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Ionization processes in small quasimolecules: He2+
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The energy spectra of electrons ejected in He2+−He collisions were measured in the ion energy range
6–30 keV. Theoretical analysis of the ionization mechanisms has been performed on the basis of the advanced
adiabatic approximation for one-electron processes and perturbation theory for two-electron processes. The
ionization channel 2pσ 2 → 1sσndσ → 1sσεdσ has been revealed, which makes a considerable contribution to
the ionization cross section in the keV ion energy range.
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I. INTRODUCTION

In recent years, considerable progress has been achieved
in quantitative theoretical descriptions of dynamical processes
(such as ionization) in which one “active” electron is involved
[1]. Very accurate calculations of such processes have become
feasible in a wide range of collision energies. Now the
challenge is shifted toward the quantitative study of the
dynamical processes, which cannot be described by one-
electron approximations, and electron correlations should be
taken into account.

The quasimolecule He2+
2 (He2+ + He) is one of the simplest

quasimolecular systems with two electrons accessible for
experimental and theoretical study. Experimentally, the total
cross sections for ionization were measured earlier by the
condenser method [2] and by the “ejected electron–recoil ion”
coincidence technique [3,4]. Elementary processes occurring
in He2+−He collisions were investigated using the “scattered
ion–recoil ion” coincidence technique [5]. A compilation of
the data is given in the handbook [6] where recommended
values of cross sections are suggested. Electron energy
distributions in arbitrary units were measured in Ref. [7] at one
particular ion energy. The production of some doubly excited
autoionization states in high-energy He2+-He collisions was
studied in Ref. [8] using electron spectroscopy.

In the past decade much progress has been made in mea-
suring electron and residual ion momentum distributions via
cold target recoil ion momentum spectroscopy (COLTRIMS)
[9–14]. As a rule, such experiments were performed at high
incident ion energy. Theoretical study of autoionization in the
quasimolecule He2+

2 was performed in Refs. [15–21]; potential
energy curves, energy widths, and cross sections for excitation
of some of the lowest autoionization states were calculated.
However, a complete understanding of the dynamics of ion-
ization processes in the quasimolecule He2+

2 was not achieved
until now. In particular, the available experimental data do
not allow estimating contributions of one-electron (direct
ionization) and two-electron (autoionization) processes to the
total ionization cross section. Indeed, in the quasimolecular
approximation, both processes populate the degenerate final
states He2 + (projectile) + He+(target) [process 2021] and
He+(projectile) + He2+(target) [process 2012]. Thus, the data
on the cross sections for processes 2021 and 2012 obtained
in the coincidence experiments do not enable distinguishing

between direct ionization and autoionization in He2+-He
collisions. Moreover, the total cross sections for ionization
of a target atom obtained in Ref. [6] by extrapolation of
experimental data to lower ion energies are of the order of
10−19 cm2, while the calculations of autoionization [17] and
measurements of the total ionization cross sections [4] give
the values of the order of 10−17 cm2.

In the present paper we have attempted to clarify the
situation by studying energy spectra of electrons ejected in
He2+−He collisions, which can provide detailed information
on the ionization mechanism. In addition, the programs of
calculations of two-electron transitions in quasimolecules
developed at the Oak Ridge National Laboratory make it
possible to consider a great number of ionization channels.

II. EXPERIMENTAL TECHNIQUE

The doubly differential cross sections were measured using
our electron spectrometer described elsewhere [22,23]. A
schematic view of the experimental setup is shown in Fig. 1.

An ion beam from an ion source of duoplasmatron type
(IS), after passing through the magnet mass separator (M)
and quadrupole lenses (QL), entered a gas cell placed inside
the inner electrode of the cylindrical electrostatic mirror
analyzer (A) with the entrance angle θ = 54.5o and the energy
resolution �E/E = 0.63%. The inner electrode (grounded)
was made of a uniform brass cylinder and had entrance and
exit slits with an effective length of 0.3 mm. The outer electrode
(under analyzing potential) was made of tungsten mesh with
a transparency of 98.5%. The whole analyzer volume was
surrounded by a uniform brass screen. The primary beam
current was measured by a Faraday cup with guard rings,
placed inside the inner electrode after the gas cell. An array
of guard rings (Solter rings) was installed in the collision
chamber to avoid penetration of electrons from surfaces into
the analyzer volume. The energy-analyzed electrons were
directed to a detector (D) consisting of a channeltron and a
dispersion element used for discrimination against spurious
electrons. In measuring Auger electron spectra, this dispersion
element was represented by a small low-resolution cylindrical
mirror (shown in Fig. 1), while in studying the low-energy
part of the spectrum a small conical deflector was used. The
electron spectra were normalized to the primary ion beam
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FIG. 1. (Color online) Experimental setup: IS, ion source; QL,
quadrupole lenses; M, magnet mass separator; NC, neutralization
chamber; A, electron energy analyzer; P, diffusion pumps.

by converting the electrometer data into a series of pulses
(with the aid of a current-to-frequency converter), which were
then counted. Stray magnetic fields were reduced to less than
10 mG by using nonmagnetic materials, μ-metal shielding,
and compensation by three pairs of Helmholtz coils. The
isotope 3He2+ was used to separate it from H+

2 . The helium
pressure in the collision chamber was 4 × 10−4 Torr, and the
pressure of the residual gas did not exceed 2 × 10−6 Torr. The
single-collision regime was maintained.

Absolute values of the doubly differential cross sections are
determined by the relation

d2σ

dEed�
= K

n

(
Ne

Ni

)
, K = 1

�Eη
∫

�dl
, (1)

where n is the target gas density, �E is the absolute energy
resolution (full width at half maximum), η is the detection
efficiency,

∫
�dl is a geometric factor characterizing the

electron ejection solid angle and collection length, and Ne

and Ni are the fluxes of electrons and incident ion beams,
respectively.

The parameters and constants entered in expression (1)
were determined both from control experiments and from cal-
ibration to the well-established data available in the literature
(in particular, the data [24] on electron impact). The following
control experiments were performed.

A. Geometrical factor
∫

�dl

In this series of control experiments, a small electron gun
was installed inside the inner electrode, directed at an angle
of 54.5o with respect to the analyzer axis, that could move
along the axis. The electron current as a function of the gun
position was measured by a Faraday cup located behind a
cut in the analyzer screen, opposite to the entrance slit, to
give the geometrical factor, which can also be determined
from geometrical calculation. The result obtained was

∫
�dl =

(3.7 ± 0.3) × 10−3 cm sr.

B. Registration efficiency η

In these control experiments, the small electron gun was
used as well. The electron current was measured both by
the Faraday cup located behind the cut and by the Faraday
cup placed instead of the channeltron in the detector. By
this manner, the analyzer transparency α was determined.
The channeltron registration efficiency β was measured in
a separate experiment in which the channeltron acted both as
a Faraday cup and in the counting regime. The result obtained
was η = αβ = 0.74 ± 0.05, at Ee > 4 eV. The operation
regime of the detector was chosen in such a way to maintain a
plateau in dependence of the electron signal on the potentials
applied to the channeltron and guard rings.

C. Gas pressure

The gas pressure was measured by an ionization gauge
calibrated by the McLeod gauge in a standard manner. The
uncertainty of these measurements was ±15%.

D. Analyzer calibration

The true energy of ejected electrons is determined by the
relation eV0 = k(eVA + eVC), where eVA and eVC are the
analyzer potential and the contact potential, respectively. The
values of k and VC were determined by comparing measured
positions of two spectral lines whose positions are well known
from spectroscopic data. (We usually used Auger spectrum for
e-Xe collisions). The result obtained was k = 0.993 ± 0.003,
VC = 0.16 V.

E. Energy resolution

The energy resolution of the analyzer was determined using
the following three methods:

(i) comparison to the width of a line from a source of
electrons with fixed energy,

(ii) comparison to the width of a peak for electron elastic
scattering, and

(iii) comparison to the width of a line of the Auger spectra
with well-known natural width.

The result obtained was �E/E = (0.63 ± 0.05)%. The
combination of the above errors gives a total uncertainty of
measurements of the absolute cross sections of about 20%.
The calibration procedure gives the same value.

The measurements were performed in the ion energy range
6–30 keV and in the ejected electron energy range 5–70 eV.

III. THEORY

A. Energies and widths

For the analysis of the studied processes, it was necessary
to calculate two-electron molecular potential curves and
probabilities for two-electron transitions, particularly autoion-
ization. The product of one-electron molecular wave functions
was used as the basis for two-electron wave functions.
The calculations of bound-state one-electron molecular wave
functions, ψEi , and molecular eigenvalues, Ei , were performed
using a standard procedure of solving the Schrödinger equation
in prolate spheroidal coordinates [25]. The quasiradial parts of
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FIG. 2. Potential energy curves of the system He2+
2 . (The term

4/R is subtracted.) characteristic regions of internuclear distance are
indicated.

the bound-state functions were expressed by Jaffe expansions
with normalization of the total wave function to unity at
each internuclear distance R. The quasiradial parts of the
continuum wave functions, ψε, where ε is the energy of the
continuum state, were obtained from numerical integration
of the Schrödinger equation and normalized to an energy δ

function. The quasiangular wave functions in both cases were
expressed by the expansions over Legendre polynomials. The
matrix elements for two-electron transitions,

V12(R) = 〈ψE1(1)ψE2(2)| 1

|r1 − r2| |ψE3(1)ψE4(2)〉, (2)

were evaluated in the Fourier space, where (1,2) indicates a
manifold of coordinates of electron 1 or electron 2. The results
obtained on the potential energy curves and the widths of the
lowest autoionization states are shown in Figs. 2 and 3. The
potential curves for the states 2pπ2 and 2sσ 2 are not shown
in Fig. 2, to avoid overcomplicating the figure. Our results
on the potential curves agree to within a few percent of the
previous calculations [16]. The data obtained on the widths,
(R) = 2π |V12(R)2| δ(E1 + E2 − E3 − ε), agree with the
calculations [16,18] within 15%.

The wave functions ψEi(R) for i = 1, 2, 3 in the matrix
element V12(R) are the bound-state wave functions and ψE4(R)
= ψε(R) is the continuum wave function.

R (a.u.)

(a
.u

.)

FIG. 3. Widths of autoionization states of the quasimolecule He2+
2 .

The initial state, He2+ + He (1s2), correlates to the quasi-
molecular terms 1�g

+ (2pσ 2) and 1�u
+ (1sσ2pσ ) (see, e.g.,

discussion in Ref. [26]). In approaching colliding particles,
these terms pass through the following characteristic regions
(Fig. 2):

(i) R = 1.2–1.4 a.u. In this region the initial di-
abatic potential curve1�+

g (2pσ 2) crosses the potential
curve1�+

g (1sσ3dσ ).
(ii) R < 1.06 a.u. In this region, the diabatic potential

curve 1�+
g (2pσ 2) crosses the boundary of continuum 1sσ

and becomes an autoionizing one.
(iii) R = 0.4–0.5 a.u. In this region, superpromotion of

the initial diabatic potential curves 2pσ 2 and 1sσ2pσ occurs,
resulting in direct ionization.

(iv) R = 0.2–0.3 a.u. In this region, formation of the doubly
excited states 2sσ 2, 2pσ2pπ , 2pπ2, etc., is most effective.

IV. DIRECT IONIZATION

Cross sections for direct ionization are calculated using the
advanced adiabatic approximation [27]. In this approximation,
the differential cross section for electron ejection is written as

dσ

dE
= 4π |R(E)|2 ImR(E)

α(E)
exp

[
−α(E)

v

]
, (3)

where α(E) = 2
∫ E ImR(E′)dE′ and R(E) is the function

reciprocal toE(R). The complex function R(E) was deter-
mined by scaling of the analogous function for the system
H2

+ (Eq. (6) of Ref. [27]), with the effective charge chosen to
provide the correct value of the binding energy of the ionized
electron in the united atom limit.

A. Quasimolecular autoionization

The cross section for electron ejection via an autoionization
process can be written as

dσ

dE
= 2π

∞∫
0

N (b,R(E))W (E,b)bdb, (4)

where b is the impact parameter, N(b,R) is the population
of the autoionization state, and W(E,b) is the autoionization
transition probability determined using the perturbation

W (E,b) =
∣∣∣∣∣∣

∞∫ √
(t ′)
2π

exp

⎧⎨
⎩iEt ′ − i

t ′∫
E0(t ′′)dt ′′

⎫⎬
⎭ dt ′

∣∣∣∣∣∣
2

,

(5)

where E0(t) is the energy of the autoionization state counted
with respect to the final-state energy, and (t) is the energy
width. If  (t) � 1 then Eq. (5) can be reduced to (see, e.g.,
Ref. [28]):

W (E,b) ∼= (t0)

E′
t (t0)

= (R0)

vRE′
R(R0)

, (6)

whereE′
t = dE/dt , E′

R = dE/dR, t0 and R0 are the time and
internuclear distance corresponding to the stationary phase
point determined by the condition E = E0(t0), vR is the radial
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velocity, and the differential cross section Eq. (4) can be written
as

dσ

dE
∼= I (R0)(R0)

vE′
R(R0)

, (7)

where

I (R0) =
∞∫

0

N (b,R0)bdb

vR(R0)/v
. (8)

In calculating the cross sections, we used our own values
of (R) as well as the data on N(b,R) taken from Ref. [17].

The function I(R) for the state 2pσ 2 was found to obey the
relation I(R) = 0.027exp(4R) (a.u.). The analogous function
for the state 2pσ2pπ was found to equal 0.14 a.u. at all electron
energies in the range 5–30 eV.

When determining the doubly differential cross sections,
expressions (3) and (4) should be multiplied by a certain
function f(E,�) characterizing the angular distribution of
ejected electrons. Our calculations have shown that in the
case under study the angular distribution in the center-of-mass
frame can be considered isotropic in a wide range of electron
energies. Therefore, the cross sections in the laboratory frame
can be obtained by dividing the cross sections (3) and (4) by
4π and taking the values determined by kinematic relations
between these two coordinate systems (see, e.g., Ref. [29]):

σ ′′
lab = (1 − 2δ cos θlab + δ2)−1/2σ ′′

c.m.,
(9)

Ec.m. = (1 − 2δ cos θlab + δ2)Elab,

where σ ′′ = d2σ/dEd�, δ = vc.m./vlab.

V. RESULTS AND DISCUSSION

A. Differential cross sections

Figure 4 shows energy spectra of electrons ejected in
3He2+−4He collisions measured at the ejection angle θ =
54.5◦ and at the ion energies 6 and 12 keV. One can discern
the following features of the spectra: the continuous part of
the spectrum dominating at low electron energies, a very
broad continuous band dominating at higher energies, and a
discrete structure connected with autoionization transitions in
separated target and projectile (the latter is shifted to higher
energies due to the Doppler effect).

Of particular interest is the low-energy part of the spectrum
(Ee < 10 eV). In the ion energy range under study the
doubly differential cross sections exhibit behavior typical
for the direct-ionization cross sections; i.e., they increase
with increasing ion energy and exponentially decrease with
increasing electron energy. However, our calculation of the
doubly differential cross sections (Fig. 5, curve D2 + D3)
as well as the available data on the total cross sections for
direct ionization (e.g., Ref. [6]) show that the contributions
of the known channels for direct ionization are too small
to explain the low-energy part of the spectrum. This may
imply that one more channel for direct ionization exists at
medium internuclear distances that was not taken into account
in previous studies. Such a direct-ionization channel associated
with two-electron transitions 2pσ 2-1sσ3dσ have been found.
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FIG. 4. Energy spectra of electrons ejected in
3He2+−4Hecollisions.

B. Direct ionization

The following channels for direct ionization have been
considered:

(D1) 2pσ 2 → 1sσ3dσ → 1sσεdσ, (10)

(D2) 2pσ 2 → 2pσεpσ, (11)

(D3) 1sσ2pσ → 1sσεpσ. (12)

The channels (11) and (12) are associated with S ionization
(superpromotion [30]) of the initial states to continuum at small
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FIG. 5. Doubly differential cross sections for ejection of electrons
in He2+-He collisions at 8 keV. Labels near curves indicate the
contributions of different channels and the bold line indicates the
sum of all contributions. Circles represent experimental data.
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internuclear distances. Their contribution was calculated using
the advanced adiabatic approximation, Eq. (3).

The newly discovered channel (10) proceeds in two steps:
two-electron coupling of terms followed by one-electron
superpromotion. The probability for the first step can be
estimated using the Landau-Zener formula,

P (v) = 1 − exp

(
−4πV 2

1,2

vE′
R

)
≡ 1 − exp

(
−a

ν

)
, (13)

where E′
R equals the difference of slopes of the crossing po-

tential curves. The matrix element for two-electron transition
V1,2 = V12(R1) determined by Eq. (2) was evaluated with the
wave functions ψEi(R1) for i = 1,2,3,4 corresponding to bound
states at the crossing point R1, where E1(R1) + E2(R1) =
E3(R1) + E4(R1). The energy spectrum of electrons ejected at
the second step of (10) was calculated using advanced adiabatic
approximation, Eq. (3).

Our calculations have shown that the coupling of the states
2pσ 2 and 1sσ3dσ is strong and the parameter a equals 0.12 a.u.
In order to obtain the true values of differential cross sections
it is necessary to multiply Eqs. (3) and (4) by P(v), Eq. (13).
It should be noted that an important role of the correlated
two-electron transitions in a population of excited states in
HeE+-He collisions was established earlier [31]. It must be
emphasized that all of the parameters are calculated ab initio
and no fitting parameters were used.

C. Quasimolecular autoionization

The following two channels for quasimolecular autoioniza-
tion were considered:

(A1) 2pσ 2 → 1sσεlσ, l = 0,2, (14)

(A2) 2pσ 2 → 2pσ2pπ → 1sσεdπ. (15)

Other autoionization transitions are much less important (as
follows from the calculations [17]).

Channel (14) proceeds via decay of the initial diabatic state
2pσ 2 that has survived after partial depletion via channel (10).
Channel (15) proceeds in two steps: rotational excitation of the
state 2pσ2pπ at small internuclear distances and subsequent
autoionization of this state in departure of colliding particles.

Cross sections for electron ejection were calculated using
expressions (3)–(8) with the functions N(b,R) taken from
the calculations [17] performed at close collision energy,
accounting for proper statistical factors (statistical weights,
numbers of electrons, and vacancies).

The results of calculations together with the experimental
data on the doubly differential cross sections for electron
ejection in 8 keV 3He2+−4He collisions are shown in Fig. 5.
Agreement between the experimental data and calculations
is good, indicating that the theory correctly describes the
behavior and values of cross sections for different channels. As
seen from the figure, the main contribution to the spectra at high
electron energies is determined by autoionization channel A1,
while channel D1 becomes dominant with decreasing electron
energy. Other channels are not essential at the given ion energy.
In general, the differential cross sections for electron ejection
are mainly determined by the following three probabilities:

(i) the probability for the discrete two-electron transition 2pσ 2-
1sσ3dσ , (ii) the probability for the one-electron S promotion,
and (iii) the probability for the quasimolecular autoionization
2pσ 2-1sσεlσ . The first and third probabilities decrease with
increasing ion energy while the second one grows with ion
energy. Therefore, the ionization cross sections associated with
the superposition of the three channels D1, A1, and A2 do not
depend strongly on ion energy in the energy range under study.
On the other hand, the cross sections for channels D2 and
D3, Eq. (3), grow very strongly with ion energy and become
comparable with other channels at ion energies of about several
hundred keV.

D. Autoionization in separated atoms

Figure 6 shows a part of the energy spectrum associated with
autoionization transitions in a separated target and projectile.
As can be seen from the figure, most intensive spectral lines
are attributed to decay of the states 2s2 1S, (33.2 eV), 2p2 1D

+ 2s2p 1P (35.4 eV), and 2p2 1S (37.5 eV), and less intensive
lines, to decay of the states 2s3s 1S (38.3 eV) and 2s4s 1S

(39.5 eV) (according to spectroscopic data [32]). Excitation
of these states is connected with the population of molecular
states 2sσ 2, 2pπ2, 2sσ3dσ , and 2sσnsσ at small internuclear
distances.

It is of interest to pay attention to very small cross sections
for excitation of the atomic autoionization states. Such cross
sections can be estimated by planimetry of the corresponding
peaks in the energy spectrum. For example, the cross section
for excitation of the state 2s2 is about 6 × 10−20 cm2 at
10 keV, while the cross section for excitation of the molecular
state 2sσ 2 is about 4 × 10−18 cm2, and the cross section
for excitation of the state 2s2 in the system He+-He is about
4 × 10−19 cm2 [33]. (Note in the case of decay of the 2s2

state the corresponding peak is well resolved and the angular
distribution of ejected s electrons is isotropic.) Our estimates
show that the widths (R) for the 2sσ 2 state are of the order
of 10−3 a.u., which is far from being enough to explain such
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FIG. 6. Energy spectra of electrons ejected in decay of autoion-
ization states of sepatated atoms. Autoionization states: 1, 2s2 1S; 2,
2p2 1D; 3, 2s2p 1P ; 4, 2p2 1S; 5, 2s3s 1S; 6, 2s4s 1S. The numbers
with primes correspond to the same transitions in the projectile atom.
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strong depletion of the above molecular state. Taking into
account depletion via channel (10), 70% also does not help
explain the observed effect. Such an explanation can be found
in the assumption that the state 2sσ 2 dissociates to He+(2s) +
He+(2s) at R→∞ (see, e.g., Ref. [15]) and the state He2+ +
He(2s2) is produced via mixing with the above state. This
idea is consistent with the “swapping” concept of Barat and
Lichten [34]. Contrary to this situation, in the case of He+-He
the state 1sσ2sσ 2 converges to He+(1s)-He(2s2), giving rise
to enhancement of the cross section for excitation of the 2s2

state. A similar situation occurs in the case of other doubly
excited autoionization states.

Meanwhile, the situation occurring in the COLTRIMS
experiments is quite different. These experiments were per-
formed at fixed values of the recoil momentum corresponding
to the range of internuclear distances where channels (10)–(12)
and (14) and (15) are closed and the rotational coupling
between the states 2pσ 2 (bound) and 2pσ2pπ (continuum)
becomes dominant [17]. Then the excitation of the state
2pσ2pπ can be followed both by T ionization (saddle-point
ionization) and by autoionization transition to the 1sσ state
with ejection of π electrons. Such a picture is consistent with
the findings of the COLTRIMS experiments.

VI. CONCLUSIONS

The data obtained in this work give a new insight into the
problem of ionization in the system He2+

2 (He2+ + He). For
the existence of an effective ionization channel, two-electron
coupling followed by one-electron superpromotion at medium
internuclear distances leads to considerable enhancement of
cross sections in the keV ion energy range. This mechanism
should be taken into account in the analysis of energy balance
in helium plasmas.

In our previous work [35], it was shown that dynamical
electron correlations give considerable contribution to electron
detachment in negative ion–atom collisions. In the present
study, another system, the multicharged ion–atom system, is
found to undergo a strong influence of electron correlations.
In particular, it has been shown that almost all significant
ionization channels in keV-energy He2+-He collisions are con-
nected with electron correlation processes, both autoionization
and discrete two-electron transitions. Thus, development of
accurate theoretical programs for calculation of dynamical
two-electron transitions in atomic collisions becomes very
important. In the present case we have seen that a completely
ab initio theory based on the advanced adiabatic approximation
of Ref. [27] agrees well with our absolute measurements.
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R. E. Olson, and H. Schmidt-Böcking, J. Phys. B 28, 435 (1995).

[10] V. Mergel et al., Nucl. Instr. Methods Phys. Res. B 98, 593
(1995).

[11] R. Dörner et al., Nucl. Instr. Methods Phys. Res. B 99, 111
(1995).

[12] M. Abdallah, S. Kravis, C. L. Cocke, Y. Wang, V. D. Rodriguez,
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