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A link between density and pair density functional theories is presented. Density and pair density scaling
are used to derive the Euler equation in both theories. Density scaling provides a constructive way of obtaining
approximations for the Pauli potential. The Pauli potential (energy) of the density functional theory is expressed
as the difference of the scaled and original exchange-correlation potentials (energies).
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I. INTRODUCTION

Nowadays, studies on electronic and spectroscopic prop-
erties of atoms, molecules, and clusters are generally based
on density functional theory. In addition to the Kohn-Sham
approach there is a growing role of the orbital-free theory.
The fact that only the Euler equation has to be solved instead
of the Kohn-Sham equations, might lead to an enourmous
simplification provided that a good approximation for the
unknown kinetic energy functional is found.

Therefore, the Euler equation is a fundamental equation
of the density functional theory [1]. There exist several
derivations of the Euler equation [2–4]. The Euler equation
of the noninteracting system has the form

δTs

δ�
+ vKS = μ, (1)

where Ts is the noninteracting kinetic energy, vKS is the Kohn-
Sham potential, and μ is the chemical potential.

Here we present a derivation using density scaling. Density
scaling was proposed by Chan and Handy [5]. In density
scaling the density �(r) is changed to ζ�(r). Earlier we
used density scaling to treat electron correlation [6,7] and
generalized to multiplets [8] and excited states [9]. Density
scaling provides an extension of the original density functional
theory. The Euler equation is derived here in the enlarged
theory.

We now extend density scaling to pair density and derive
the two-particle equation that can be considered the “Euler
equation” of the pair density functional theory. The method
provides a link between the two theories. Moreover, it is
found that the Pauli potential (energy) of the density functional
theory is expressed as the difference of the scaled and original
exchange-correlation potentials (energies). This relation gives
a constructive way of obtaining approximations for the Pauli
potential.

II. DERIVATION OF EULER EQUATION OF DENSITY
FUNCTIONAL THEORY VIA DENSITY SCALING

Consider the ground state of the Hamiltonian

Ĥ = T̂ + V̂ + V̂ee, (2)

where

T̂ =
N∑

j=1

(
− 1

2
∇2

j

)
, (3)

V̂ee =
N−1∑
k=1

N∑
j=k+1

1

|rk − rj | , (4)

and

V̂ =
N∑

k=1

Nn∑
J=1

−ZJ

|rk − RJ | (5)

are the kinetic energy, the electron-electron energy, and the
electron-nuclear energy operators, respectively. N and Nn are
the number of electrons and nuclei. The density � is defined
as

�(r) = 〈�|�̂(r)|〉� = N

∫
|�(r,σ1,r2,σ2, . . . ,rN,σN )|2

× dσ1dr2dσ2 . . . drNdσN, (6)

where ri ,σi stand for the spatial and the spin coordinates and
the integral symbol when referred to spin denotes summation
and �̂ is the density operator. The density � has the properties
that � � 0,

∫
�(r)dr = N and

∫
(∇�1/2)2dr is finite [10,11].

The noninteracting system is usually defined via adiabatic
connection [12,13] considering a Hamiltonian

ĤKS = T̂ + V̂KS, (7)

where

ĤKS =
N∑

j=1

vKS(rj ). (8)

The effective potental vKS is constructed by keeping the
ground-state density �(r) fixed.

In density scaling we construct another noninteracting
system with a scaled density �ζ (r) = �(r)/ζ , where ζ =
N/Nζ is a positive number. If ζ = 1 we get back the original
noninteracting (Kohn-Sham) system. If the original real system
has N electrons the Kohn-Sham system with the scaled density
�ζ has Nζ electrons: ∫

�ζ (r)dr = Nζ . (9)
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N is always an integer, but Nζ is generally a noninteger.
To extend the formalism to a noninteger electron number,
Chan and Handy [5] considered the grand canonical ensemble
[14,15]. Let � denote a zero temperature grand canonical
density matrix. It is defined in the Fock space

� =
∑
N

∑
i

fNi |�Ni〉〈�Ni |, (10)

where �Ni is the ith N -particle eigenfunction of the Hamil-
tonian. The occupation numbers fNi should satisfy the con-
ditions 0 � fNi � 1 and

∑
N

∑
i fNi = 1. The Kohn-Sham

system with a scaled density then is constructed by the
constrained search over the density matrices � that lead to
density �ζ

�ζ = Tr[�̂�̂]. (11)

The functional Tζ [�] is defined as

Tζ [�] = ζ min
�→�ζ

Tr[�̂T̂ ]. (12)

Chan and Handy [5] proved that Tζ [�] is a convex functional.
For convex functionals the functional derivative exists [11,16].

In this section we take Nζ = 2 and denote this value of ζ as
ζd = N/2. It means that we have a noninteracting system with
two electrons. We then apply the constrained search [10,17]
and minimize the scaled kinetic energy

−2
1

2

∫
φ∗(r)∇2φ(r)dr (13)

with a fixed scaled density

�ζd
= 2|φ|2 : (14)

Min

[
−

∫
φ∗(r)∇2φ(r)dr +

∫
�ζd

(r)vζd
(r)dr

+μ

∫
�ζd

(r)dr

]
. (15)

The constraints of the minimization include fixing the density
�ζd

and its norm [Eq. (9)] with the Lagrange multipliers vζd
(r)

and μ, respectively. The minimization leads to the equation

−1

2
∇2φ + vζd

φ = μφ. (16)

This equation can also be written as(
−1

2
∇2 + vζd

)
�

1/2
ζd

= μ�
1/2
ζd

(17)

or (
−1

2
∇2 + vζd

)
�1/2 = μ�1/2. (18)

Equations (17) and (18) can be transcripted as

− 1

2�1/2
∇2�1/2 + vζd

= μ. (19)

From Eqs. (17), (18), and (19) we can see that vζd
exists and

unique up to a constant (μ):

vζd
= μ + 1

2�1/2
∇2�1/2. (20)

Taking into account that the first term in Eq. (19) is the
functional derivative of the Weizsäcker kinetic energy [18]

Tw = 1

8

∫ |∇�|2
�

dr (21)

δTw

δ�
= − 1

2�1/2
∇2�1/2, (22)

Eq. (19) has the form

δTw

δ�
+ vζd

= μ. (23)

Define the potential vp as

vp = vζd
− vKS. (24)

From the existence of vζd
[Eq. (20)] and vKS [Eq. (8)] follows

the existence of the potential vp. Equations (23) and (24) lead
to

vp = μ − δTw

δ�
− vKS. (25)

It is customary to partition the original noninteracting
kinetic energy as

Ts = Tw + Tp, (26)

where Tp is the Pauli energy. Writing Eq. (25) in the form

δTw

δ�
+ vp + vKS = μ (27)

we immediately see that this equation is the Euler equation (1)
and vp is the Pauli potential [2,19,20], that is, the functional
derivative of the Pauli energy

vp = δTp

δ�
. (28)

From the existence of vp [Eq. (24)] follows that the functional
derivative of the Pauli energy [Eq. (28)] exists.

III. DERIVATION OF PAIR DENSITY FUNCTIONAL
THEORY VIA PAIR DENSITY SCALING

The pair density n can be calculated from the wave function
by integrating |	|2 for all coordinates except r1 and r2:

n(r1,r2) = N (N − 1)

2

∫
|	(r1,σ1,r2,σ2r3,σ3, . . . ,rN,σN )|2

× dσ1dσ2dr3dσ3 . . . drNdσN . (29)

There is a simple relation between the density and the pair
density

�(r1) = 2

N − 1

∫
n(r1,r2)dr2. (30)

It has been shown [21–23] that in the ground state the
pair density can be determined by solving a single auxiliary
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equation of a two-particle problem,[
−1

2
∇2

1 − 1

2
∇2

2 + vpdft
p (r1,r2) + veff(r1,r2)

]
n1/2(r1,r2)

= μpn1/2(r1,r2) , (31)

veff(r1,r2) = v(r1) + v(r2) + N − 1

r
, (32)

where v is the external potential and the notation r = |r1 − r2|
is used. μp is the energy needed to remove two electrons from
the N -electron system. The meaning of the potential vpdft

p will
be detailed below.

Consider an auxiliary system with a scaled pair density
nζ (r) = n(r)/ζ , where ζ is a positive number. We have to
extend the formalism to noninteger electron number as Nζ is
generally noninteger. Therefore, we consider again the grand
canonical ensemble and construct the zero temperature grand
canonical density matrix � [Eq. (10)].

In this section we take ζ = ζp = N (N − 1)/2. It means
that we have an auxiliary system with two electrons and nζ (r)
is normalized to 1∫

nζp
(r1,r2)dr1dr2 = 1. (33)

We then apply the constrained search: minimize the scaled
kinetic energy

−1

2

∫
χ∗

ζp
(r1,r2)

(∇2
1 + ∇2

2

)
χζp

(r1,r2)dr1dr2 (34)

with a fixed scaled pair density

nζp
= |χζp

|2 : (35)

Min

[
− 1

2

∫
χ∗

ζp
(r1,r2)

(∇2
1 + ∇2

2

)
χζp

(r1,r2)dr1dr2

+
∫

nζp
(r1,r2)vζp,eff(r1,r2)dr1dr2

+μp

∫
nζp

(r1,r2)dr1dr2

]
. (36)

Note that the function χζp
is defined up to a phase factor. The

minimization leads to the equation[
−1

2

(∇2
1 + ∇2

2

) + vζp,eff

]
χζp

= μpχζp
. (37)

This equation can also be written as[
− 1

2

(∇2
1 + ∇2

2

) + vζp,eff

]
n

1/2
ζp

= μpn
1/2
ζp

(38)

or [
− 1

2

(∇2
1 + ∇2

2

) + vζp,eff

]
n1/2 = μpn1/2. (39)

Equations (38) and (39) can be transcripted as

− 1

2n1/2

(∇2
1 + ∇2

2

)
n1/2 + vζp,eff = μp. (40)

Note that the potential vζp,eff exists and unique up to a constant
(μp) as it can be expressed from Eq. (40)

vζp,eff = μp + 1

2n1/2

(∇2
1 + ∇2

2

)
n1/2. (41)

Earlier we defined [21,24] (see also Refs. [25,26]) the
Weizsäcker kinetic energy with the pair density

T pdft
w =

∫
n1/2(r1,r2)

(
−1

2
∇2

1 − 1

2
∇2

2

)
n1/2(r1,r2)dr1dr2.

(42)

[Note that for convenience there is a different (from
Refs. [21,24]) factor here in the definition of the Weizsäcker
kinetic energy.] The functional derivative with respect to the
pair density has the form

δT
pdft
w

δn
= − 1

2n1/2

(∇2
1 + ∇2

2

)
n1/2. (43)

Therefore Eq. (40) can be rewritten as

δT
pdft
w

δn
+ vζp,eff = μp. (44)

Define the potential v
pdft
p as

vpdft
p = vζp,eff − veff . (45)

From the existence of vζp,eff [Eq. (41)] and veff [Eq. (32)]

follows the existence of the potential v
pdft
p . Equations (44) and

(45) lead to

vpdft
p = μp − δT

pdft
w

δn
− veff . (46)

Partition now the kinetic energy as

T = T pdft
w + T pdft

p , (47)

where T
pdft
p is the Pauli energy of the pair density functional

theory. Writing Eq. (46) in the form

δT
pdft
w

δn
+ vpdft

p + veff = μp, (48)

we immediately see that this equation is the two-particle
equation (31) and v

pdft
p is the functional derivative of the Pauli

energy with respect to the pair density functional

vpdft
p = δT

pdft
p

δn
. (49)

From the existence of the Pauli potential v
pdft
p follows that the

functional derivative of the Pauli energy with respect to the
pair density functional exists.

IV. DISCUSSION

The Euler equations derived above in the density and
pair density functional theories are very similar. They have
a similar form. Both equations include a Pauli potential. The
kinetic energy functionals (as functionals of the density or the
pair density) are unknown. Separating from them the known
Weizsäcker term, the unknown part is incorporated into the
Pauli term in both theories.
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The forms of Euler equations obtained via density scaling
[Eqs. (19) and (39)] are of importance. These are very simple,
exact equations of the many-body problem. However, the
potentials vζd

and vζp,eff include unknown terms. Density and
pair density scaling might give a practical way of construction
of these potentials. Finding an adequate approximation for the
Pauli potential is a very hard problem. Density scaling induces
a hope of constructing good approximate Pauli potentials. It
should be the subject of further research.

Beyond the similarity there are differences between the
density and pair density functional theories. The main differ-
ence, we have to emphasize here, comes from the fact that
we considered noninteracting kinetic energy in the density
functional theory. In the pair density functional theory, on the
other hand, the true interacting kinetic energy was treated.
We discuss now an important consequence of using Ts . As
it was presented earlier [5–7], there is a relation between the
original noninteracting kinetic (Ts) and exchange-correlation
(Exc) and the scaled noninteracting kinetic (Tζ ) and exchange-
correlation (Eζxc) energies:

Ts + Exc = Tζ + Eζxc. (50)

The functional derivation leads to an expression containing the
original and scaled exchange-correlation potentials:

δTs

δ�
+ vxc = δTζ

δ�
+ vζxc. (51)

Taking the case ζ = ζd and the separation Ts = Tw + Tp we
arrive at

Tw + Tp + Exc = Tw + Eζd xc (52)

or

Tp = Eζd xc − Exc. (53)

Use of Eq. (28) leads to the corresponding equation for the
functional derivatives:

vp = vζd xc − vxc. (54)

Equations (53) and (54) are expressions for the Pauli energy
and potential. What is remarkable here is the fact that the
kinetic terms Tp and vp are expressed as the difference of
the scaled and original exchange-correlation energies and

potentials. It is, of course, the consequence of Eq. (50)
that shows how the density scaling mixes the kinetic and
exchange-correlation terms. Expressions (53) and (54) make
it possible to seek alternative approximations for the Pauli
energy and potential.

The noninteracting kinetic energy functional Ts has been
in the center of interest [4,11,27–37]. The key issue is the
existence and uniqueness of its functional derivative with
respect to the electron density.

Density scaling makes it possible to find an alternative
derivation. It concerns, however, not the original density
functional theory but an extended one. As density scaling
changes the number of electrons the formalism includes
density matrices. Therefore, the Euler equation is derived
in this enlarged theory. Recently, there has been a growing
interest in orbital-free density functional theory. The present
derivation of the Euler equation might give fresh insight into
the problem and the expression for the Pauli potential and
energy might help the search for better approximations.

The enlarged theory obtained via density scaling might
have practical importance, too. In large systems with a lot
of electrons we have to solve only one equation instead of
many Kohn-Sham equations. After a good approximation is
found, it will be possible to treat huge systems that cannot
be calculated with the Kohn-Sham equations. Therefore, the
present approach is relevant to real electronic systems.

The pair density functional theory can be an alternative
approach of the density functional theory provided that an
adequate approximation for the Pauli potential of the pair
density functional theory is found. The problem is much
more difficult than in the density functional theory because
of the N -representability problem [38–54]. It is hoped that the
present derivation of the two-particle effective equation of the
pair density functional theory will turn to be useful in seeking
approximate approaches for the Pauli potential.
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[6] Á. Nagy, Chem. Phys. Lett. 411, 492 (2005).
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