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Autoionization resonance states of two-electron atomic systems with finite spherical confinement
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We investigate the lowest-lying S-wave resonant states of two-electron atoms confined by a spherical quantum
cavity under the framework of the stabilization method. Hylleraas-type wave functions (basis length N = 444)
taking the correlation effects between all the charged particles into account are used in the present paper. The
finite oscillator potential is used to represent the confinement potential. We present the resonant parameters
(energies and widths) of the quantum-confined two-electron atoms with different depths and various ranges of
the potentials.
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I. INTRODUCTION

Quantum confinement of atomic and molecular systems [1]
has drawn considerable attention due to its large applicability
to several branches of physics and chemistry. For example,
atoms trapped in nanocavities, such as in zeolite cages, endo-
hedral capture of atoms in fullerenes, in nanobubbles formed
around foreign objects in the environment of liquid helium,
atoms under high pressure in the walls of nuclear reactors,
molecular containers, storage of fuel cells, etc. [2–5], are all
relevant for this field. Recently, considerable attention has
also been paid to the study of quantum dots (artificial atoms)
[6–11] and quantum-confined screened Coulomb impurities
and natural atoms [12–23] as carriers, and impurities are
often confined in low-dimensional semiconductor quantum
well structures. Accurate knowledge of the electronic structure
of compressed hydrogen and helium atoms is relevant as these
two elements exist as the significant components of planets
and stars. An atom confined within a cavity [12–22] behaves
differently from a free atom in ways that provide insight into
these various interesting problems. The influence of a spatial
confinement on the physical properties of the trapped objects
becomes significant if their effective sizes are of the same
magnitude as the size of the cavity. We are concerned with the
study of resonances of helium atoms confined by a spherical
cavity.

The confined hydrogen atom has been widely studied with
several techniques. In this case, the electron of the H atom
experiences a constant potential in addition to the nuclear
Coulomb potential. Various physical properties of the confined
H atom, such as the modification of its atomic orbital, the
binding energy, the energy levels and the level stability, and the
density of impurity states have been reported in the literature
[14]. Few attempts have also been made toward the quasibound
or resonant states of a one-electron impurity atom in an isolated
quantum dot and also in the presence of electric and magnetic
fields [12,13]. It has been found that the resonance parameters
are very sensitive to the cavity size as well as to the potential
depth. The effect of low-dimensional quantum confinement
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on the resonance parameters is known only for a one-electron
atom under external environment (for example, an external
electric field [12,13]).

No calculation has been performed for the effect of
quantum confinement on the autoionizing resonant states of
two-electron atoms. Few attempts have been made to study
the response of the ground and excited states of many-electron
atoms confined by penetrable as well as impenetrable potential
wells [15–22]. Very recently, Genkin and Lindroth [23]
investigated screened Coulomb impurities on autoionizing
two-electron resonances in spherical quantum dots. As helium
is the simplest many-electron system, we are interested in
studying the variations in the resonance parameters of the
confined helium atom as a function of the confining potential
in the present paper. For the case of a free helium atom, there
are a series of resonance states associated with each He+

threshold. In order to understand the resonance parameters
for the confined helium atom, we focus our attention, first,
upon the lowest doubly excited resonance state (the 2s2 1Se

state) of the He atom. In our present paper, we examine the
quantum size effects on the doubly excited 2s2 1Se state. As
we have not found any earlier works for the size effect on
doubly-excited resonance states of spherically confined helium
atom, no comparison can be made here.

Here, we denote the lowest doubly excited resonance state
as the 2s2 1Se state. It is true that the notation for this doubly
excited state is a simplified convention, and in fact, it is a
combination of 2s2, 2p2, and other components, such as dd, ff,
gg, and (nl,n′l′), etc., coupled to the final 1Se state, with nl and
n′l′, respectively, being the principal and angular momentum
quantum numbers for the two electrons. In the present paper,
we use elaborate Hylleraas wave functions in which the odd
and even powers of the interparticle coordinates r1, r2, and
r12, up to 15 are included. In the terminology of configuration
interaction, the nl and n′l′, up to at least the 15th orbital and
below, and even some higher orbitals, are implicitly included.
As for the dominant configuration, in principle, one can project
out various components from the wave functions and can
examine the major contributions. However, no such projection
was carried out in the present paper as in the free-atom case
(without the confinement); the dominate configurations of the
lowest doubly excited 1Se state have been well studied (see
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the references shown in Ref. [24]). Here, for the confinement
cases, we just assume the dominate configuration of the wave
functions for the lowest doubly excited 1Se state is still
2s2, with the understanding that the contributions from other
one-electron higher angular momentum components are also
included.

We perform our calculations under the framework of the
stabilization method proposed by Mandelshtam et al. [25] as
it is an effective and simple method for extracting resonance
energies and widths. The computational procedure needs only
the diagonalization of real matrix elements with different box
sizes and is one of the most powerful tools for calculating
resonance parameters. If a resonance exists in a given system
and the employed wave functions are capable of representing
the physics behind such a resonance, a stabilized or slowly
varying eigenvalue would appear in the stabilization plot. This
method was successfully employed by Kar and Ho [26] for
calculations of resonant parameters below the N = 2 of the
helium atom threshold in Debye plasma where the screened
Coulomb potential is used to represent plasma effects. In the
present paper, there is an extra constant potential in addition to
the nuclear Coulomb potential due to the spherical confinement
of the helium atom. In order to obtain accurate numerical
results, here, we include electron-electron correlation effects
using correlated Hylleraas-type wave functions. To achieve
the converged results, we have used three different basis sets
(N = 308, 372, and 444) of Hylleraas functions to calculate
resonance parameters (energies and widths) and to examine
convergence under the influence of quantum confinement. All
of the present results were found to be well converged with the
basis size N = 444. There is very good agreement between the
present and the existing values of lowest autoionization states
(2s2 1Se) of the free helium atom [24,26–29].

II. THEORY AND CALCULATIONS

We have constructed the wave function for the 1Se state of
a two-electron atomic system via the Hylleraas type,

�klm =
∑

klm

Cklmexp [ − α (r1 + r2)] rk
12

(
r1

1 rm
2 + rm

1 r1
2

)
,

l � m, (1)

with +1 + m � ω and where ω,k,l, and m are positive integers
or zero. This wave function helps to incorporate the correlation
effect between all the charged particles. To obtain the threshold
energy (EHe+(2s)), we have the single-electron wave function,

�1 =
∑

1

C1[exp − (αr)]r1. (2)

We have performed the calculations with basis sizes up to
ω = 15 (N = 444) for the case of a helium atom confined by
a spherical cavity. The general expression for the Hamiltonian
of the two-electron atom inside a cavity is given by

H = −1

2
∇2

1
1

1
∇2

2 − z

r1
− z

r2
+ 1

r12
+ V (r1) + V (r2), (3)

where r1 and r2 are the position coordinates of two electrons
and r12 denotes the relative distance between two electrons.

FIG. 1. Shape of the FO potential with B = 0.1a−1
0 (solid line)

and B = 0.3a−1
0 (dashed line) for A = 0.5 a.u.

The Hamiltonian of the confined one-electron He+ ion is given
by

H = −1

2
∇2 − z

r
+ V (r) . (4)

The model of a quantum well that we consider here is
of spherical symmetry. We have used the finite oscillator
(FO) potential V (r) = −A(1 + B√

A
r)e−(B/

√
A)r to represent

the quantum-confinement potential where A and B are tuned
to set the depth and the width of the spherical cavity [30].
Figure 1 shows the shape of the FO potential for a particular
depth (A = 0.5 a.u.) with two values of the inverse of the
width (B = 0.1 and 0.3a−1

0 ).
To construct the stabilization plot, we choose a set of

nonlinear parameters α [from Eq. (1)] in the vicinity of 2/n for
the nth threshold of the He+ ion associated with a particular
principal quantum number n. The inner part of a resonance
wave function has large amplitude, and it exhibits very stable
behavior with the change in nonlinear parameters in wave
functions, whereas, the wave functions for scattering states
change more drastically. As a result, a stabilized plateau
is formed near resonance energy. After constructing the
stabilization plateau for the energy eigenvalues, the resonance
energy and the width can be extracted from the density of
resonance states by using the formula from the stabilization
graph [31],

ρQ(E) = 1

αmax − αmin

∑

j

∣∣∣∣
dEj (α)

da

∣∣∣∣
−1

Ej (α)=E

. (5)

The contribution to the sum only occurs for the Ej (α) values
for which α lies between the intervals αmin and αmax and the
sum over the stabilized plateaus inside the interval. For an
isolated resonance, ρQ(E) can be shown as [32]

ρQ (E) ∼= π−1 �/2

(E − Er )2 + �/4
. (6)

Resonance energy Er and width � can be obtained by fitting
ρQ(E) to Eq. (6).
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α

FIG. 2. Energy eigenvalues vs α parameters for the 2s2 1Se state
of a He atom in a quantum cavity (potential depth A = 0.2 a.u.; the
inverse of cavity radius B = 0.3a−1

0 ).

III. RESULTS AND DISCUSSIONS

In Fig. 2, we plot the S-wave energy eigenvalues vs α for
potential depth A = 0.2 a.u. and inverse of the width B =
0.3a−1

0 . The scaling parameter α in the wave function [Eq. (1)]
acts as the reciprocal range of a soft wall [31]. The 10th– 23rd
eigenvalues in the energy range of −0.4 to −1.6 a.u. are shown
here. Stationary behavior is found around E = −0.948 a.u.,

and this stabilized eigenvalue represents the lowest doubly
excited 2s2 1Se resonance state. From the stabilization plot,
we consider the 11th eigenvalue in the range of α from 1.075
to 1.25 and calculate the inverse of its slope to determine the
density of states,

ρn = αn+1 − αn−1

En+1 − En−1
=

∣∣∣∣
dE

dα

∣∣∣∣
−1

E(α)=E′
. (7)

The difference between Eqs. (5) and (7) is that, in Eq. (5),
there is an extra multiplication constant (αmax − αmin)−1. This
term will not be involved in the determination of resonance
parameters when we fit ρn to the Lorentz function,

ρn (E) = a (�/2)

(E − Er )2 + �2/4
+ b. (8)

Also, here in Eq. (5), we do not take the sum of the plateaus
and then average over them. Instead, we use Eq. (8) to fit the
density of the resonance state with one curve at a time. The
one that gives the best fit is determined to be the best desired
result for that particular resonance [26,31]. Figure 3 represents
the Lorentz fitting to our calculated density of states. The open
circles stand for the calculated values of ρn using Eq. (7), and
the solid line is the fitted curve using the Lorentz function of
Eq. (8). We obtain the resonance energy Er = −0.94857 a.u.

and width � = 0.00659 a.u. from this fitting. In this case, wave
functions with basis set N = 372 are used.

In Table I, we illustrate the investigation for the 2s2 1Se

resonant state with a particular potential depth A = 0.2 a.u.

and B = 0.3,1.5a−1
0 and A = 0.5 a.u. and B = 0.4,3a−1

0 as
the sample studies. We have performed the calculations for
three different values of ω = 13 (N = 308), 14 (N = 372),

FIG. 3. Calculated density (open circle) and fitted Lorentzian
(solid line) for the 2s2 1Se state of a He atom in a spherical quantum
cavity of depth A = 0.2 a.u. and the inverse of radius B = 0.3a−1

0 .

and 15 (N = 444) in the basis expansion to achieve converged
results. Table I shows that all the resonant parameters have
almost reached the converged digits with expansion length
N = 372 (ω = 14) terms. The converged results of the resonant
position and width for the 2s2 1Se state are −0.9485 a.u. and
0.00659 a.u., respectively, for A = 0.2 a.u. and B = 0.3a−1

0

and for B = 1.5a−1
0 , with the same A value, are −0.7884

and 0.00430 a.u., respectively. Similarly, for A = 0.5 a.u.,

we have the converged resonance parameters −1.3115 a.u.

(resonance position) and 0.00955 a.u. (resonance width)
with B = 0.4a−1

0 , whereas, B = 3a−1
0 presents converged

resonance energy −0.7968 a.u. and width 0.0039 a.u. The
remaining results reported in this paper are also converged
with the basis size N = 372 (not shown).

Next, we calculate the resonance energy and width of the
free helium atom (2s2 1Se state) by using the above-mentioned

TABLE I. The He (2s2 1Se) resonance of confined He.

A B ω N Resonance Resonance
in in energy (Er ) in width (�) in
a.u. a−1

0 a.u. a.u.

0.2 0.3 13 308 −0.948 61 0.006 59
14 372 −0.948 57 0.006 59
15 444 −0.948 57 0.006 59

1.5 13 308 −0.788 48 0.004 30
14 372 −0.788 46 0.004 30
15 444 −0.788 45 0.004 30

0.5 0.4 13 308 −1.311 64 0.009 57
14 372 −1.311 57 0.009 55
15 444 −1.311 54 0.009 55

3 13 308 −0.796 85 0.003 99
14 372 −0.796 84 0.003 97
15 444 −0.796 84 0.003 96
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TABLE II. Comparison of the present 2s2 1Se resonance energies
Er and resonance widths � of a He atom with earlier predictions
[26–29].

Resonance energy Resonance width
Method Er (a.u.) � (a.u.)

Present paper −0.77781 0.00454
CR [24] −0.77787 0.00454
[27] −0.777867 0.004541
[28] −0.777867636 0.004541306

ECCESE [29] −0.77786815 0.00454230
SM [26] −0.77783 0.004549

computational procedure. In Table II, we compare our results
with the existing values obtained by using the complex rotation
method [24,27,28], the method with explicitly correlated
complex eigenvalue Schrödinger equations (ECCESEs), [29]
as well as the stabilization method (SM) [26]. The present
predicted resonance energy Er = −0.77781 a.u., resonance
width � = 0.00454 a.u., and those of earlier calculations
[26–29] are identical up to the fourth and fifth decimal places,
respectively.

In the present paper, we are interested with the autoionizing
resonant states of the confined He atom for different potential
depths with various cavity sizes. We list our predictions in
Table III for resonance energies, widths, and corresponding
threshold energies for the potential depth of quantum cavity
A = 0.2 and 0.5 a.u. and radius (1/B) starting from 0.05 to
200a0. Very large values of B correspond to very small widths

TABLE III. The 2s2 1Se resonance energies Er and resonance
widths � of a He atom and threshold energies of He+(2s) in a quantum
cavity for various potential depths and widths.

Potential Cavity size Resonance Resonance Threshold
Depth B−1(a−1

0 ) Energy Width Energy
A (a.u.) Er (a.u.) � (a.u.) He+(2s) (a.u.)

0.2 0.05 −0.7778 0.004 54 −0.5000
0.1 −0.7781 0.004 54 −0.5003
0.2 −0.7795 0.00451 −0.5013
0.5 −0.7849 0.004 31 −0.5050
1.0 −0.7996 0.004 55 −0.5131
2.5 −0.8972 0.006 27 −0.5648
10 −1.1115 0.005 67 −0.6704
20 −1.1552 0.005 00 −0.6902

100 −1.1766 0.004 58 −0.6995
200 −1.1776 0.004 55 −0.6999

0.5 0.05 −0.7783 0.004 53 −0.5004
0.1 −0.7800 0.004 49 -0.5021
0.2 −0.7872 0.004 25 −0.5071
0.5 −0.8137 0.004 15 −0.5226
1.0 −0.9289 0.006 79 −0.5825
2.5 −1.3116 0.009 55 −0.7768
10 −1.6978 0.006 05 −0.9646
20 −1.7526 0.005 08 −0.9892

100 −1.7766 0.004 57 −0.9994
200 −1.7777 0.004 54 −0.9999

E

E 

(units of a0)

E 

E 

E 

FIG. 4. The 2s2 1Se resonance energies Er of a He atom and the
threshold energy of He+(2s) in a quantum cavity with potential depth
A = 0.2 a.u. (dashed line) and 0.5 a.u. (solid line) vs 1/B values.

(1/B) of the confined potential, and it is found that, in this situa-
tion, the helium atom nearly acts as an atom without a confine-
ment. When the potential size increases, the resonance energy
as well as the threshold energy monotonically decrease due to
enhancement in the strength of the confining potential. Beyond
1/B = 100a0, the resonance energy is shifted to −1.177 a.u.

for the potential depth A = 0.2 a.u. and to −1.777 a.u. for A
= 0.5 a.u., whereas, the threshold energies become −0.6999
and −0.9999 a.u. for A = 0.2 and 0.5 a.u., respectively. This
establishes the fact that, for the very large values of 1/B, the
resonance energy of the two-electron atom is shifted down by a
value of about 2A, and the threshold energy for the one-electron
subsystem is reduced by an amount almost A.

We also tabulate the resonance width for different depths
as well as the ranges of the confining potential in the same
table. When the cavity radius is increased, the resonance width
� is first decreased to reach a minimum and, subsequently,
increases to a maximum value as the cavity radius is increased
further. Then, the width starts to decrease when the range of
the potential is increased further, and eventually, it approaches
the free-atom value when 1/B reaches about 100 a0, as shown
in Table III.

Figure 4 separately depicts the resonance energy of the 2s2

1Se state associated with its threshold He+(2s) as a function of
different cavity sizes for two potential depths. When the cavity
radius, i.e., 1/B is very small, and hence, the effect on the
helium atom is not too large and the curves for the resonance
energies start with the same energy −0.778 a.u. as expected,
it is very close to the resonance energy for the free-atom case.
Similarly, for the case of the He+(2s) threshold, when the 1/B
value is very small, the curves for two different potential depths
show the same energy −0.5 a.u. (n = 2 threshold energy of free
He+ ion). When the width of the spherical cavity is relatively
broad, with an increase in 1/B, the resonance energy as well
as the n = 2 threshold energy of the confined helium are
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Γ

(units of a0)

FIG. 5. The 2s2 1Se resonance width � of a He atom in a quantum
cavity with potential depth A = 0.2 a.u. (dashed line) and 0.5 a.u.
(solid line) vs 1/B values.

decreased and gradually approach a steady value of −1.177
and −0.6995 a.u., respectively, at around 1/B = 100a0 for
the potential depth A = 0.2 a.u. This result of the resonant
position of the 2s2 1Se state is decreased by an amount almost
equal to twice the potential depth (2A) to −0.778 a.u. that has
already been mentioned. Similarly, the resonance curve for
A = 0.5 a.u. shows the same nature and reaches −1.777 a.u.

for very large values of 1/B (around 100 a.u.). Figure 4 also
shows that, for large values of 1/B, the energy of a single
electron in the 2s state (EHe+(2s)) is decreased by a value of
about A (potential depth).

Figure 5 shows the confining potential effect on resonance
width of a helium atom inside a quantum cavity. When the
size of the cavity is small (large B), the autoionization width
first is decreased slightly from its free-atom value. For the
case of A = 0.2, when 1/B reaches about 0.7 (or 0.4 for the
case of A = 0.5), the width starts to increase and reaches
a maximum value of about at B−1 = 3.3 (or 3 for the case
of A = 0.5). After reaching their maxima, the widths start
to decrease when the size of the cavity is increased further
(increasing 1/B) and, eventually, reach the free-atom values
when B approaches a very small value. While the behaviors for
the widths near both ends of the B values (very small and very
large cavities) are understood as they resume the free-atom
value, the oscillatory character (first decreases, then increases
and decreases) is quite interesting. Such a phenomenon can be
explained as follows. For the free-atom case, the wave function
of a doubly excited autoionization state has large amplitude

in the inner region and has oscillatory character in the outer
region. Now, when the helium atom is confined in a quantum
cavity, the node or antinode of the resonance wave function lies
on the edge of the quantum cavity, destructive interference or
constructive interference takes place inside the cavity, leading
to shortening or prolonging of the autoionization lifetime. As
a result, the width exhibits oscillatory behavior when the size
of the cavity is changed. The large amplitude of the resonance
wave function leads to the large bump in the width vs the
cavity-size curve. As compared to the two cases with different
A values, for A = 0.5 and when the cavity size is large, the
energy of the resonance state reaches a lower value than that
of the A = 0.2 case. As a result, the amplitude of the inner
part of the resonance wave function for the former case is
larger than the latter amplitude, which in turn, leads to an even
larger bump in the figure for width vs 1/B (cavity size). This
phenomenon is very much like the electric-field effect on the
hydrogenic impurity inside a spherical quantum dot with finite
confinement [12,13]. It was revealed that the width for the
autoionizing hydrogen state under an external dc electric field
shows oscillatory behavior when the size of the quantum dot is
changed.

IV. CONCLUSIONS

We analyze the general behaviors of the lowest S-wave
resonant state of the He atom confined in a spherical quantum
cavity by using the stabilization method. We use a FO potential
in which two parameters can be tuned arbitrarily to achieve a
specific depth and range of the potential. In this paper, we
have shown how the confining potential strength affects the
resonance parameters of a two-electron atomic system. From
the results, it is apparent that a very small cavity radius does
not influence the resonance energies as well as the resonance
width. But when the size of the cavity increases, the width
starts to have an oscillatory behavior and eventually returns
back to the free-atom value for a very large cavity. Working
with a highly correlated Hylleraas-type wave function, we
are able to obtain accurate resonance parameters, which are
well converged with the basis size N = 444. We investigate
the effect of confinement on autoionizing resonance states
of two-electron atomic systems. We hope our findings will
stimulate others to further investigate resonances of many-
electron atoms with confining potentials.
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