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Calculation of supercritical Dirac resonance parameters for heavy-ion systems from a
coupled-differential-equation approach
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Previous work [E. Ackad and M. Horbatsch, Phys. Rev. A 78, 062711 (2008)] on supercritical Dirac resonance
parameters from extrapolated analytic continuation, obtained with a Fourier grid method, is generalized by
numerically solving the coupled Dirac radial equations to a high precision. The equations, which contain the
multipole decomposition of the two-center potential, are augmented by a complex absorbing potential and
truncated at various orders in the partial wave expansion to demonstrate convergence of the resonance parameters
in the limit of vanishing absorber. The convergence of the partial-wave spinor and of the multipole potential
expansions is demonstrated in the supercritical regime. The comparison of critical distances with literature values
shows that the work provides benchmark results for future two-center calculations without multipole expansion.
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I. INTRODUCTION

The Dirac spectrum of a relativistic electron in the modified
Coulomb potential of a finite-size atomic nucleus is character-
ized by positive- and negative-energy continuum states, with
discrete bound states occurring in the gap between mec

2 and
−mec

2. As the nuclear charge Z increases, the bound-state
energies decrease sharply, until a critical value of Zcr ≈ 170
is reached, beyond which the ground state ”dives” into the
negative continuum, i.e., E1s < −mec

2 [1–3].
This supercritical potential now supports resonance states,

whereby a vacant 1Sσ state can couple to the filled negative-
energy continuum. According to the Dirac sea interpretation,
a negative-continuum electron can then tunnel into the region
near the nucleus and become bound, while the resulting hole
can be interpreted as an emitted positron. Alternately, the
empty electronic “hole” can be seen as a quasibound positron
that escapes to infinity as the resonance decays. This leads to
the breakdown of the unstable QED vacuum and decay by pair
creation into a charged state, resulting in a bound electron and
emission of a free positron [1,2].

While the Dirac sea interpretation is superseded by quantum
field theory, expressions derived within QED for exclusive and
inclusive pair production processes [4] are fully consistent with
the present Dirac equation treatment. The present treatment
allows one to employ the powerful apparatus of quantum
mechanical resonance methods based on analytic continuation
and extrapolation.

In analogy to more familiar resonances in the positive con-
tinuum (e.g., Stark resonances), supercritical Dirac resonances
are described by their mean energy position Eres and lifetime τ

. In a scattering system, this corresponds to a peak in the total
cross section, which can be described by a Breit-Wigner shape
having a peak at the resonance energy and a width � that is
related to the lifetime of the state by the uncertainty principle:
�τ ∼ h̄. Since supercritical resonances have negative energy,
they correspond to positrons emitted with kinetic energy given
by |Eres + 511 keV|.
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While there are no naturally existing superheavy nuclei with
charge Z � 170, supercritical phenomena can be investigated
experimentally through heavy-ion collisions near the Coulomb
barrier, wherein the nuclei approach within a critical distance
and their combined fields are strong enough to support
resonance states and subsequent decay of the neutral vacuum.

Calculations [5–7] for collision systems like U-U predict
widths in the kilo–electron volt range, which correspond to
lifetimes of the order of 10−19 s. While this is relatively
long-lived compared to the collision time, there is a finite
probabilty that the resonance will decay while the nuclei are
within a supercritical distance. It is also possible that “sticky”
(inelastic) collisions extend the collision time before the decay
of a compound nucleus [8].

The process of spontaneous positron emission, accompa-
nied by electron filling of the 1Sσ vacancy, is distinct from
dynamical pair creation processes during the collisions. Other
positron production processes compete with the spontaneous
decay of the vacuum, e.g., the electromagnetic field of the
moving nuclear charges (negligible near the critical distance,
as the nuclei slow down) and pair-conversion of hard photons
emitted by decay of excited nuclear states.

An adiabatic treatment of the electronic motion is justified,
as the motion of the target ions is sufficiently slow for the
electrons to rapidly adjust to the changing nuclear potential,
especially near closest approach. The nuclear motion is
therefore treated using classical scattering trajectories, where
at any instant of time, the electrons feel the combined potential
due to the nuclei at their current positions R1,2(t). Such an
approach can take advantage of solution of two-center Dirac
stationary states, which are used as a basis when computing
the full, time-dependent nuclear collision.

The stationary eigenvalue problem has been solved using a
matrix representation of the Hermitian two-center Hamiltonian
[5,9]. The electronic states are expanded in terms of a sine basis
sampled on a discrete spatial mesh, and diagonalization of
the supercritical Dirac Hamiltonian yields a set of discretized
quasicontinuum states. The supercritical resonance is thus
represented as a superposition of these continuum states. The
mean energy and width of the resonance can then be obtained
by fitting a Breit-Wigner shape to the density of states or
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to the overlap of the continuum states with a reference 1Sσ

subcritical bound state [5].
A more accurate determination of the resonance parameters

can be obtained through the use of analytic continuation
methods, which transform the original Hamiltonian into a non-
Hermitian operator with complex eigenenergies and whose
eigenfunctions are bounded, square-integrable solutions. The
supercritical resonance is now represented by a single state
in the spectrum, allowing for a more accurate determination
of the position and width parameters from the eigenenergy:
ER = Eres + i�/2. The sign of the width is positive for
resonances in the negative-energy continuum, as we interpret
the supercritical electron resonance as corresponding to a
positive-energy antiparticle traveling backward in time. CPT
symmetry thus requires a positive imaginary part to represent
a decaying state as time propagates to negative infinity.

One particular method of analytic continuation is the
addition of a scalar complex absorbing potential (CAP) to
the Dirac Hamiltonian,

ĤCAP = Ĥ − iηβ̂�(r − rc)(r − rc)2, (1)

where β̂ is the standard Dirac matrix and η � 0 is a small
parameter that sets the strength of the CAP. The range
parameter rc, which appears in the Heaviside function, as well
as in the quadratic factor, determines the point at which the
CAP turns on. Its value is chosen so that the CAP is only active
outside the bound-state portion of the resonance wave function
and, thus, dampens the continuum part of the wavefunction at
large radial distances.

The solution of the Dirac equation with a CAP-augmented
Hamiltonian, for a particular choice of rc and using a range
of η values, results in an eigenenergy trajectory ER(η) in
the complex plane. As the value of the strength parameter
is decreased, the energy eigenvalues smoothly approach the
true position of the resonance, stabilizing at some small value
of η, until the path deviates unpredictably below a critical value
ηcrit.

For η < ηcrit the solution based on a finite matrix repre-
sentation fails, since it cannot resolve the oscillating tail of
the resonance wave function (the CAP is too weak). However,
for finite η the added CAP makes the Hamiltonian somewhat
unphysical. In the stabilization method one seeks minimal
dependence of the eigenvalue on η. In the extrapolated or
continuation method one seeks the η → 0 limit on the basis
of finite-η calculations. One constructs a rational function
approximation to a segment of the ER(η) trajectory where
η > ηcrit [10]. This complex-valued Pade approximant is then
extrapolated to a zero argument to arrive at the best estimate
of the resonance parameters: E∗

R = EPade (η = 0).
While the solution by matrix methods yields robust and

consistent values for the resonance parameters, it depends on
a sufficiently large N of the basis set and encounters difficulties
in accurately representing the nonperiodic (exponentially
decaying) resonance wave functions at large radial distances.
For calculations beyond the monopole approximation to the
two-center potential, the size of the Hamiltonian matrix
also depends on the number of coupled angular momentum
channels Nκ , resulting in a (2 · N · Nκ ) × (2 · N · Nκ ) matrix.

In the present work we develop a CAP-based solution based
on direct numerical integration of the radial Dirac equations
to find the complex energy eigenvalues. The aim of this work
is to explore the η dependence on the basis of differential
equation solvers which adjust grid points adaptively in order
to satisfy a preset tolerance criterion. The method allows us to
use small η values, since it does not suffer from the finite-η
discrete-variable representation problems in the asymptotic
regime. This method is shown to be practical, since there are
fewer limitations imposed on the number of partial waves that
can be coupled.

II. METHODS

The nuclear system (Z1,A1)-(Z2,A2) is modeled as a
pair of uniformly charged spheres of radius R(1)

n and R(2)
n ,

where R(1,2)
n = 1.2(A(1,2))1/3 fm. The nuclei are separated by

a distance R and displaced along the z axis from their center
of mass by r (1)

cm and r (2)
cm, respectively. The stationary Dirac

equation with this minimally coupled two-center Coulomb
potential is given in natural units (h̄ = c = me = 1) as

[α̂ · p̂ + β̂ + VT C (�r)]
(−→r ) = E
(−→r ). (2)

The two-center system is not separable into radial and
angular parts, but a good quantum number characterizing the
eigenfunctions is μ, the angular-momentum projection on the
z axis. If both nuclei are identical, the charge symmetry also
allows the wave functions to have good parity (even or odd).
The presence of azimuthal symmetry motivates an expansion
of the potential in terms of Legendre polynomials:

VT C(�r,R) =
∞∑
l=0

Vl(r,R)Pl(cos θ ). (3)

The wave function is expanded in a spherical-spinor basis


μ(−→r ) = 1

r

±∞∑
κ=±1

(
gκ (r)χμ

κ

ifκ (r)χμ
−κ

)
, (4)

where κ = ±(j + 1
2 ) labels the total angular momentum, and

the spherical spinors χμ
κ carry angular and spin dependence.

Substituting (3) and (4) into the Dirac equation and pro-
jecting onto

〈
χμ

κ

∣∣ , (κ = ±1, ± 2, . . . , ± ∞) yields the radial
equations [3]:

dgκ

dr
= −κ

r
gκ + (1 + E)fκ

−
±∞∑

κ=±1

{ ∞∑
l=0

Vl(r,R)
〈
χ

μ
−κ |Pl|χμ

−κ

〉}
fκ, (5)

dfκ

dr
= κ

r
fκ+(1−E)gκ+

±∞∑
κ=±1

{ ∞∑
l=0

Vl(r,R)
〈
χμ

κ |Pl|χμ

κ

〉}
gκ.

(6)

This infinite set of coupled differential equations is then
truncated by selection of a suitable cutoff in both the number
of channels in the basis and in the multipole order of the
two-center potential.
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FIG. 1. (Color online) Ratio of higher-order multipole strengths
to the dominant monopole potential in the U-U system, as a function
of radial distance in natural units, for two internuclear separations.
Black, R = 35 fm; red, R = 16 fm. Solid line, l = 2; long-dashed
line, l = 4. The corresponding radial density for each case (a bound
state for R = 35, a resonance for R = 16) is shown by the dotted
(blue) line.

A. Channel coupling and the multipole expansion

The matrix elements 〈χκ,μ|Pl|χκ,μ〉 that couple the various
angular-momentum channels are calculated using Clebsch-
Gordan coefficients and Gaunt’s formula [11]. With increasing
multipole order, channels are coupled whose orbital angular
momentum sectors are similarly separated, e.g., the monopole
only couples channels diagonally, the dipole potential involves
channels where 
l = ±1, the quadrupole when 
l = 0, ± 2,

the octopole for 
l = ±1, ± 3, and the hexadecapole when

l = 0, ± 2, ± 4. The dominant 1S1/2 channel thus couples
both directly (and with similar strength) to all other channels
and, also, indirectly via transitive couplings, which fall off
more quickly.

The channel couplings are mediated by the multipole
potentials Vl(r,R), and the l = 0 monopole contribution, with
its long-range tail and high strength, dominates at all distances.
However, the effects of the higher-order multipoles, especially
in the supercritical regime, should not be discounted, as Fig. 1
illustrates. Here, the ratios of the l = 2 and l = 4 multipoles
to the monopole potential in the U-U system are shown for
two nuclear separations: R = 16 fm, which is close to the
Coulomb barrier, and R = 35 fm, which is close to the critical
distance. The odd-order contributions are identically 0 due
to the charge symmetry of the system. The l = 2 and l = 4
multipoles are quite pronounced. While these components are
strong at short range only, the resonance wave function is
highly localized and samples these multipole contributions
efficiently, as is evident in the figure. Inclusion of these higher
orders in the truncated equations results in appreciable shifts
in the resonance position and, more significantly, in a marked
broadening of the resonance widths, especially at larger values
of R.

B. Bound-state energies

As the first step, we seek the bound-state energies in a
subcritical nuclear potential. The coupled equations for a
selected set of angular-momentum channels and multipole

terms are integrated twice: outward from a small radius near
the origin and inward from a large “asymptotic” radius ra . The
solutions are computed to an intermediate matching radius,
and the error is minimized using a Newton-Raphson iteration
process to determine the values of the energy and coefficients
for the initial conditions that correspond to a bound state.

For each channel, the initial conditions at the origin (to an
arbitrary multiplicative constant) are derived from a power-
series ansatz [12]:(

gκ

fκ

)
∼ r |κ|

∞∑
n=0

(
aκn

bκn

)
rn. (7)

Substitution of this form into the coupled radial equations
leads to recurrence relations for the coefficients {aκn,bκn}.
Only the leading-order terms are included.

The wave functions at the outer radius are obtained by
making the approximation that the higher order multipoles
vanish rapidly at large distances, and only the monopole
nuclear potential is important. This decouples each channel,
and with the further assumption that the potential remains
constant for r � ra , the individual radial equations are solved
analytically in this region. This solution provides boundary
value conditions at r = ra to start the inward integration.
The numerical integration was performed with a variety of
adaptive-step algorithms, including Runge-Kutta-Fehlberg-
4/5 and a Gear/BDF implementation, and all of them gave
values for the eigenenergies that differed by 10−12 to 10−14.

The 1Sσ bound-state energies are thus calculated for a
range of subcritical internuclear separations R, for which the
eigenenergy approaches the negative continuum from above.
A polynomial fit E(R) is found, and extrapolation then yields
the critical distance Dc as the solution to E(Dc) = −1.

C. Supercritical resonances

The supercritical regime is now explored with the addition
of the CAP. Since it enters into the Dirac equation as a scalar
quantity, in the radial equations it appears in the second term
on the right-hand sides:

dgκ

dr
= −κ

r
gκ + (1 + E + VCAP)fκ + · · · , (8)

dfκ

dr
= κ

r
fκ + (1 − E + VCAP)gκ + · · · . (9)

An integration and matching procedure is followed as
before, except that the eigenenergy and initial condition
coefficients are now complex numbers. For any given su-
percritical internuclear separation, the effect of varying the
CAP parameters is then determined. For given choices of CAP
radius parameter rc, complex-energy trajectories are generated
by gradually reducing the CAP strength η.

The CAP trajectories are of two basic types, depending
on the size of the internuclear separation. The first type,
which is observed for small values of R, exhibits a smooth
and stable curve down to a critical value of η, below which
the path deviates unpredictably. The trajectory for larger
rc tends to becomes unstable at a larger value of η, as a
stronger CAP is needed to attenuate the oscillatory tail of
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the wave function over the shrinking region from the CAP
effective radius rc to the asymptotic radius ra . The position
of the stabilization point ηstab is obtained in practice from
min{|η dE(η)

dη
|} and then examined to see how it behaves as a

function of rc.
Selecting those CAP trajectories that stabilize closest to

a common average point, a Padé approximant is used to
extrapolate them to η = 0 . Figure 2 shows the extrapolated
values for some candidate CAP trajectories and the variance
of the resonance parameters as a function of the starting point
i0 of a fourth-order Padé fit, expressed as the distance from
the stabilization point, i.e., i0
η. After selecting the starting

point which minimizes the variation of the extrapolated
values among trajectories, an average resonance eigenvalue
is obtained, minimizing dependence on the choice of CAP
radius. Higher order fits (Np = 6, Np = 8) were also tried and
give comparable accuracies.

Figure 2(c) shows the same CAP trajectories generated
using a larger outer radius (ra = 35). Evidently, increasing
ra results in a more accurate representation of the asymptotic
wave function, and thus the larger region over which the CAP
is active yields trajectories that are stable at smaller values of
η. This allows for a more accurate extrapolation to the true
resonance parameters.

(a) (b)

(c)

FIG. 2. (Color online) Extrapolated CAP trajectories for the U-Cf system at a separation of R = 20 fm. The CAP strength is reduced
from η = 0.007 to η = 0.0001 (in steps of 
η = 0.0001). (a) Trajectories for rc = 4.0 5.0, and 7.0 extrapolated using an Np = 4, i0 = 40
Padé fit. Stabilization points are shown as (black) crosses. The Np = 4 points used for the fit are shown by the filled symbols, and the average
extrapolated value is shown as the green box. Eigenenergies were obtained with ra = 25. (b) Absolute variance of extrapolated energy [solid
(black) line] and width [dashed (red) line] in natural units, as the initial point i0 for the Padé fit is varied. Here i0 measures the distance from
the stabilization point, i0
η. (c) The same CAP trajectories as in (a) computed using a larger outer radius, ra = 35.
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TABLE I. Accuracy of resonance parameters with increasing
outer integration radius ra (in natural units) for the U-Cf system
at R = 20 fm.

ra E (mec
2) � (keV)

20 −1.75793 4.08
25 −1.757929 4.0848
30 −1.7579290 4.08478
35 −1.75792904 4.08478
40 −1.75792904 4.08478

Table I shows the resonance position and width of the
U-Cf system at a separation of R = 20 fm, calculated with
increasing values of ra . Calculations with larger ra are more
computationally intensive, and using values of ra greater than
about 40 is numerically unstable. We find that the accuracy
of the computed values converges to the digits shown when
ra = 35, hence this nominal value was used for all further
calculations. . .

For larger internuclear separations (around R = 35 fm and
above in the U-Cf system, R = 25 fm for U-U), the CAP
trajectories have a different character. They remain stable
and approach the resonance eigenvalue smoothly as η is
decreased. These curves can be extrapolated to a very high
accuracy, as they can be generated using very small η values
(of the order 10−7 to 10−8, below which convergence of the
eigenvalue solution becomes a limiting factor), approaching
the true resonance point very closely. As R approaches the
critical distance, the resonance width decreases rapidly, and
the amplitude of the wave function’s oscillatory tail diminishes
in comparison to the bound part, requiring a much weaker
absorber to render the state square-integrable.

A comparison of Figs. 2(a) and 2(c) demonstrates the
strength of the present coupled-differential equations ap-
proach. Limiting the wave functions in the asymptotic regime
to the constant-potential solution (i.e., choosing a smaller
ra value) yields trajectories similar to those obtained in the
mapped-Fourier grid method [6]. Extending the numerical
integration of the equations well into the asymptotic regime
allows us to rely much less on extrapolation to remove artifacts
of the CAP.

III. RESULTS

A. Critical distances

We now examine the critical distance for various heavy-ion
systems. This is the internuclear separation at which the energy
of the ground state dives into the negative-energy continuum.
The even-parity ground-state energy E1Sσg

was computed for
a range of separations close to the critical distance, and a
polynomial fit was used to extrapolate the distance down to the
boundary of the negative continuum (E = −mc2). Table II lists
the computed values for various homonuclear one-electron
quasimolecules A

(2Z−1)+
2 , as increasing angular-momentum

channel couplings (κ) are taken into account, with the inclusion
of higher multipole orders (l) in the two-center potential.

The nuclear symmetry causes all the odd-order multipoles
to vanish identically, thus coupling channels with even angular-
momentum quantum number l separately from those with odd
l. These two distinct sets of coupled equations correspond to
the even- and odd-parity eigenstates, respectively.

Table II lists some critical distances (Dc) obtained by other
authors [13–15]. Comparing our values of Dc (using the l =
4 multipole and up to the κ = 4 channel) with these other
results, we see a general agreement in magnitude, but also
some deviations. There are a number of reasons for these
discrepancies.

One difference is due to the basic method for the solution
of the two-center Dirac problem. While we integrate the
radial equations numerically, Refs. [13] and [15] use various
basis-set expansions to approximate the bound states of the
system, while in Ref. [14] the problem is solved variationally.
Expansion of the wave function and potential also means
that an increasingly larger set of channels/multipoles is
required to converge to the true value. In contrast, the
use of elliptical/prolate-spheroidal coordinates in [13,16]
eliminates the multipole truncation effects inherent in our
approach, as the two-center potential is represented in its
entirety.

Another important factor is the model of the nuclear charge.
Our work represented the nuclei as uniformly charged spheres
of specified radius Rn, while other calculations [15] account
for the finite nuclear size using the Fermi model of the
nuclear charge distribution, characterized by a root-mean-
square charge radius 〈R2

n〉1/2 and a gradual falloff with radial
distance.

TABLE II. Critical distances Dc (fm) for homonuclear one-electron quasimolecules A
(2Z−1)+
2 . ∗Values calculated using κ = −1, + 2, − 3.

†Values obtained with κ = −1, + 2, − 3, + 4. Column 9 provides effective radii according to Ref. [15], while column 10 lists our corresponding
most-converged results for the critical distances.

Z Rn( fm) lmax = 0 lmax = 2 lmax = 4 Other work R̃n( fm) D̃c( fm)

88 7.309 19.0799 19.7616∗ 19.7622† 19.7593∗ 19.7583† 19.91,a19.4b 7.191 19.8758†

90 7.374 25.6651 26.9015∗ 26.9032† 26.8937∗ 26.8903† 27.05,a26.5b 7.386 26.8808†

92 7.437 32.6217 34.4812∗ 34.4847† 34.4668∗ 34.4605† 34.72,a34.3,b34.7c 7.561 34.3805†

94 7.499 40.0043 42.5417∗ 42.5475† 42.5210∗ 42.5125† 43.16,a42.6b 7.480 42.5224†

96 7.529 47.8263 51.0977∗ 51.1063† 51.0716∗ 51.0627† 52.09,a51.6b 7.508 51.0722†

98 7.570 56.0564 60.1118∗ 60.1238† 60.0818∗ 60.0748† 61.63,a61.0,b61.1c 7.545 60.0846†

aFrom Ref. [15]
bFrom Ref. [14].
cFrom Ref. [13]
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TABLE III. Critical distance Dc (fm) of the (U-Cf)189+ system. ∗Configurations that do not introduce new coupling terms in the equations.
†Values computed using the effective radii R̃n for the nuclear species.

Multipole cutoff

Channel lmax = 0 lmax = 1 lmax = 2 lmax = 3 lmax = 4

κ = −1 43.894 — — — — —
κ = ±1 — 43.894 43.894∗ 43.894∗ 43.894∗ 43.878†

κ = ±1, − 2 — 43.909 43.910 43.910∗ 43.910∗ 43.895†

κ = ±1, ± 2 — 43.909 43.483 43.483 43.483∗ 43.468†

κ = ±1, ± 2, − 3 — 43.909 46.815 46.814 46.791 46.770†

κ = ±1, ± 2, ± 3 — 43.909 46.815 46.815 46.792 46.771†

κ = ±1, ± 2, ± 3, − 4 — 43.909 46.816 46.819 46.796 46.775†

κ = ±1, ± 2, ± 3, ± 4 — 43.909 46.823 46.826 46.787 46.767

To investigate the effect of the nuclear model, the critical
distance calculations were repeated using a prescription in
[17], where an arbitrary nuclear model can be closely approxi-
mated by a uniformly charged sphere with an appropriately
chosen radius. To first order, this effective radius is given

by R̃n =
√

5
3 〈R2

n〉1/2, where 〈R2
n〉1/2 is the root-mean-square

radius of the charge distribution. Using the same rms values
listed in [15], the last two columns in Table II list the
corresponding effective radius and revised critical distance
for each nuclear system. The calculations used the maximum
number of channels and multipole orders available. The critical
distance Dc in most cases changes by only 0.01 fm. One
exception is Z = 88, where the original radius corresponds
to Ra226, while the new effective one is for the Ra214 isotope.
We note that the U238 nucleus is assigned an unusually large
rms radius in [15], following [18].

For the asymmetric (U-Cf)189+ system, parity is no longer
a good quantum number. All angular momentum channels
are coupled via higher-order multipole components and, thus,
contribute to the 1Sσ ground state. Table III shows the critical
distance Dc as more channels are included, and the multipole
expansion is truncated at increasing order.

The table shows that for a fixed multipole cutoff lmax

the κ expansion converges rapidly. The change in Dc is not
monotonic. An increase in lmax from 3 to 4 leads, however, to a
roughly 5% increase when the κ = ±4 channels are included.
The calculation truncated at lmax = 4 and |κmax| = 4 results in

Dc ≈ 46.79 fm, which is to be compared to Dc = 47.7 fm
in [13], derived using a more converged basis expansion
calculation. Since our emphasis is on resonance parameter
calculations, i.e., the supercritical regime, we did not pursue
calculations with lmax > 4. Table II clearly shows that the
multipole truncation becomes problematic for the highest case,
Z = 98. The critical distances of Dc ≈ 60 fm from our work
fall short of the Dc � 61 fm two-center results.

The last column in Table III lists the critical distances
calculated using the effective radii R̃U

n = 7.561 fm and R̃Cf
n =

7.545 fm, where we see that the original results are reduced
by about 0.02 fm.

B. Supercritical resonance parameters

For nuclear separations smaller than the critical distance,
the 1Sσ ground state enters the negative energy continuum and
becomes a resonance due to the coupling to the continuum. The
positions Eres (in units of mc2) and decay widths � (in units of
keV) of this state of the U-U system are listed in Table IV,
for a range of internuclear distances. The quoted values
were obtained by Padé extrapolation of CAP trajectories:
Er = E(η = 0) as described above. The shift of the resonance
position and broadening of the width are remarkable with the
inclusion of the D-state (κ = +2, − 3) channels, with smaller
corrections to both the energy and the resonance width as a
G-state (κ = +4) channel is coupled in with the hexadecapole
potential.

TABLE IV. Position Eres and width � of the 1Sσ supercritical resonance in the U 183+
2 system at various internuclear separations. The cutoff

order of the multipole expansion, as well as the set of channels included, is given at the top.

lmax = 0 lmax = 2 lmax = 4
(κ = −1) (κ = −1, + 2, − 3) (κ = −1, + 2, − 3, + 4)

R (fm) Eres (mec
2) � (keV) Eres (mec

2) � (keV) Eres (mec
2) � (keV) Ẽres (mec

2) �̃ (keV)

16 −1.58929 1.9849 −1.61287 2.2319 −1.61281 2.3131 −1.60494 2.1471
18 −1.48734 1.0755 −1.51525 1.2964 −1.51517 1.2957 −1.50877 1.2431
20 −1.39629 0.5050 −1.42778 0.6752 −1.42765 0.6744 −1.42240 0.6440
22 −1.31494 0.1927 −1.34926 0.3023 −1.34907 0.3016 −1.34471 0.2859
24 −1.24204 0.05332 −1.27853 0.1085 −1.27829 0.1080 −1.27462 0.1013
26 −1.17645 0.008486 −1.21454 0.02740 −1.21425 0.02719 −1.21115 0.02500
28 −1.11718 4.499 × 10−4 −1.15641 3.7725 × 10−3 −1.15607 3.7164 × 10−3 −1.15342 3.3231 × 10−3

30 −1.06340 1.156 × 10−6 −1.10339 1.527 × 10−4 −1.10301 1.4802 × 10−4 −1.10073 1.2325 × 10−4
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TABLE V. Position Eres and width � of the 1Sσ supercritical resonance in the (U-Cf)189+ system at various internuclear separations. The
cutoff order of the multipole expansion, as well as the set of channels included, is given at the top.

lmax = 0 lmax = 2 lmax = 4
(κ = −1) (κ = ±1, − 2) (κ = ±1, ± 2, ± 3, ± 4)

R (fm) Eres (mec
2) � (keV) Eres (mec

2) � (keV) Eres (mec
2) � (keV) Ẽres (mec

2) �̃ (keV)

16 −2.00635 8.1482 −2.00646 8.1501 −2.03730 8.7079 −2.03356 8.6391
20 −1.75793 4.0848 −1.75811 4.0874 −1.79918 4.687 −1.79674 4.6506
24 −1.56121 1.6967 −1.56145 1.6989 −1.60868 2.185 −1.60702 2.1669
28 −1.40354 0.5222 −1.40381 0.5235 −1.45422 0.819 −1.45304 0.8111
32 −1.27469 0.0931 −1.27498 0.0936 −1.32670 0.2130 −1.32583 0.2105
36 −1.16731 0.0051 −1.16761 0.0051 −1.21956 0.0277 −1.21890 0.0272
40 −1.07631 0.597 × 10−5 −1.07661 0.623 · 10−5 −1.12813 70.0 × 10−5 −1.12762 69 × 10−5

The last two columns in Table IV list the resonance
parameters recalculated using the effective U238 radius. The
increased nuclear radius shifts the resonance positions to
higher energies by only 0.2%–0.5% but narrows the widths
more substantially, by 4%–16%.

The calculated resonance parameters for the U-Cf system
are listed in Table V. The shift in the resonance position, as
well as the increase in the resonance width, is again evident
with the inclusion of more channels, especially at larger
internuclear separations. Comparing the S-state (κ = −1,

monopole approximation) results to those for the coupled S-P
channels (κ = ±1, − 2), one notices a small change. This
is due to the weak dipole potential of the nearly charge-
symmetric U-Cf system. There is a significant increase in �

when the D-state (κ = +2, − 3) channels are included, as well
as smaller corrections as the F- and G-state (κ = +3, ± 4)
channels are coupled in with the higher-order multipoles. The
combination of these effects is shown in the last two columns in
Table V. The values for the first two cases (S- and S-P-channel
couplings) are in agreement, to all digits shown, with the results
in [6], which were obtained by expansion in a discrete Fourier
sine-basis set.

As above, the resonance calclulations were repeated using
the effective U238 and Cf251 radii, and the results (Ẽres,�̃) are
shown in the last two columns in Table V. The corrections
are much smaller than before: shifts of less than 0.2% in the
resonance positions and narrowing of the widths by 0.8%–
1.8%.

To verify that bound-state energies transition smoothly into
the supercritical regime, the calculated resonance energies
for the U-U and U-Cf systems were used to supplement the
eigenenergies at subcritical internuclear separations. Points
from both sides of the critical barrier were used for a
polynomial fit, and the resulting interpolated critical distances
agree with the values in Tables II and III to all digits shown.
This was done for the most-converged calculations, i.e., those
that include the largest number of channels and multipoles.

IV. CONCLUSIONS

We have extended the matrix representation-based analytic
continuation method of Ref. [6] to make use of standard
differential equation solvers in the finite domain 0 < r < ra .
By choosing ra > 30 natural units, we demonstrated an im-
provement in the quality of complex eigenenergy trajectories,
which led to highly accurate stabilization values, as well as
extrapolated resonance parameters.

We have shown that the supercritical regime in heavy-ion
systems can be treated accurately by a multipole expansion
of the two-center potential truncated at lmax = 4, while the
spinor wave functions can be truncated safely at κmin = −3
and κmax = 4. The truncations become less reliable at the
critical distance, as shown by comparison with critical distance
parameters for the U-U and U-Cf systems. The multipole
expansion also has some convergence issues at the touching
distance, where the 1Sσ wave function is concentrated in the
small-r region, such that multipoles higher than l = 4 can
make a noticeable contribution. Thus, it will be of some
interest to compare the present results with supercritical
resonance calculations performed in two-center coordinates.
The resonance parameters do show some dependence on the
choice of nuclear charge radius; the change in the position is at
or below the 1% level, while for the width it is of the order of
a few percent, except for the U-U system, due to its relatively
large effective nuclear radius.
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