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Shifts from a distant neighboring resonance for a four-level atom
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In a recent paper [Phys. Rev. A 82, 052519 (2010)], the systematic shifts of a resonance due to quantum-
mechanical interference from a distant neighboring resonance were derived. In that paper, the simplest three-level
closed system was used to calculate analytic expressions for shifts in the resonant line centers. Here, we extend
the analysis to the more relevant four-level system, which consists of two ground states and two excited states
and which incorporates the physics of dark states. The shifts are shown to depend on the type of experiment
performed and can be much larger than the shifts for the three-level system. The analytic formulas obtained are
applied to the 2 3S-to-2 3P transitions in atomic helium, where significant shifts are found.
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I. INTRODUCTION

Interference effects from spontaneous radiation from neigh-
boring atomic levels are predicted on the basis of density-
matrix equations [1,2] that have been derived from quantum
electrodynamics. A range of phenomena results from this
interference (most notably quantum beats [3,4]), and a recent
measurement shows a clear indication of quantum-mechanical
interference for the closely spaced hyperfine components of
the D2 lines of lithium [5]. In a previous paper [6], we
presented analytic line shapes for a three-level atom exposed
to a monochromatic perturbation and showed that there were
shifts that resulted from quantum-mechanical interference
between an observed resonance even when the neighboring
resonance was distant from the resonance being measured.
Reference [6], although useful for illustrating the effect of
distant neighboring resonances, presented results that were
not immediately applicable to line shifts for viable precision
atomic measurements. In the present paper, we extend the
calculation to systems that are not closed by allowing for more
than one ground state. The line shape for a four-level system
is presented in Sec. II. These line shapes reduce to simple
approximations when no neighboring resonance is present,
as discussed in Sec. III. In Sec. IV, the shifts due to a distant
neighboring resonance are presented, and in Sec. V, the derived
shifts are applied to the atomic helium 2 3S-to-2 3P transitions.

II. FOUR-LEVEL ATOM

We consider a four-level atom with two ground states and
two excited states, as shown in Fig. 1. A monochromatic
interaction V (t) = V0 cos (ωt + φ) couples a ground state |1〉
to two excited states (|2〉 and |3〉). In the electric dipole approxi-
mation, V0 = e �E0 · �r for an applied field �E = �E0 cos (ωt + φ).
Here, we consider the case where V (t) is nearly resonant with
the |1〉 → |2〉 transition (ω = ω21 + �2, with �2 � ω32, as
illustrated in Fig. 1). We use the rotating-wave approximation,
in which the nonresonant exp(−iωt − iφ) part of cos (ωt + φ)
is ignored.

As shown in Fig. 1, both excited states have rates for
radiative decay down to the |1〉 and |0〉 ground states. Since
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V (t) does not couple state |0〉 to any of the other states, it is
a dark state, and any population that decays to |0〉 will remain
in this state.

The density-matrix equations for this system are [1,2]

ρ̇11 = i�2

2
ρ12 − i�∗

2

2
ρ21 + γ2→1ρ22 + i�3

2
ρ13

− i�∗
3

2
ρ31 + γ23→1(ρ23 + ρ32) + γ3→1ρ33, (1a)
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2

2
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2
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)
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2
ρ13

−
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γ2 + γ3

2
− iω32

)
ρ23, (1e)

ρ̇33 = i�∗
3

2
ρ31 − i�3

2
ρ13 − γ3ρ33 − γ23

2
(ρ23 + ρ32), (1f)

where �2 = 〈1|V0e
iφ|2〉/h̄ and �3 = 〈1|V0e

iφ|3〉/h̄ are Rabi
frequencies, �∗

2 and �∗
3 are their complex conjugates, h̄�2 =

h̄(ω − ω21) and h̄ω32 are the energy differences shown in
Fig. 1, and τ2 = γ −1

2 and τ3 = γ −1
3 are the lifetimes of states |2〉

and |3〉. In terms of the partial decay rates shown in Fig. 1, γ2 =
γ2→1 + γ2→0, γ3 = γ3→1 + γ3→0, and γ23 = γ23→1 + γ23→0,
where (in the electric dipole approximation)

γi→j = 4e2|ωji |3
3h̄c3

〈i|�r|j 〉 · 〈j |�r|i〉, (2a)

and

γ23→j = 4e2|ωj2|3
3h̄c3

〈2|�r|j 〉 · 〈j |�r|3〉. (2b)

Here, we have assumed ω32 � ω21,ω20. The inclusion of
the γ23→j terms in Eq. (1) results directly from quantum-
mechanical interference of the radiative decay.
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FIG. 1. (Color online) The four-level system considered in this
paper. A single field of angular frequency ω couples |1〉 to |2〉 and to
|3〉, both of which can decay to |0〉 and |1〉. We consider the case in
which the field is nearly in resonance with the |1〉 → |2〉 transition
and study the shifts in this resonance due to the distant |1〉 → |3〉
resonance. The figure shows state |3〉 above state |2〉 (i.e., ω32 > 0),
but the results derived also apply for the case when state |3〉 is below
state |2〉 (i.e., ω32 < 0).

Equation (1), along with the complex-conjugate equations
for ρ̇21, ρ̇32, and ρ̇31, can be used to obtain ρ11, ρ22, and
ρ33, the populations of states |1〉, |2〉, and |3〉, while ρ00

then can be obtained from ρ00 + ρ11 + ρ22 + ρ33 = 1. The
equations for ρ̇01, ρ̇10, ρ̇02, ρ̇03, and ρ̇30 are not needed, since
ρ01, ρ10, ρ02, ρ20, ρ03, and ρ30 do not appear on the right-hand
side of Eq. (1) and, therefore, are decoupled from these
differential equations.

For this paper, we consider the case where the population
starts in state |1〉 and the |1〉 → |3〉 transition is sufficiently
out of resonance so that, after interacting with V (t) for a
time T , very little population is excited to state |3〉. We
introduce a small ordering parameter η, and in terms of this
parameter, the population of |3〉 is η2 times smaller than the
population of the other states. For this to occur, it is necessary
that �2, �2, �3, γ2→1, γ2→0, γ3→1, γ3→0, and 2π/T all be
smaller (by 1 order of η) than ω32. The density-matrix elements
ρ13, ρ31, ρ23, and ρ32 will also be an order of η smaller than
the dominant elements: ρ11, ρ12, ρ21, and ρ22.

Taking linear combinations of Eqs. (1a)–(1e) (and their
complex conjugates), allows one to eliminate (to order η)
the ρ13, ρ31, ρ23, and ρ32 terms in Eqs. (1a)–(1c), yielding
differential equations that include all corrections up to first
order in η,

ρ̇11 = i�′′
2

2
ρ12 − i�′′

2
∗

2
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2
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2+

2
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2+
2
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where the order η corrections come from �′
2± = �2 ±

i 1
2γ23�3/ω32, �′′

2 = �2 − i 1
2 (γ23 − 2γ23→1)�3/ω32, and

from

�′
2 = �2 − γ 2

23 + |�3|2
4ω32

. (4)

Combining Eqs. (3a)–(3c) leads to a fourth-order differential
equation that describes ρ11 and ρ22 up to first order in η,
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where
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For an atom that starts in state |1〉 at t = 0, the solution to
Eq. (5) at time t = T is

ρii =
±1∑
s,σ
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(|�2|2 + �′2
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) − γ 2
2

6
, (8g)

C(11)
sσ = [

R2
−s − (γ2 + sv)2

]
(γ2 − σRs − sv)

− 2|�2|2(σRs − sv − 3γ2 + 2γ ′
2→1 + γ ′

2), (8h)

C(22)
sσ = 2|�2|2(σRs − sv), (8i)

with

�′′
2 = �′

2 + |�2|2�3(2γ23 − γ23→1)

2�2ω32γ2
. (9)

Equations (7) and (8) are the solutions to Eqs. (1a)–(1f) for
ρ11 and ρ22 up to first order in η. Up to this order, ρ33 = 0
and ρ00 = 1 − ρ11 − ρ22. The presence of state |3〉 appears in
this solution only through the primed quantities (γ ′

2, γ ′
2→1, �′

2,
and �′′

2), and these primed quantities lead to perturbations and
shifts in the resonant line shapes (as discussed in Sec. IV).
First, in Sec. III, we investigate the line shape in the absence
of perturbations due to state |3〉.

III. THREE-LEVEL ATOM

In the limit of ω32 → ∞ (which is equivalent to η → 0
or to the absence of perturbations from state |3〉), the primed
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FIG. 2. (Color online) Line shapes for the three-level system, with
the |2〉 and |0〉 state populations as a function of applied frequency
ω = ω21 + �2 shown in (a) and (b), respectively. These line shapes
Eq. (7) are for �2 = 0.1γ2 with γ2→1/γ2 = 0.25 (closed symbols)
and 0.75 (open symbols). The solid lines are the approximate line
shapes of Eqs. (10) and (11), which show good agreement at small
�2T . The dotted lines are the approximate line shapes of Eqs. (14)
and (15), which show good agreement with Eq. (7) at larger �2T .

quantities in Eq. (8) approach their unprimed values (γ ′
2 →

γ2, γ ′
2→1 → γ2→1, and �′

2,�
′′
2 → �2), and ρii approach their

unperturbed expressions ρ
(0)
ii . The unperturbed ρ

(0)
00 , ρ

(0)
11 , and

ρ
(0)
22 give the populations of the |0〉, |1〉, and |2〉 states for the

simpler three-level system that corresponds to the absence
of state |3〉 in Fig. 1. When plotted against the angular
frequency ω of the applied field, the ρ

(0)
ii give the unperturbed

line shapes, examples of which are shown in Fig. 2. Here,
ρ

(0)
11 is not considered since it can be obtained from ρ

(0)
11 =

1 − ρ
(0)
22 − ρ

(0)
00 .

From inspection of Eq. (8), it can be seen that the ρ
(0)
ii line

shapes depend only on the square of �2 and, therefore, are
symmetric about �2 = 0 (thus, their line center is unshifted
from ω = ω21). The widths and amplitudes of these line
shapes depend on the time T that the monochromatic V (t)
is applied, the Rabi frequency (�2), and the decay rates γ2

and γ2→1, as illustrated in Fig. 3. Since the population is
assumed to start in state |1〉, ρ

(0)
22 = 0 and ρ

(0)
00 = 0 at T = 0,

but all of the population goes into the dark state (ρ(0)
00 = 1

and ρ
(0)
22 = 0) in the limit of large T , as shown in Figs. 3(a)

and 3(b). The widths of the line shapes are approximately
the natural width for a π pulse (�2T = π ) and become
broader for short times T and for large �2T , as shown in
Figs. 3(c) and 3(d).
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FIG. 3. (Color online) Amplitudes and widths for the three-level
line shapes for �2/γ2 = 1 (squares), 1/10 (diamonds), and 1/100
(circles) for a range of �2T . The on-resonance amplitudes are shown
in (a) and (b) for the |2〉 and |0〉 state populations. The full width
at half maximum (FWHM) is shown in parts (c) and (d). For small
�2T , the widths and amplitudes agree with Eqs. (10) and (11), which
are represented by the solid lines. For larger �2T , they agree with
Eqs. (14) and (15), shown here as dotted lines. The plots show both
γ2→1/γ2 = 0.25 (closed symbols) and 0.75 (open symbols), but it is
only for larger �2T that the line shapes depend on this branching
ratio, as shown by the bifurcated curves at the right of the plots.
Data points and curves are discontinued at the right when the line
shapes are no longer simple peaks. The heavy dashed lines in (d)
show that, for small �2T , the width of the |0〉 state is approximated
well by adding the natural width in quadrature with the width of
Eq. (13).
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For the case of small �2T , the line shapes [Eq. (7), with
ω32 → ∞] become

ρ
(0)
22 ≈ |�2|2 1 + e−γ2T − 2 cos[�2T ]e−γ2T/2

4�2
2 + γ 2

2

, (10)

and

ρ
(0)
00 ≈ γ2→0

γ 2
2 + 4�2

2

|�2|2
[
T + 1 − e−γ2T

γ2

− 4e−γ2T/2 γ2e
γ2T/2 − γ2 cos(�2T ) + 2�2 sin(�2T )

γ 2
2 + 4�2

2

]
.

(11)

The amplitudes and widths of these line shapes are shown
as solid lines in Fig. 2 and on the left-hand portions of
Fig. 3, where it can be seen that they agree well with the
data points [from the full line shape of Eq. (7)]. For small
T (T � γ −1

2 ,γ −1
2→1,�

−1
2 ), Eqs. (10) and (11) further reduce to

the familiar,

ρ
(0)
22 ≈ |�2|2 sin2(�2T/2)

�2
2

, (12)

and the less familiar,

ρ
(0)
00 ≈ γ2→0

2�3
2

|�2|2[�2T − sin(�2T )]. (13)

On the other hand, for large γ2T and not too large values
of �2T , the line shapes [Eq. (7), with ω32 → ∞] reduce to

ρ
(0)
22 ≈ |�2|2

γ 2
2 + 4�2

2

exp

[
− γ2→0

γ 2
2 + 4�2

2

|�2|2T
]

, (14)

and

ρ
(0)
00 ≈ 1 −

[
1 + γ2→0

γ2
|�2|2 3γ 2

2 − 4�2
2(

γ 2
2 + 4�2

2

)2

]

× exp

[
− γ2→0

γ 2
2 + 4�2

2

|�2|2T
]

, (15)

as indicated by the dotted lines in Figs. 2 and 3, which show that
these approximations work well for larger �2T . The solid and
dotted lines in Fig. 3 show that the combination of Eqs. (10),
(11), (14), and (15) is sufficient for approximating the full
line shapes for most of the useful parameter space, reducing
the need for using the more complicated full line shapes
of Eq. (7).

IV. SHIFTS

The line shapes of Sec. III are perturbed when state |3〉
is included. The perturbations are small if η is small (ω32 is
large), but, even in this case, the resulting shifts in the line
centers can be important for precision measurements. Up to
first order in η, the modified line shapes are given exactly by
Eqs. (7) and (8). In the limit of small �2T , the line shapes can
be approximated by

ρ22 ≈ |�2|2 1 + e−γ2T − 2 cos[�′
2T ]e−γ2T/2

4�′2
2 + γ 2

2

, (16)

and

ρ00 ≈ |�2|2
γ 2

2 + 4�′2
2

{
(γ2→0 − 2ξ�2)

[
T + 1 − e−γ2T

γ2

− 4e−γ2T/2 γ2e
γ2T/2 − γ2 cos(�′

2T ) + 2�′
2 sin(�′

2T )

γ 2
2 + 4�′2

2

]

+ 2ξ�2
1 − e−γ2T

γ2
− 2ξ�2e

−γ2T/2 sin(�′
2T )

�′
2

}
, (17)

where

ξ = �3γ23→0

�2ω32
. (18)

Equations (16) and (17) are generalizations of Eqs. (10) and
(11), respectively. For small T (T � γ −1

2 ,γ −1
2→1,�

−1
2 ), they

reduce to

ρ22 ≈ |�2|2 sin2(�′
2T/2)

�′2
2

, (19)

and

ρ00 ≈ γ2→0 − 2ξ�2

2�′3
2

|�2|2[�′
2T − sin(�′

2T )]. (20)

Equation (16) differs from Eq. (10) only by the replacement
of �2 by �′

2. Similarly, Eq. (19) differs from Eq. (12) by the
replacement of �2 by �′

2. Therefore, in both limits, the ρ22

line shape is shifted from ω = ω21 by

Sh(22) ≈ S0 = γ 2
23 + |�3|2

4ω32
. (21)

In both cases, other than this shift, the line shapes are identical
to the unperturbed line shapes.

Equations (17) and (20), however, are also shifted due
to the presence of ξ [Eq. (18)] in these equations. The
ξ -dependent terms cause both shifts and line-shape distortions.
The shifts can be estimated by evaluating these terms at
the half-maximum points and dividing by the slope at the
half-maximum points. We note that the line shape of Eq. (13)
has a FWHM of 2.3π/T and the width of Eq. (11) is
approximated by this added in quadrature with the natural
width (γ2), as shown by the heavy dashed line in Fig. 3(d).

Using this approximation, the total shift of the ρ00 line
shape of Eq. (20) (due to a combination of the effect of �′

2 and
of ξ ) is

Sh(00) ≈ S0 − 9.89

γ2→0

ξ

T 2
. (22)

The shift in Eq. (17) can be approximated by a series
expansion,

Sh(00) ≈ S0 − ξγ 2
2

γ2→0
f (γ2T ), (23)

with

f (γ2T ) ≈ 9.89

(γ2T )2
+ 2.14

γ2T
+ 0.164 + 0.0148γ2T . (24)

For larger �2T , the generalization of Eqs. (14) and (15) to
include the perturbation from state |3〉 gives

ρ22 ≈ |�2|2
γ 2

2 + 4�′2
2

exp

[
−γ2→0 − 2ξ�2

γ 2
2 + 4�′2

2

|�2|2T
]

, (25)
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FIG. 4. (Color online) Shifts due to quantum-mechanical interfer-
ence with the distant |1〉-to-|3〉 resonance for �2/γ2 = 1 (squares),
1/10 (diamonds), and 1/100 (circles) for a range of �2T for the
(a) ρ22 line shape and the (b) ρ00 line shape. For small �2T , the shifts
agree with Eqs. (16) and (17), which are represented by the solid
lines. The heavy dashed line shows the approximations of Eqs. (21)
and (23). For larger �2T , the shifts agree with Eqs. (25) and (26),
shown here as dotted lines. The plots show both γ2→1/γ2 = 0.25
(closed symbols) and 0.75 (open symbols), but it is only for larger
�2T that the shifts depend on this branching ratio, as shown by the
bifurcated curves at the right of the plots. Additionally, the shifts
show a small dependence on γ23→1/γ23, which can be seen from
further bifurcations at the right between γ23→1/γ23 = 0.25 (small
plot symbols) and γ23→1/γ23 = 0.75 (large plot symbols). As with
Fig. 3, the symbols and plot lines are discontinued to the right when
the line shapes are no longer simple peaks.

and

ρ00 ≈ 1 −
[

1 + |�2|2
γ2→0

(
3γ 2

2 − 4�′2
2

) − 8ξ�2γ
2
2

γ2
(
γ 2

2 + 4�′2
2

)2

]

× exp

[
−γ2→0 − 2ξ�2

γ 2
2 + 4�′2

2

|�2|2T
]

. (26)

Both Eqs. (25) and (26) exhibit shifts due to both �′
2 and ξ .

Figure 4 shows the shifts for the ρ22 and ρ00 line shapes
for the same set of parameters as used in Fig. 3. The shifts
in the figure are calculated from Eq. (7), and the lines in the
plot show that the approximations developed in this section
give good estimates for the shifts. It should be noted that
the shifts depend on whether the resonance line center is
determined by monitoring the |2〉 state population [ρ22 of
Fig. 4(a)] or the |0〉 state population [ρ00 of Fig. 4(b)].
The shifts are especially large if the |0〉 state population is
measured and if T < γ −1

2 or �2 is large. The shifts shown
in Fig. 4 have the S0 shifts subtracted. In Ref. [6], it was
shown that the S0 shift includes both the ac Stark shift and
an additional shift due to quantum-mechanical interference.
Reference [6] discusses how this additional shift is of concern
for precision measurements for which the precision of the
measurement is N times smaller than the natural width if the
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23P0
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Applied
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  Radiative  
    decay

FIG. 5. (Color online) The n = 2 triplet states of helium. For
atoms prepared in state |1〉 and a linearly polarized laser (as shown),
the states |0〉–|3〉, which are shown, form a closed four-level system,
such as that of Fig. 1. As in Fig. 1, the applied field is nearly
resonant with the |1〉-to-|2〉 transition, and interference with the
far-off-resonant |1〉-to-|3〉 transition causes small shifts. Since in this
case, state |3〉 is below state |2〉, a negative value of ω32 must be used
in the equations of Secs. II and IV.

neighboring resonance (state |3〉) is within N natural widths
of the resonance being measured. Some of the shifts shown in
Fig. 4 are much larger than S0, and thus, even more distant
neighboring resonances can be of concern for systems with
four or more states.

V. THE n = 2 TRIPLET STATES OF HELIUM

To illustrate the shifts, we consider the helium 2 3S-to-2 3P

transitions, as shown in Fig. 5. The 2 3S-to-2 3P transitions
have been measured precisely in order to determine the Lamb
shift for the helium atom [7] and in order to determine the
fine-structure constant [8–12].

In order to connect with the derivations in Sec. IV, we
assume that the initial population is optically pumped into the
2 3S1 (mJ = 1) state (labeled |1〉 in Fig. 5) and that this state is
coupled by a linearly polarized laser field to the 2 3P1 (mJ =
1) state (labeled |2〉 in Fig. 5). This laser is also coupled (far-off
resonance) with the 2 3P2 (mJ = 1) state (labeled |3〉 in
Fig. 5), and both states |2〉 and |3〉 decay radiatively to
both state |1〉 and to the 2 3S1 (mJ = 0) state (labeled |0〉 in
Fig. 5). State |0〉 is a dark state since its near-resonant coupling
to the 2 3P1 (mJ = 0) state is electric dipole forbidden. Thus,
states |0〉–|3〉 form a closed system, and the shifts derived in
the previous sections apply.

For this system, ω32 = −2π (2.29 GHz), γ −1
2 = γ −1

3 =
98 ns, γ2→0 = γ2→1 = γ3→0 = γ3→1 = γ23→1 = γ2/2, and,
because of the equality of the 〈1|z|2〉 and 〈1|z|3〉
matrix elements, �2 = �3. However, because 〈0|�r|2〉 =
−〈0|�r|3〉, γ23→0 = −γ2/2, which results in γ23 = 0. Thus, S0

is given by only |�3|2/(4ω32), which is just the usual ac Stark
shift. The additional shifts are all due to the small parameter
ξ = 3.55 × 10−4, and these shifts are listed in Table I.

The shifts in Table I are large compared to the 0.30-
and 0.35-kHz uncertainties of recent precise measurements
in this system [8,9]. Each row in Table I shows the shifts for
observing the |0〉 or |2〉 state populations after a particular
interaction time (T ) at three different Rabi frequencies (three
different intensities of the applied field). It is clear that the
shift is much more pronounced if the |0〉 state population

032508-5



M. HORBATSCH AND E. A. HESSELS PHYSICAL REVIEW A 84, 032508 (2011)

TABLE I. Frequency shifts for the helium 2 3S-to-2 3P transition shown in Fig. 5. The shifts depend on which population is being monitored
as well as on the Rabi frequency �2 and interaction time T as indicated. The shifts shown are in addition to shifts caused by the ac Stark effect
given by Eq. (21) and are calculated by evaluating the difference in ρii [using Eq. (7)] at the two half-maximum points of ρ

(0)
ii and dividing by

the slope of ρ
(0)
ii at these points. The listed values are in kiloHertz and represent frequency (not angular frequency) shifts. The values in square

brackets give the ratio of the magnitude of this shift to the FWHM of the resonance in parts per thousand.

�2T = π

4 �2T = π �2T = 4π

T/τ Sh(00) Sh(22) Sh(00) Sh(22) Sh(00)

0.2 −290[4.8] 0.11[0.002] −310[5.1] 2.2[0.054] −3600[17]
0.5 −50[2.1] 0.044[0.002] −53[2.1] 0.89[0.054] −620[7.6]
1 −14[1.2] 0.023[0.003] −15[1.2] 0.47[0.056] −170[4.1]
2 −4.3[0.66] 0.013[0.003] −4.7[0.71] 0.26[0.059] −50[2.5]
5 −1.3[0.42] 0.007[0.003] −1.4[0.44] 0.15[0.068] −10[1.2]
10 −0.81[0.39] 0.006[0.004] −0.91[0.40] 0.13[0.072] −3.9[0.75]
20 −0.67[0.37] 0.004[0.003] −0.71[0.37] 0.067[.037] −1.8[0.51]
50 −0.60[0.35] 0.002[0.001] −0.62[0.36] 0.027[0.016] −0.93[0.39]
100 −0.58[0.34] 0.001[0.001] −0.59[0.35] 0.014[0.008] −0.72[0.36]

is being measured (Sh(00) in the table). The values within
each row also show that there is a strong dependence on
the intensity of the applied field, even though the usual ac
Stark shift has already been subtracted out. The additional
power-dependent shifts need to be correctly accounted for
in precision measurements and will affect extrapolations to
zero power for such measurements. Significant shifts still
remain from quantum-mechanical interference (γ23→0 �= 0)
even in the limit of zero power, and these shifts must also
be accounted for in precision measurements. Beside each shift
in Table I, the ratio of the magnitude of the shift to the FWHM
of that resonance is listed (in parts per thousand) in square
brackets. Given that current measurement accuracy for the
helium 2 3S-to-2 3P intervals is 0.2 parts per thousand of
the natural width, the values listed in square brackets in the
table are of concern for these measurements [8]. The ratio
is larger for the cases of small T or large �2, where the
FWHM is also broader than the γ2/2π = 1.6-MHz natural
width.

Although the measurement scheme shown in Fig. 5 is a
reasonable and viable method for measuring the 2 3S1-to-2 3P1

interval, the actual measurements of the 2 3S-to-2 3P intervals
performed to date use more complicated schemes that involve
all 12 states shown in Fig. 5. While this paper gives an estimate

(based on analytic expressions) for the magnitude of the shifts
that will be present in these measurements, an analysis of the
correct shift for a particular experiment will require a full
numerical calculation based on the density-matrix equations
[an expanded set of equations similar to Eqs. (1a)–(1f)],
which correctly incorporates the details (laser polarization,
laser intensity profile, timing, detection technique, etc.) for the
particular measurement.

VI. CONCLUSIONS

In the present paper, we calculated shifts due to quantum-
mechanical interference from a distant neighboring resonance.
This paper extended the analytic formulas for the simplest
three-level system [6] to a more relevant four-level system
that included a dark state. In this extended system, the shifts
depended on the type of experiment performed (in particular,
on which state population was monitored). The shifts for
this system can be much larger than those for the simpler
three-level system. These interference shifts have been widely
overlooked by the atomic-physics precision measurements
community. As illustrated for the helium 2 3S-to-2 3P inter-
vals, the shifts are large enough to be of concern and need to
be carefully considered for precision measurements.

[1] D. A. Cardimona, M. G. Raymer, and C. R. Stroud Jr., J. Phys.
B 15, 55 (1982).

[2] D. A. Cardimona and C. R. Stroud, Phys. Rev. A 27, 2456 (1983).
[3] S. Haroche, in Topics in Applied Physics, edited by K. Shimoda,

Chap. 7, Vol. 13 (Springer-Verlag, Berlin, 1976), pp. 253–313.
[4] Z. Ficek and S. Swain, Quantum Interference and Coherence

(Springer-Verlag, Berlin, 2005).
[5] C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M.

Brewer, R. C. Brown, S. Wu, and J. V. Porto, Phys. Rev. Lett.
107, 023001 (2011).

[6] M. Horbatsch and E. A. Hessels, Phys. Rev. A 82, 052519
(2010).

[7] P. C. Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro,
and M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004).

[8] M. Smiciklas and D. Shiner, Phys. Rev. Lett. 105, 123001
(2010).

[9] J. S. Borbely, M. C. George, L. D. Lombardi, M. Weel, D. W.
Fitzakerley, and E. A. Hessels, Phys. Rev. A 79, 060503 (2009).

[10] T. Zelevinsky, D. Farkas, and G. Gabrielse, Phys. Rev. Lett. 95,
203001 (2005).

[11] J. Castillega, D. Livingston, A. Sanders, and D. Shiner, Phys.
Rev. Lett. 84, 4321 (2000).

[12] C. H. Storry, M. C. George, and E. A. Hessels, Phys. Rev. Lett.
84, 3274 (2000).

032508-6

http://dx.doi.org/10.1088/0022-3700/15/1/012
http://dx.doi.org/10.1088/0022-3700/15/1/012
http://dx.doi.org/10.1103/PhysRevA.27.2456
http://dx.doi.org/10.1103/PhysRevLett.107.023001
http://dx.doi.org/10.1103/PhysRevLett.107.023001
http://dx.doi.org/10.1103/PhysRevA.82.052519
http://dx.doi.org/10.1103/PhysRevA.82.052519
http://dx.doi.org/10.1103/PhysRevLett.92.023001
http://dx.doi.org/10.1103/PhysRevLett.105.123001
http://dx.doi.org/10.1103/PhysRevLett.105.123001
http://dx.doi.org/10.1103/PhysRevA.79.060503
http://dx.doi.org/10.1103/PhysRevLett.95.203001
http://dx.doi.org/10.1103/PhysRevLett.95.203001
http://dx.doi.org/10.1103/PhysRevLett.84.4321
http://dx.doi.org/10.1103/PhysRevLett.84.4321
http://dx.doi.org/10.1103/PhysRevLett.84.3274
http://dx.doi.org/10.1103/PhysRevLett.84.3274

