε,ε′=0,1

A(Q)A(Q′)〈
(Q)|v|
′(Q′)〉,

Nρσ (a) = [aρ(aσ − δρσ )]1/2,

A(Q) = (1 − εδρσ )(−1)PQ,

where Nρ ′σ ′(a′) and A(Q′) are defined in identical fashion to
the corresponding nonprimed entities, and where ε = 0 is the
natural order denoting qa−1 ∈ ρ, qa ∈ σ , and ε = 1 denotes
the swapped order, i.e., qa ∈ ρ, qa−1 ∈ σ .

As per Cowan [26], the difference in parity between Q and
Q′ is given by (modulo 2)

PQ + PQ′ = �P + ε − ε′,
�P = �PQ − �PQ′ , (30)

�PQ = δρσ − 1 +
σ∑

λ=ρ+1

aλ,

where �PQ′ is defined in identical fashion to �PQ. For ε =
0, the preceding equations are derived by observing that it
requires

Pσ =
n∑

λ=σ+1

aλ (31)

coordinate interchanges to move qa from the σ th subshell
(where qa ended up due to Q) and into the last nonempty
subshell as the last coordinate. Similarly, it requires

Pρ = δρσ − 1 +
n∑

λ=ρ+1

aλ

coordinate interchanges for qa−1 to be moved into the highest
possible subshell after the ordering of qa , obtaining (again
modulo 2)

PQ = PQ̄ + �PQ, �PQ = Pσ − Pρ + ε,

where PQ̄ is the parity due to the spectator electrons, which is
identical to PQ̄′ and therefore disappears from Eq. (30). Note
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that Fano [25] derived a different form of �PQ in Eq. (30),
i.e.,

�P Fano
Q =

σ∑
λ=ρ+1

āλ,

which could be reduced to the preceding Cowan’s form via
Eq. (28).

And, finally, by using Eq. (30) and explicitly showing the
direct and exchange terms, Eq. (29) is reduced to the arguably
more compact Cowan’s form [26]

〈v〉 =
∑

ρ�σ,ρ ′�σ ′
Nρσ (a)Nρ ′σ ′(a′)(−1)�P

× [vdi − (1 − δρσ )(1 − δρ ′σ ′)vex]/(1 + δρσ δρ ′σ ′), (32)

vdi ≡ 〈
ρσ |v|
′
ρ ′σ ′ 〉, vex ≡ 〈
ρσ |v|
′

σ ′ρ ′ 〉,
where vdi and vex denote the direct and exchange contributions,
respectively, and where


ρσ (q) ≡ 
(qa−1 ∈ ρ,qa ∈ σ ) (33)

denotes a permutation of q when qa−1 and qa are moved to the
ρth and σ th subshells, respectively.

Repeating the preceding steps for 〈h〉, Eq. (26) is reduced
to

〈h〉 =
∑
σ,σ ′

[aσ aσ ′]1/2(−1)Pσ +Pσ ′ 〈
σ |ha|
′
σ ′ 〉, (34)

where Pσ is defined by Eq. (31), and where 
σ (q) ≡

(qa ∈ σ ) denotes a permutation of q when qa is moved to
the σ th subshell. If (and only if) the radial component of the
subshell wave functions on both sides are built exclusively
from the eigenvectors of h as per Eq. (4), then Eq. (34) could
be further reduced to the following well-known form:

〈h〉 = 〈
|
′〉
∑

λ

aλελ.

D. Electron-helium scattering matrix elements

The goal here is to express all required matrix elements
in terms of Fano’s matrix elements [25] from the preceding
section, which are defined for any antisymmetric many-
electron wave functions expressed in terms of subshells.

For the specific case of the S-wave model of scattering, the
radial integration in Eq. (32) yields

〈
ρσ |v|
′
ρ ′σ ′ 〉 = δSS ′δμμ′δāā′R0

ρσρ ′σ ′S(ρσ,ρ ′σ ′),

R0
ρσρ ′σ ′ =

∫ ∞

0

∫ ∞

0
dr1dr2

Pρ(r1)Pσ (r2)Pρ ′ (r1)Pσ ′(r2)

max (r1,r2)
,

S(ρσ,ρ ′σ ′) = 〈
ρσ |
′
ρ ′σ ′ 〉, (35)

where only spin variables are considered in S(ρσ,ρ ′σ ′). Since
δSS ′δμμ′ are accounted for in Eq. (35), both 
ρσ and 
′

ρ ′σ ′ will
be assumed to have the same total spin S and its z component
μ.

The case of helium target wave functions with just two
electrons becomes

S(ρσ,ρ ′σ ′) = (−1)ε(1−S), (36)

where ε is reused to indicate the direct (ε = 0) and exchange
(ε = 1) terms from Eq. (32).

For three-electron wave functions with a single fixed
spectator electron, the S-coupling procedure from Eqs. (8)
and (9) yields the following exhaustive set of spin-coupling
schemas:

|A1〉 ≡ |λρ(Sρ)σ 〉, λ � ρ < σ

|A2〉 ≡ |ρλ(Sλ)σ 〉, ρ < λ < σ

|B1〉 ≡ |ρσ (Sσ )λ〉, ρ � σ < λ

|B2〉 ≡ |λ,ρσ (sρ ≡ 0)〉, λ < ρ, ρ = σ

|B3〉 ≡ |ρ,λσ (sσ ≡ 0)〉, ρ < σ, λ = σ

where (i) the first two and the last three schemas are grouped
together and denoted schemas A and B, respectively; (ii) the
subshell indexes are explicitly shown, while the actual electron
spin value s = 1

2 is suppressed; and (iii) the intermediate
spins are displayed in brackets. For example, λρ(Sρ) denotes
coupling into Sρ of spins of electrons from λth and ρth
subshells. If, by construction, all possible left-to-right cases
of coupling are considered as per Eqs. (8) and (9), then such
a right-to-left case as |λ,ρσ (Sσ )〉, λ < ρ < σ , never occurs.
Moreover, any omitted right-to-left coupling schemas are
redundant (linear dependent) since they could be constructed
as linear combinations of the left-to-right cases via the standard
6j recoupling expressions

〈j1j2(j12),j3 : J |j1,j2j3(j23) : J 〉

= (−1)j1+j2+j3+J ĵ12ĵ23

{
j1 j2 j12

j3 J j23

}
, (37)

where ĵ = √
2j + 1, and where, for example,{

s s S12

s s 0

}
=

{
s s 0

s s S12

}
= 1

2
(−1)1+S12 . (38)

Naturally, the chosen left-to-right procedure does not have any
advantages over the right-to-left procedure (or any other spin-
coupling procedure) providing all available linear independent
schemas are considered.

To clarify the notation and to assist with the exchange terms,
the following example explicitly shows all spin variables:

〈ν3ν1ν2|λρ(Sρ)σ 〉 =
∑

μ3μ1μρ

C
Sρμρ

sμ3sμ1C
Sμ

Sρμρsμ2

×〈ν3|sμ3〉〈ν1|sμ1〉〈ν2|sμ2〉
= C

Sρμρ

sν3sν1C
Sμ

Sρμρsν2
, (39)

where 〈ν|sμ〉 = δνμ are the components of Pauli spinor, and
where ν3, ν1, and ν2 are the spin coordinates of the spectator,
ρth, and σ th electrons, respectively. Note that if the spectator
and interacting electrons belong to the same subshell (λ = ρ),
then Sλ = Sρ = 0.

Unfortunately, the chosen Fano’s formalism yields rela-
tively compact close-form expressions only up to this point,
after which the remaining matrix elements must be tabulated.
Considering the corresponding primed schemas and using
properties of the Clebsch-Gordan coefficients such as

|j1j2(j )〉 = (−1)j1+j2−j |j2j1(j )〉, (40)
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the total of four direct A-A′ combinations are reduced to

〈A1|A′
1〉di = δSρSρ′ , 〈A1|A′

2〉di = δSρS ′
λ
(−1)1−S ′

λ ,

〈A2|A′
2〉di = δSλS

′
λ
, 〈A2|A′

1〉di = δSλSρ′ (−1)1−Sλ .
(41)

The exchange terms are best explained by Eq. (39), where ν1

and ν2 must be swapped to obtain the exchange term from
Eq. (32). For example, the following explicitly shows how
the exchange term corresponding to the first combination in
Eq. (41) could be evaluated using Eqs. (37), (39), and (40):

〈A1|A′
1〉ex ≡ 〈λρ(Sρ)σ |λσ ′(Sρ ′ )ρ ′〉

=
∑

ν1ν2ν3

〈λρ(Sρ)σ |ν3ν1ν2〉〈ν3ν2ν1|λρ ′(Sρ ′ )σ ′〉

=
∑

ν1ν2ν3μρμρ′

C
Sρμρ

sν3sν1C
Sμ

Sρμρsν2
C

Sρ′ μρ′
sν3sν2 C

Sμ

Sρ′ μρ′ sν1

= (−1)1−Sρ+Sρ′ +s−S〈ρλ(Sρ)σ |ρ ′,λσ ′(Sρ ′)〉

= (−1)1−Sρ+Sρ′ Ŝρ Ŝρ ′

{
s s Sρ

s S Sρ ′

}
.

The remaining exchange A-A′ combinations become

〈A1|A′
2〉ex = (−1)Sρ Ŝρ Ŝ

′
λ

{
s s Sρ

s S S ′
λ

}
,

〈A2|A′
2〉ex = −ŜλŜ

′
λ

{
s s Sλ

s S S ′
λ

}
,

where hereafter the terms that are different only in primes are
omitted, for example 〈A2|A′

1〉 could be obtained from 〈A1|A′
2〉

by swapping the primes. Using Eq. (38) and recalling that
exchange terms are required only when both ρ �= σ and ρ ′ �=
σ ′, the B-B ′ combinations are reduced to

〈B1|B ′
1〉 = (−1)ε(1−Sσ ′ )δSσ Sσ ′ ,

〈B1|B ′
2〉 = δsSδ0Sσ

,

〈B1|B ′
3〉 = 1

2 (−1)ε(1−Sσ )+Sσ δsS Ŝσ ,

〈B2|B ′
2〉 = δsS,

〈B2|B ′
3〉 = 1

2δsS,

〈B3|B ′
3〉di = δsS, 〈B3|B ′

3〉ex = 1
2δsS,

where the exchange terms are parameterized as per Eq. (36).
The following are all required A-B ′ combinations:

〈A1|B ′
1〉 = (−1)ε(1−Sσ ′ )+Sσ ′ Ŝρ Ŝσ ′

{
s s Sρ

s S Sσ ′

}
,

〈A1|B ′
2〉 = 1

2δsS(−1)1+Sρ Ŝρ,

〈A1|B ′
3〉di = 1

2δsSŜρ, 〈A1|B ′
3〉ex = δsSδ0Sρ

,

〈A2|B ′
1〉 = (−1)ε(1−Sσ ′ )+1−Sλ+Sσ ′ ŜλŜσ ′

{
s s Sλ

s S Sσ ′

}
,

〈A2|B ′
2〉 = 1

2δsSŜλ,

〈A2|B ′
3〉di = 1

2δsS(−1)1+Sλ Ŝλ, 〈A2|B ′
3〉ex = −δsSδ0Sλ

,

where the B-A′ terms could be obtained from the preceding
equations by swapping the primes.

Repeating the preceding steps for the one-electron interac-
tions, the radial integration in Eq. (34) yields

〈
ρ |h|
′
ρ ′ 〉 = δSS ′δμμ′δāā′hρρ ′S(ρ,ρ ′),

(42)

hρρ ′ =
∫ ∞

0
dr Pρ(r)hPρ ′(r),

S(ρ,ρ ′) = 〈
ρ |
′
ρ ′ 〉, (43)

where again only spin variables are considered in Eq. (43). If
hρρ ′ = 0 for ρ �= ρ ′, then it is not possible to select the same
spectator electrons in both 
ρ and 
′

ρ in any cross-schema
matrix elements arriving at S(ρ,ρ ′) = δSS′ and, hence,

〈
ρ |h|
′
ρ ′ 〉 = δSS′δμμ′δρρ ′hρρ.

Note that while it is interesting to examine the one-electron
interactions in theory, in practice [6], it is simpler just to include
the one-electron terms into v12 in Eq. (26):

〈Â
|Ha|Â
′〉 = a(a − 1)〈Â
|v̂|Â
′〉/2,

v̂ = va,a−1 + (ha−1 + ha)/(a − 1),

and then combine Eqs. (35) and (42), i.e.,

〈
ρσ |v̂|
′
ρ ′σ ′ 〉 = δSS′δμμ′δāā′R̂0

ρσρ ′σ ′S(ρσ,ρ ′σ ′),

R̂0
ρσρ ′σ ′ = R0

ρσρ ′σ ′ + 1

a − 1
(hρρ ′δσσ ′ + δρρ ′hσσ ′).

E. JM approximations

In this section, the JM1 [Eq. (19)] and JM2 [Eq. (20)]
approximations are examined in detail. Using the explicit
forms of |χ�

γ 〉 [Eq. (11)] and |
�
γp〉 [Eq. (12)], the common

part of JM1 and JM2 is approximated as

(H − E)
∣∣
�

γp

〉 = (H − E)Âa
a+1

∣∣
�
γp

〉
= (H − E)Âa

a+1

∣∣χ�
γ

〉|ξp〉
= Âa

a+1(H − E)
∣∣χ�

γ

〉|ξp〉
≈ Âa

a+1

∣∣χ�
γ

〉
(K + eγ − E)|ξp〉. (44)

The required antisymmetrization Âa
a+1|
�

γp〉 could be ex-
pressed in notation of Eqs. (24) and (25) as


�
γp(q,qa+1) = Âa

a+1

�
γp(q,qa+1)

= (a + 1)−1/2
a+1∑
b=1

(−1)PQb 
�
γp(Qb,qb),


�
γp(q,qa+1) ≡ χ�

γ (q,νa+1)ξp(ra+1),


�
γp(Qb,qb) ≡ χ�

γ (Qb,νb)ξp(rb), (45)

where Qb denotes replacement of qb coordinate by qa+1 in
q ≡ (q1,q2, . . . ,qa), that is, Qa+1 ≡ q and

Qb ≡ (q1,q2, . . . ,qb−1,qa+1,qb+1, . . . ,qa).
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The JM1 approximation is examined by substituting
Eqs. (44) and (45) into Eq. (19), arriving at

〈

�

γ ′p′
∣∣H − E

∣∣
�
γp

〉

≈ 1

a + 1

∑
b′b

(−1)PQ
b′ +PQb

× 〈

�

γ ′p′ (Qb′ ,qb′ )
∣∣(Kb + eγ − E)

∣∣
�
γp(Qb,qb)

〉
= 〈

χ�
γ ′

∣∣χ�
γ

〉〈ξp′ |K + eγ − E|ξp〉 = δγ ′γ J
γ

p′p, (46)

where the contributions from nondiagonal permutations Qb′

and Qb �=b′ vanish. Hence, the effect of the two antisymmetriza-
tion operators is reduced to permutations with identical radial
coordinate in both ξp′ (rb) and ξp(rb). That is, for b′ �= b, p � N

and p′ � N ,

〈

�

γ ′p′ (Qb′ ,qb′ )
∣∣(Kb + eγ − E)

∣∣
�
γp(Qb,qb)

〉
∼ 〈ψγ ′ (Qb′)ξp′(rb′)|ψγ (Qb)(Kb + eγ − E)ξp(rb)〉

∼
Nt∑

λ′=1

Nt∑
λ=1

cγ ′λ′cγλ

×〈ξp′ |Pλ〉 〈Pλ′ |(K + eγ − E)|ξp〉 = 0,

where cγλ are some expansion coefficients in the most general
sense, and where every potentially contributing term in the last
double summation is exactly zero. In this particular case, both
contributing factors are zeros:

〈ξp|Pλ〉 = 0, 〈Pλ|(K + eγ − E)|ξp〉 = 0,

p � N, 1 � λ � Nt

due to the target basis {Pλ}Nt

λ=1 being orthogonal to the outer
JM functions {ξp}∞p=N [see explanation for Eq. (13)].

For the JM2 [Eq. (20)] approximation and in steps similar
to Eq. (46), 
�

i could be explicitly written using Eq. (16)
arriving at

〈

�

i

∣∣H − E
∣∣
�

γp

〉

≈
∑
γ ′

N∑
λ=1

C�
iγ ′λ

1

a + 1

∑
b′b

(−1)PQ
b′ +PQb

× 〈

�

γ ′λ(Qb′ ,qb′ )
∣∣(Kb + eγ − E)

∣∣
�
γp(Qb,qb)

〉

=
N∑

λ=1

C�
iγλ〈Pλ|K + eγ − E|ξp〉. (47)

The corresponding expression for nondiagonal permutations
becomes

〈

�

γ ′λ(Qb′ ,qb′ )
∣∣(Kb + eγ − E)

∣∣
�
γp(Qb,qb)

〉
∼ 〈ψγ ′(Qb′ )Pλ(rb′)|ψγ (Qb)(Kb + eγ − E)ξp(rb)〉

∼
Nt∑

λ′=1

Nt∑
λ′′=1

cγ ′λ′cγλ′′

×〈Pλ|Pλ′′ 〉 〈Pλ′ |(K + eγ − E)|ξp〉 = 0,

where now it vanishes only due to the tridiagonal nature of
the J

γ

pp′ matrix

〈Pλ|(K + eγ − E)|ξp〉 = 0, p � N, 1 � λ � Nt .

Using Eqs. (3) and (15), and (47) is further reduced to

〈

�

i

∣∣H − E
∣∣
�

γp

〉 ≈
N∑

λ=1

N−1∑
p′=0

C�
iγλDλp′J

γ

p′p

= δpN

N∑
λ=1

C�
iγλDλ,N−1J

γ

N−1,N ,

deriving X
γ

i in form conveniently identical to the the
one-electron target’s X

γ

i [7]:

X
γ

i =
N∑

λ=Nt+1

C�
iγλDλ,N−1. (48)

Being constrained by the Fano’s subshell structure of
the many-electron matrix elements from the corresponding
preceding section, Eq. (16) could not be used to calculate the
C�

iγλ coefficients directly. If, however, Eq. (16) is viewed as
the definition of C�

iγλ, then

C�
iγλ = 〈


�
γλ

∣∣
�
i

〉
, (49)

where the (a + 1)-electron eigenstates {
�
i } are obtained from

the subshell-structured (a + 1)-electron basis {
�
j } via

〈

�

i

∣∣H ∣∣
�
i′
〉 = Eiδii′, 〈
i |
i′〉 = δii′,∣∣
�

i

〉 =
∑

j

Cij |Â
�
j 〉. (50)

In the notation of Eqs. (6), (7), and (8), the 
�
j functions are

specified as ∣∣
�
j

〉 ≡ |aj sj Sjμ�〉,
aj = (aj1,aj2, . . . ,ajN ),

sj = (sj1,sj2, . . . ,sjN ), (51)

Sj = (Sj1 ≡ sj1,Sj2, . . . ,SjN ≡ S�),

N∑
λ′=1

ajλ′ = a + 1,

N∑
λ′=Nt+1

ajλ′ � 1,

where the last summation says that the subshell structure
of every 
�

j should not include more than one electron in
the transitional Eq. (15) subshells ensuring that {
�

j } covers
identical (a + 1)-electron functional space when comparing to
{
�

γλ}Nλ=1 [Eq. (14)].
For the required λ = Nt + 1, . . . ,N [Eq. (48)], the final

expression for C�
iγλ could now be reduced further with the aid

of Eqs. (10), (11), and (50) arriving at

C�
iγλ =

∑
j

∑
β

Ct
γβCij

〈
Âφ�

β Pλ

∣∣Â
�
j

〉

=
∑

β

Ct
γβCi,j={βλ}. (52)
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Since Nt < λ � N , for every required configuration |φ�
β Pλ〉,

there should exist a corresponding (a + 1)-electron basis
function |
�

j 〉 such that

aj = (aβ1,aβ2, . . . ,aβNt
,aλ), aλ ≡ 1

sj = (sβ1,sβ2, . . . ,sβNt
,sλ), sλ = s ≡ 1

2

Sj = (Sβ1,Sβ2, . . . ,SβNt
,S�),

(53)

where the Nt + 1’s places are used for the only remaining
nonempty subshell.
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FIG. 1. (Color online) Elastic, single-excitation, and ionization
cross sections (πa2

0 ) for electron scattering on a ground-state helium
target in the frozen-core S-wave model.

III. RESULTS

The original JM functions [3,29] are used in this study,
while the complete set of equations relevant to the S-wave JM
scattering could be found in [7]. The Laguerre exponential
falloff was fixed at λL = 2. For conversion purposes, one
atomic unit of energy (or Hartree) was set to 27.211 383 86 eV
as per the latest recommended values at the time of pub-
lication [30]. A tabular form of the JM and CCC results
(Figs. 1 and 2) is available [24].

Our immediate goal is to solve the S-wave model of e-He
scattering in full, which includes ionization-plus-excitation
and double-ionization processes. Before this could be at-
tempted, it is essential to thoroughly test the JM implementa-
tion of e-He scattering. To do so, we use the well-established
CCC method [31] to obtain benchmark results across an
energy range from 0.1 to 1000 eV, paying particular attention
to the resonance regions, as these have not been detailed
previously.
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FIG. 2. (Color online) The same as in Fig. 1 but with focus on
the resonances.
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The CCC method has been used with a number of different
L2 basis functions. To guide the choice of the JM calculation
parameters and to make comparison between the JM and
CCC results as direct as possible, the helium target states
are created identically in both methods. This is accomplished
in the following steps: (i) create Nt orthogonal Laguerre
functions (see [7] for details); (ii) diagonalize the helium-ion
(He+) one-electron Hamiltonian (4); (iii) create all possible
singlet (Nt ) and triplet (Nt − 1) two-electron configurations,
where one electron always occupies the 1s eigenstate of
He+; (iv) diagonalize the helium Hamiltonian on this basis
obtaining two-electron helium (target) states. In our case,
with Nt = 50, the ground-state eigenvalue is e(1s2,1S) =
−2.872 506 9.

Convergence in the CCC cross sections was achieved at
Nt = 50 by increasing the number of expansion states by 10
at every energy calculated until there was no visible difference
between consecutive calculations at any energy, with only
Nt = 50 results presented in Figs. 1 and 2. Having an identical
atomic target model in both CCC and JM methods provides
a unique opportunity to study convergence in the JM method.
It is important to emphasize here that, given the identical
target model, the only difference between the JM and CCC
results will be due to the outer-region approximation of the
JM method, which is controlled by the single parameter N . In
theory, the JM results should converge to the CCC results as
N increases.

It was found that N = 81 was sufficient to reproduce the
CCC results for the complete energy range from 0.1 to 1000 eV.
The presented JM results in Figs. 1 and 2 were calculated on a
laptop with 2.2-GHz CPU and 3.5-GB RAM taking about five
hours to complete at more than 4000 considered energy points.
The following JM computational values were used (see [7] for
explanation of the parameters): Nt = 50, N = 81, ln(c) = −7,
rmax = 450, MLCR = 1601, where the radial grid was between
zero and rmax and MLCR is the number of equally spaced points
in the radial LCR grid [7].

The agreement between JM and CCC results is excellent
for elastic scattering, excitation, and ionization Eq. (23). It
will be a major challenge to obtain convergent total ionization
cross sections for the case where the residual ion is left in an
excited state, or when autoionizing doubly excited states are
incorporated by removing the frozen-core (FC) approximation.

IV. CONCLUSIONS

We have extended the JM method to many-electron target
systems, where the presented formalism is fully integrated
with Fano’s [25] many-configuration matrix elements. Note
that, even though the method was applied in the frozen-
core S-wave model, the described JM formulation is com-
pletely generic in terms of permissible electron configura-
tions. Such a formulation will be required in our future
attempt to solve the S-wave model exactly without the FC
approximation.

Comparison of the JM and CCC results demonstrated that
the JM method is very accurate and computationally highly
efficient. In particular, the JM results are in exact agreement
with the CCC results between 0.1 and 1000 eV. Note that
the JM results were obtained with the same set of calculation
parameters for the entire energy region spanning four orders of
magnitude, that is, no further adjustments were made for any
particular energy region. Therefore, arguably, the JM method
joins the CCC method in being one of the very few ab initio
scattering methods capable of a uniform treatment of electron
scattering across a broad energy range.
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