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An alternative method of calculation of dense plasma effects on exchange-energy shifts �Ex of highly charged
ions is proposed which results in closed expressions for any plasma or perturbation potential. The method is
based on a perturbation theory expansion for the inner atomic potential produced by charged plasma particles
employing the Coulomb Green function method. This approach allows us to obtain analytic expressions and
scaling laws with respect to the electron temperature T, density ne, and nuclear charge Z. To demonstrate the
power of the present method, two specific models were considered in detail: the ion sphere model (ISM) and the
Debye screening model (DSM). We demonstrate that analytical expressions can be obtained even for the finite
temperature ISM. Calculations have been carried out for the singlet 1s2p1P1 and triplet 1s2p3P1 configurations of
He-like ions with charge Z that can be observed in dense plasmas via the He-like resonance and intercombination
lines. Finally we discuss recently available purely numerical calculations and experimental data.
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I. INTRODUCTION

Spectroscopic methods provide essential information about
basic plasma parameters and relevant physical processes [1].
The accessible parameter range covers orders of magnitude
in temperature and especially in density, because practically
all elements of particular selected isoelectronic sequences
can be used for diagnostic investigations. These elements
may occur as intrinsic impurities or may be intentionally
injected in small amounts (so called “tracer” elements). Apart
from usual resonance line emission, the x-ray emission of
dielectronic satellites is of great interest as they allow studying
nonequilibrium phenomena [2] that become of increasing
importance due to the rapid developments in short pulse laser
technology (optical and free electron XUV/x-ray lasers), the
fusion science, and high energy density physics.

Despite theoretical and experimental progress achieved in
understanding dense plasma effects on atomic physics and on
the spectral emission, this subject remains a controversy as it
turns out to be extremely difficult to describe the excess of
the free electrons around the ionic radiator which results in
a perturbation of the bound electron energy levels and wave
functions. The structure variations of the emitter energy levels
therefore play a crucial role in the final radiation emitted from
the plasma and the question “Which perturbation potential
has to be used in the wave equations” is a central one: the
relaxation of bound energy levels, the cutoff of principal
quantum numbers, and the change of spontaneous transition
probability, broadening, and shift of spectral lines have been
known as characteristic dense plasma effects on emitting ions.
X-ray spectroscopy of line transitions (to minimize absorption)
therefore plays a key role in advancing the subject.

Apart from the usual observation of the Rydberg series of
x-ray lines for Stark broadening analysis (including line shifts),
the observation of intensities of resonance (W = 1s 2p1P1 →
1s2 1S0) and intercombination (Y = 1s 2p3P1 → 1s2 1S0) lines

of highly charged ions is another effective diagnostic method
due to (1) good signal to noise ratio, (2) resonance and
intercombination lines (different spin states) are well separated
from each other allowing their distinct observation even in
dense plasmas despite of Doppler and Stark broadening,
(3) opacity effects can be estimated directly from the emission
spectra due to the low oscillator strength of the intercombina-
tion line, and (4) overlapping higher order satellite emission
can be recalculated from the spectrally resolved 1s 2l nl′-
satellite emission as all satellite series emission (1s 2l nl′ →
1s22l + hνsat) have the same dielectronic capture channel
(1s2 + e → 1s 2l nl′).

It has been proposed [3] that the energy difference between
triplet 1s 2p3P1 and singlet 1s 2p1P1 states of helium-like
aluminum (this difference being the double of the exchange
energy between bound electrons) can be sensitive to the dense
plasma environment. The theory [3] was based on direct self-
consistent solution of multiconfiguration Dirac-Fock (MCDF)
and Poisson equations for the radiating atom in a dense plasma
providing entirely numerical results. The plasma environment
was modeled in the ion-sphere model and a linear relation
between the exchange-energy shift and electron density has
been revealed. Relative line shift measurements [4] of the
resonance and intercombination lines in dense laser produced
plasma confirmed the hypothesis of dense plasma effects on the
exchange-energy shift, however, the quantitative agreement
with the data was poor.

It should be noted that there have been published a series
of papers [5–12] devoted to calculations of plasma effects on
atomic spectra mostly employing the Debye potential or its
generalization. They provide a high precision of calculations
from the atomic physics point of view (using correlated atomic
state functions, variation principles, etc.) employing only a
specific type of plasma-atom potential. However, neither the
use of the Debye potential nor the use of Debye screened wave
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functions are rigorously justified nor a self-consistent approach
involving the Poission equation (like those of Ref. [3]) was
employed. From a physical point of view, the high precision is
therefore inconsistent with the much less precise assumptions
for specific plasmas potentials or screened wave functions.

In contrast to these approaches we try to develop a
calculation method which can be applicable for every kind
of plasma-atom potential in order to facilitate validation of
different potentials by experimental data. The present method
is based on a perturbation theory: the plasma-atom interaction
is small as compared with strong Coulomb interaction inside
the highly charge ions with nuclear charge Z � 1. The method
can therefore be considered as a kind of (Z−1) expansion which
is well known as a very effective and precise method in atomic
spectra calculations.

Moreover, the proposed method is essentially analytical
and therefore allows extracting general scaling laws (meaning
the general dependencies on atomic and plasma parameters)
for every type of atom-plasma interaction. Detailed analysis is
worked out for Debye and ion sphere models and a comparison
with self-consistent numerical data [3] is presented.

For helium-like ions with high nuclear charge (Z > 10),
the nucleus-electron Coulomb interaction is predominant
compared to any other interaction such as electron-electron in-
teraction, plasma-electron interaction, etc. These interactions
can be considered as perturbations compared to the Coulomb
one and the Green function method is a suitable tool to treat this
problem. Analytical expression for the Green function kernel
has been given in terms of Coulomb wave functions [13,14].
This Green function method enables us to calculate the wave
function variation when any small potential compared to the
nucleus Coulomb one is added. This wave function variation
can furthermore be used to evaluate exchange energy and
exchange-energy variations due to dense plasma effects.

Finally we discuss available experimental data (albeit rare)
along with different plasma potentials to estimate requested
measurements precisions.

II. THE PERTURBATION METHOD

For high values of ion charges (Z > 10) and relatively low
quantum numbers (n � 2), the ion attraction is predominant
in such a way that all other interactions can be considered
as perturbations for realistic experimental conditions (to be
discussed further below). The general idea of the perturbation
method developed below is to express the plasma effects on
the electron exchange interaction as linear functionals from
the plasma potentials. The kernel of the functionals can be
found with the help of Coulomb Green function method and
is expressed in terms of Coulomb wave functions. The final
representation employs only Coulomb functions and effective
plasma potentials. The constant terms in potentials can be
ignored because they provide the same energy shift in the
triplet and singlet terms that will cancel when calculating
the difference. The approach is applicable if the Coulomb
interaction is dominating over other interactions.

The advantage of this kind of representation is that one can
substitute any kind of plasma potential into the functionals in
order to obtain scaling laws for the dense plasma effects (in

terms of plasma parameters and atomic parameters) as well as
to estimate the magnitude of the effects under consideration.

Let us find the change δR(r) in atomic functions due
to a small correction δU (r) to the Coulomb potential. The
Schrödinger equation for the wave function is

(Lr − δU + E)(R0 + δR) = 0, (1)

where Lr is a pure Coulomb term,

Lr = h̄2

2m

[
1

r2

d

dr

(
r2 d

dr

)
− l(l + 1)

r2

]
+ Ze2

r
, (2)

and R0 is a pure Coulomb wave function satisfying the
equation

(Lr + En)R0(r) = 0. (3)

δR is the correction to R0 due to the perturbation potential δU .
The energy in Eq. (1) is corrected by an amount δE,

E = En + δE. (4)

We note that all these corrections are small at distances
of the order of the atomic size; they are not small at larger
distances. This limitation is of no real importance as only the
n = 2 resonance and intercombination lines are of practical
interest.

The Coulomb wave functions are given by

R0
nl (r) = 2 Z3/2

n2 a
3/2
0

Fnl

(
2Zr

na0

)
, (5)

where n, l, and a0 are the principal quantum number, the orbital
quantum number, and the Bohr radius, respectively. Fnl (x)
are expressed in terms of normalized Laguerre polynomials
[15,16]:

Fnl (x) =
√

(n − l − 1)!

[(n + l)!]3
e−x/2xlL2l+1

n+l (x) . (6)

The Laguerre polynomials are defined as [15,16]

L2l+1
n+l (x) = − [(n + l)!]3

×
n−l−1∑
k=0

(−x)k

k! (n − l − 1 − k)! (2l + 1 + k)!
. (7)

Combining Eqs. (1), (3), and (4), we obtain the equation
for the correction to the Coulomb wave function:

(Lr + En)(δR) = δU ′(r)R0(r). (8)

The modified potential δU ′ is

δU ′(r) = δU (r) − δE. (9)

Equation (8) is a nonuniform Schrödinger equation with
a Coulomb Hamiltonian on the left-hand side. The solution
can be found by the Green function method using the well
known expression for radial Coulomb Green function gnl(r,r ′)
satisfying the equation [15,16]

(Lr + En)gnl(r,r
′) = δ(r − r ′)

rr ′ . (10)
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Solution of Eq. (10) is an analytical expression for the
reduced (with extraction of singularities) Coulomb Green
function [16]:

gnl(r,r
′) = 4Z

na2
0e

2

∞∑
k=l+1
(k �=n)

Fkl(2Zr/n a0) Fkl(2Zr ′/n a0)

k − n

+ n2 a0

Z2 e2

[
5

2
R0

nl(r)R0
nl(r

′) + r
dR0

nl(r)

dr
R0

nl(r
′)

+R0
nl(r)r ′ dR0

nl(r
′)

dr ′

]
. (11)

Solving Eq. (8) by Green function method one obtains

δRnl(r) =
∫ ∞

0
dr ′ r ′2 gnl(r,r

′) δU (r ′) R0
nl(r

′). (12)

As we have pointed out in the beginning, a constant term in
the potential of Eq. (12) is ignored (only energy differences are
considered) and we have replaced the potential δU ′ by δU . As
we can see from Eq. (9), the two potentials differ by a constant
amount δE.

The next step is to express the exchange energy in terms
of atomic wave functions. Two expressions are to be tested:
the first one is based on the statistical approach for an
exchange-energy term using the free electron gas approach
and the second one is deduced from direct calculations of the
exchange energy for a two electron system.

A. Statistical approximation to the exchange energy

The most frequently used expression for the exchange
energy is the one established for a free electron gas [15,17].
Although this approach is established for a many electron
system, it is also commonly used to estimate a few electron
system. The expression for the exchange energy takes the form

Ex = −3

2
e2α

∫ R0

0

(
24

π
nb

)1/3

r2 R2
nl(r) dr, (13)

where α = 1, 2/3 is a numerical constant depending on a
specific choice of atomic model, nb is the atomic electron
density [15]

nb (r) = 1

4π

∑
n,l

wnl R
2
nl (r) , (14)

and wnl is the number of electrons in the shell n.
As concerns our case of the resonance (W) and intercom-

bination (Y) line, a configuration with one electron in 1s shell
and another one in the 2p shell is of particular interest. The
exchange energy deduced from Eqs. (13) and (14) is then

Ex = −3

2
e2α

(
6

π2

)1/3

×
∫ R0

0
dr r2

[
R

2/3
10 (r)R2

21(r) + R
2/3
21 (r)R2

10(r)
]
. (15)

When formula (15) is applied to isolated helium-like
aluminum (in vacuum), we obtain a value of 167 eV for the
exchange energy which is far from the value of the NIST data
of 10.18 eV [18] and recent space resolved measurements in
a laser produced plasma gave 9.9 ± 0.05 eV in the far target

emission [4] (which are not yet understood but might also hint
for dense plasma effects on the exchange energy).

We therefore conclude that the statistical model is not
suitable (not even for rough estimates) to investigate dense
plasma effects on the exchange energy of a two-electron
system.

B. Exchange energy in two-electron system

Direct calculation of the exchange energy starts from the
general expression of the exchange part of Coulomb energy
matrix element for two-electron system in states ψ1 and ψ2

(see [15]):

Ex =
∫∫

dr1 dr2 ψ∗
1 (r1) ψ∗

2 (r2)
e2

|r1 − r2|ψ2(r1) ψ1(r2).

(16)

It should be noted that we employ uncorrelated unscreened
wave functions in order to obtain manageable analytical
expressions rather than extreme precision data (which are
physically inconsistent despite the current uncertainties for the
model plasma potential expressions). The numerical evalua-
tion Eq. (16) is usually based on the spherical symmetry of the
wave functions. Expanding the interaction potential in Eq. (16)
into Legendre polynomials and series of radius r> and r<

(being the larger and smaller values of r1 and r2, respectively,
see [15] for details) and using the representation of angular
dependences of wave functions in Legendre polynomials one
obtains after some calculations

Ex = 2e2

3

∫ ∞

0
dr1R10(r1) R21(r1)

∫ r1

0
dr2r

3
2 R10(r2) R21(r2).

(17)

The application of perturbation theory expresses the wave
functions as

R10(r) = R0
10(r) + δR10(r),

R21(r) = R0
21(r) + δR21(r) ,

(18)

where the upper index 0 indicates pure Coulomb wave
functions. Correspondingly, the exchange energy consists of a
pure Coulomb term and a perturbed term:

Ex = E0
x + δEx. (19)

The zero term in Eq. (19) is given by Eq. (17) substituting
pure Coulomb functions. The second (correction) term is
obtained by substituting Eq. (18), combined with Eq. (12),
into Eq. (17), and then subtracting a term corresponding to
E0

x . The result is

δEx = 2

3
e2

[ ∫ ∞

0
dr1f (r1)

∫ r1

0
dr2r

3
2 R0

10(r2)R0
21(r2)

+
∫ ∞

0
dr1R

0
10(r1)R0

21(r1)
∫ r1

0
dr2r

3
2 f (r2)

]
, (20)

where

f (r) = R0
21(r)

∫ ∞

0
dr ′r ′2g10(r,r ′)R0

10(r ′)δU10(r ′)

+R0
10(r)

∫ ∞

0
dr ′r ′2g21(r,r ′)R0

21(r ′)δU21(r ′), (21)
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here δU10 and δU21 are potentials acting on 1s and 2p elec-
trons, respectively. The indexes are introduced to distinguish
between potentials acting on each electron. These potentials
are different, for instance, if the interaction involves the
screening between bound electrons (to be discussed in the
next paragraph). These indexes can be omitted if only plasma
effects are involved.

Equation (20), combined with Eq. (21), represents the
change of exchange energy due to the presence of any potential
(being small as compared with the Coulomb one). These
equations express the relative exchange energy in terms of
integrals of potential variations and Coulomb functions.

The effective values of the electron radius are just deter-
mined by the size of atomic electron orbits (wave functions). So
it is natural to introduce dimensionless variables following the
structure wave function given by Eq. (5). To be more specific,
we limit ourselves to the 1s2p configuration for which the
dimensionless variable x = Zr/a0 is appropriate. Introducing
this variable into Eqs. (20), (21), and (11) one obtains with
account of Eq. (5)

δEx = 4

3Z

[ ∫ ∞

0
dx1f (x1)

∫ x1

0
dx2x

3
2F10 (2x2) F21 (x2)

+
∫ ∞

0
dx1F10 (2x1) F21 (x1)

∫ x1

0
dx2x

3
2f (x2)

]
, (22)

where

f (r) = 2 F21(x)
∫ ∞

0
dx ′x ′2g10(x,x ′)F10(2x ′)δU10(x ′)

+ 2 F10(2x)
∫ ∞

0
dx ′x ′2g21(x,x ′)F21(x ′)δU21(x ′),

(23)

g10(x,x ′) =
∞∑

k=2

1

k − 1
Fk0(2x)Fk0(2x ′) + 5

2
F10(2x)F10(2x ′)

+ 2x
dF10(2x)

dx
F10(2x ′) + F10(2x)2x ′ dF10(2x ′)

dx ′ ,

(24)

g21(x,x ′) = 1

2

∞∑
k=3

1

k − 2
Fk1(x)Fk1(x ′) + 5

4
F21(x)F21(x ′)

+ x
dF21(x)

dx
F21(x ′) + F21(x)x ′ dF21(x ′)

dx ′ . (25)

III. CORRECTION TO EXCHANGE ENERGY DUE
TO ELECTRON SCREENING IN ISOLATED ION

We can validate our perturbation method by computing the
correction to the exchange energy due to the electron screening
effect inside the ion. Equation (22) takes into account the
exchange-energy correction due to any additional potential.
The zero order approximation for electron exchange energy
is the one described by Eq. (17) with Coulomb functions. It
predicts exchange energy for the case of a He-like Al (Z = 13)
ion equal to 6.036 eV. The measured quantity is the difference
between singlet and triplet electronic terms. This difference
is equal to twice the exchange energy calculated above, that
is, 12.07 eV. This value is still far from the NIST data [18]:

10.18 eV. In order to demonstrate the efficiency of the present
perturbation method it is of interest to find the correction to the
zero order exchange energy due to electron screening inside
the isolated He-like ion.

This can be performed using the general expression for the
Coulomb potential produced by bound electrons inside the
ion [17]

φb(r) = −4πe

[
1

r

∫ r

0
dr ′r ′2nb(r ′) +

∫ ∞

r

dr ′r ′nb(r ′)
]

(26)

and substituting the bound electron density

nb(r) =
∑

l

(2l + 1)|R0
nl(r)|2 (27)

determined by Coulomb radial wave functions. For our case
of 2p-1s transitions in He-like ions it means that one has to
use the 1s-shell wave function for the screening of the 2p
electron and the 2p-shell wave function for the screening of 1s
electron in order to avoid self-screening effects. Substituting
the bound electron density Eq. (27) into Eq. (32) we obtain
the screening potential and additional perturbation δU (r) =
−eφ(r) entering into wave function corrections in Eq. (12).
Making a transformation from radial functions Rnl(r) to
dimensionless functions Fnl(x) one can see from Eqs. (22)
and (23) that the screening correction from the bound electrons
does not depend on Z. Using the correction δU (x) in Eqs. (22)–
(25) the correction to the difference between triplet and singlet
levels in He-like aluminum ion equal to 2 δEX = −2.14 eV.
Therefore the difference itself is equal to (12.07 − 2.14) eV =
9.93 eV. This means that the employed perturbation method
reproduces the exchange-energy shift with a precision near
1.5%. This precision is excellent remembering that other
small corrections, for example, due to spin-orbit and spin-spin
interactions, relativistic effect, and masses have yet to be
added.

It is important to note that the present way of calculation of
the electron screening is essentially motivated by the final aim
to obtain analytical expressions afterward for different plasma
potentials rather than to provide the highest state of the art
calculation of screening effects in isolated ion atomic physics.
As the results demonstrate, an overall acceptable precision
is obtained with the proposed perturbation method for the
screening corrections to the exchange energy.

IV. FINITE TEMPERATURE ION SPHERE MODEL

The potential variation expressed in Eq. (23) can represent
any additional potential to the Coulomb one, for example, the
bound electrons interaction or external potentials produced by
the plasma. In this section we consider a finite temperature
ion sphere model (ISM) potential. The system is represented
by a sphere of radius R0 containing the ion at the center,
surrounded by bound and free electrons. The central equation

032512-4



EFFECT OF DENSE PLASMAS ON EXCHANGE-ENERGY . . . PHYSICAL REVIEW A 84, 032512 (2011)

of this model is the equilibrium charge distribution of the free
electrons:

nf (r) = nf (R0)
4√
π

∫ ∞

P0(r)
dp

p2

(2mekBT )3/2

× exp

{
− 1

kBT

[
p2

2me

− eφ(r)

]}
, (28)

where nf (R0) is free electron density at the distance R0 and
P0 is a minimum momentum value taken by the free electrons.
This ensures that the kinetic energy is larger than the potential
energy

P0(r) =
√

2me e φ(r). (29)

The total potential is a sum of ion, free, and bound electrons
potentials

φ(r) = Ze

r
+ φb + φf . (30)

The ion sphere radius is

R0 =
(

4πni

3

)−1/3

. (31)

The potentials φb and φf are potentials of bound and
free electrons, respectively. These potentials are linked to the
bound and free electron densities nb and nf by the Laplace
equation. For a spherically symmetric distribution of charges,
the Laplace equation reduces to an integral equation for both
potentials:

φb,f (r) = −4πe

[
1

r

∫ r

0
dr ′r ′2nb,f (r ′)+

∫ R0

r

dr ′r ′nb,f (r ′)
]
.

(32)

Assuming global neutrality of the sphere

Z − Nb =
∫ R0

0
4πr2nf (r)dr, (33)

Nb is the number of bound electrons that is supposed to be
small as compared with the nuclear charge Z.

We suppose that the value R0 is large as compared with
the radius of the atomic electron orbit with principal quantum
number n:

R0 � a0
n2

Z
, or ne 	 3Z4

4πa3
0n

6
= 1.6 × 1028cm−3 Z4

n6
.

(34)

The inequality (34) indicates that for the experimental
conditions of laser produced plasma experiments [2] (n = 2,
Z = 13) the free electron density should be ne 	 1027 cm−3

which is almost always satisfied. Even for n = 5, the
perturbation method is applicable up to solid density. It follows
from Eq. (34) that dense plasma effects on the atomic functions
take place at far distances from the Coulomb center where the
atomic wave functions decrease exponentially.

For the general case of finite temperature ISM Eqs. (28),
(32), and (33) are solved self-consistently. However, analytical
solutions can be found at the limiting cases of high and low

temperatures. For this purpose, the integral in Eq. (28) is
simplified as follows:

nf (r) = nf (R0)
2√
π

∫ ∞

0
dt

√
t + eφ(r)

kBT
e−t . (35)

Since the t variable is of order of unity, the integral in
(35) can be calculated in closed form for both high and low
temperature limit. In the high temperature limit we have

eφ(r)

kBT
	 1 (36)

and expression (35) simplifies to

nf (r) = nf (R0). (37)

nf (R0) is close to the unperturbed electron density ne [19].
We have thus

nf (r) = ne. (38)

The particular case of an infinite temperature is called
uniform electron gas model (UEGM) where the free electron
density inside the atom is constant. The potential in (36)
is given by Eq. (30). It consists of a potential produced
by the nucleus of charge Z screened by bound and free
electrons. We assume (as an approximation) that an average
of Nb electrons screen this potential. The resulting potential
is equivalent to the one produced by an effective charge of
Z − Nb:

φ(r) ≈ (Z − NB)e

r
. (39)

Condition (39) holds especially for the mean atomic radius

〈r〉 = n2

Z
a0. (40)

If we substitute (40) into (39), the condition (36) writes

kBT �
(

Z − Nb

n

)2
e2

a0
≈

(
Z

n

)2
e2

a0
. (41)

The low temperature limit corresponds to the opposite
inequality of relation (41)

kBT 	
(

Z

n

)2
e2

a0
. (42)

Under conditions (34) and (42) one can simplify the integral
in Eq. (35):

nf (r) = ne

2√
π

√
e2(Z − Nb)

kBT r
. (43)

We can combine the limiting cases of large and small
temperatures by using a simple fitting formula incorporating
both low and high temperature limits:

nf (y) ≈ ne

(
1 + 2√

πy

)
, (44)

with

y = kBT r

e2(Z − Nb)
. (45)
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FIG. 1. (Color online) The free electron density as a function of
dimensionless radius y. Comparison between ISM and fitting formula
Eq. (44).

The comparison between self-consistent numerical calcu-
lations (solving simultaneously the multiconfiguration Dirac-
Fock and the Poisson equation [3]) and the fitting formula
(44) is presented in Fig. 1. Figure 1 shows a quite good
overall agreement even for intermediate temperature values
that provides the direct proof of the sufficient precision (from
the atomic physics point of view) obtained by the present
method.

A transformation of Eq. (32) to dimensionless variables
y provides the result for the electron potential at any finite
temperature, which is not known in the literature:

φ(y) = −4π e ne

(
Z

T

)2 [
1

y

∫ y

0
dx ′x ′2nf (x ′)

+
∫ y0

y

dx ′x ′nf (x ′)
]

(46)

with

y0 = R0 kBT

e2(Z − Nb)
. (47)

Using the analytical formula (44) we arrive at

φ(y) ≈ −4π e ne

[
e2(Z − Nb)

kBT

]2 (
y2

0

2
+ 4

3
√

π
y

3/2
0

− y2

6
− 8

15
√

π
y3/2

)
. (48)

The potential (48) is of interest for all values of the variable y
including the transition from high to low temperature regimes.
It is convenient to employ a dimensionless atomic shell size
variable

x = Z r

a0
= e2Z(Z − Nb)

a0 kBT
y. (49)

In terms of this variable, the potential energy δUISM = −eφ

describing dense plasma effects takes the form

δUISM(x) ≈ 4π e2 ne

(
R2

0

2
+ 4 S e Z1/2

3
√

πkBT
R

3/2
0 − a2

0

6Z2
x2

− 8 e S a
3/2
0

15Z
√

πkBT
x3/2

)
. (50)

S is a screening factor which has a value of

S =
√

1 + Nb

Z
= 0.92 (51)

for helium-like aluminum (Z = 13 and Nb = 2).
In order to obtain the plasma screening one needs to

substitute the plasma screening potential Eq. (50), into the
general set of Eqs. (22)–(25). We recall that the constant part in
Eq. (50), that is the first and the second term, do not contribute
to the exchange-energy separation. It can be seen that the
difference between singlet and triplet pairs in vacuum and
plasma is linear in electron density

2 δEx[eV] = −k(Z,T ) ne[cm−3] (52)

with

k(Z,T ) ≈ 10−25[cm3]2Ry

(
23

Z3
+ 11.6

Z2
√

T [eV]/2Ry

)
. (53)

To obtain Eq. (53) we have substituted numerical values
for matrix elements of x2 and x3/2 arising after substitution
of Eq. (49) into Eqs. (22)–(25). Equation (53) is valid for the
1s2p configuration in every He-like ion with nuclear charge Z
for any temperature but restricted by condition (34). The first
term in (53) corresponds to the infinite temperature limit and
the second term to the low temperature limit.

V. DEBYE MODEL

Another standard approach to describe dense plasma effects
is based on the Debye screening potential

VD = −Z e2

r
e−r/λD (54)

with

λD =
√

kBT

4π ne e2 Zeff(T )
and Zeff(T ) = 1 + 〈Z2〉/〈Z〉,

(55)

where the effective ion charge Zeff was introduced in terms
of the averaged charge and its squared average. It turns out
that one does not need the total Debye potential but only the
difference between the Coulomb and the Debye potentials.
This difference is a small correction to the Coulomb potential.
It is also natural to express the correction in terms of the
dimensionless parameter x:

δUD(x) = −Z e2

r
(e−r/λD − 1) ≈ Z e2

λD

− a0 e2

2 λ2
D

x. (56)

All plasma potentials presented above are considered to be
small as compared with the Coulomb potential inside the ionic
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shell under consideration. The condition allows applying the
perturbation theory developed below.

In order to work out explicit results for the Debye screening
model we substitute the Debye screened potential (56) into the
general formulas (22)–(25). The result takes the form

2 δEx[eV] = −k(T ) ne[cm−3], (57)

k(T ) = 10−25[cm3] 2Ry
11.5 Zeff(T )

Z T [eV]/2Ry
. (58)

The numerical factor in Eq. (58) is much larger as compared
with Eq. (53) for the ISM due to less strong dependence on
nuclear charge Z [compare with Eq. (53)].

VI. DISCUSSION OF AVAILABLE THEORETICAL
AND EXPERIMENTAL DATA

Figure 2 displays the coefficient k of Eq. (53) for He-like
aluminum ions (Z = 13) in comparison with data published
in [3]. A good correspondence between the results from the
present perturbation theory and the self-consistent numerical
solutions of the multiconfiguration Dirac-Fock and Poisson
equation is obtained: the two results agree extremely well
at the high temperature and low temperature limit and make
a difference of only about 10% at intermediate values of y
(temperatures ∼50 eV). This small difference is due to the
analytical representation of Eq. (44). We note that Eq. (44)
can be made more precise but this will only result in
small corrections to the curves presented in Fig. 2. We can
therefore conclude that the present analytical presentation of
the perturbation method reproduces sufficiently well the very
complex numerical calculations of [3]. It should be emphasized
that the explicit form of the present perturbation method
employing unscreened uncorrelated wave functions has been
chosen in order to obtain analytical results, scaling laws,
and closed expression for any perturbation potential with a
reasonable physical precision rather than obtaining state of the
art atomic physics precision for imprecise plasma potentials.

The comparison of available experimental data [4] with
the theoretical result for the Debye model according to

FIG. 2. (Color online) The factor k(Z,T) [ISM, see Eq. (53)]
vs electron temperature for He-like aluminum ion (Z = 13) in
comparison with numerical solution of Schrödinger equation [3].

FIG. 3. (Color online) Comparison of the Debye screening model
with the experimental data from [4].

Eq. (57) is presented in Fig. 3. The target distances correspond
to particular sets of density and temperature [4] that have
been employed to introduce the curves for the Debye model
in Fig. 3. The dependence of effective ion charge on the
electron temperature was calculated from non-LTE atomic
population kinetics [20]. The data from the Debye screening
model are located inside the large experimental error bars but
do not represent any observed change with the target distance.
A more detailed comparison is presented in Fig. 4 where
both theoretical models are shown together with experimental
data on a logarithmic scale. Neither the Debye nor the ISM
represents any reasonable agreement with the data. Figures 3
and 4 indicate that the experimental precision has to be
improved by at least a factor of 3 in order to derive definite
conclusions about the models for the plasma potential.

FIG. 4. (Color online) Detailed comparison between theoretical
and experimental [4] data for the relative exchange-energy shift
(the absolute values of energies is reported on a logarithmic scale).
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VII. CONCLUSION

An alternative analytical method to calculate dense plasma
effects on exchange-energy shifts �Ex of highly charged ions
is proposed. The method is based on a perturbation theory
expansion for a potential produced inside the atom by charged
plasma particles. The conditions to validate the perturbation
theory are easily met in usual experiments: for example, for
He-like aluminum ions and n = 2 singlet and triplet states the
limitation results in the condition ne 	 1027 cm−3.

Closed expressions for any arbitrary plasma potential are
derived with the help of analytical expressions for Coulomb
Green functions. The model expresses the relative exchange-
energy shift in terms of simple functionals from hydrogen
atomic wave functions and the perturbation potential. The
great advantage of the present model is that it results in closed
expressions for any arbitrary plasma potential to describe the
plasma-atom interaction and a reasonable precision requested
for dense plasma spectroscopy. This allows extracting ana-
lytical dependences on main plasma and atomic parameters
(electron density ne and temperature T as well as ion
charge Z).

Detailed calculations were performed for the singlet
1s2p1P1 and triplet 1s2p3P1 configurations of He-like ions
with a charge Z and applied to the ion sphere and Debye
model. For the Debye model the analytical scaling law

�Ex = AD ne Zeff/(Z T ) has been obtained where Zeff is the
effective plasma charge and AD is a constant.

The great power of the present method is demonstrated
for the ion sphere model (ISM). Even for the finite temper-
ature case, an analytical expression could be derived (AI is
a constant): �EX ≈ AIne {23/Z3 + 11.6/(Z2√T [eV]/2Ry)}.
The comparison of the present perturbation method applied
to the ISM with numerical solution of the multiconfiguration
Dirac-Fock equation discovered a very good correspondence.

The comparison of the present method with available
data [4] indicates that the experimental precision needs to be
increased by at least a factor of 3 in order to decide between
different plasma potentials.

Moreover, a further general conclusion is that the present
perturbation theory based on Coulomb Green functions can be
considered as an extension of the well-known Z−1-expansion
method in atomic physics on plasma-atom interaction poten-
tials to study dense plasma effects on the atomic structure.
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