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Line shape of a transition between two levels in a three-level � configuration
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We report on our study of the line shape of a transition between two levels in a three-level � configuration. By
using Poisson statistics under the assumption that the atom stays in a two-level steady state before it is optically
pumped to the reservoir state, we arrive at a simple analytic expression for the line shape of a three-level atom.
This expression reveals a new type of saturation in the time domain, which is conceptually different from that
of power-broadening in a two-level atom. It can also be used as a basis for more complicated situations of
Doppler-broadened gaseous samples or pump-and-probe spectroscopy. We tested the theory experimentally in
an ideal situation of slow pulsed 85Rb atoms and found excellent agreement. Application to measurements of a
branching ratio or a Franck-Condon factor of a diatomic molecule is discussed.
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I. INTRODUCTION

The Lorentzian line shape of a transition between two levels
is one of the best known formulas in atomic spectroscopy.
While the resonance frequency of the transition reveals the
internal structure of an atom, the line shape tells us various
relaxation mechanisms and interaction dynamics between
light and atoms. Spontaneous decay of the excited state
is represented as a natural linewidth, and saturation of the
transition is embodied as a power-broadening. When two-
level atoms are in a gaseous phase, the Lorentzian shape is
convoluted with the Maxwell-Boltzmann distribution leading
to a Voigt profile.

However, a closed two-level system is an exceptional case
and most atoms or molecules have more than one ground state,
forming a three-level � system. See Fig. 1. An alkali-metal
atom with two ground hyperfine levels or a diatomic molecule
with rovibrational levels are common examples. In such a
system, atoms in the ground state |g〉 are transferred to the
reservoir state |r〉 by an optical pumping process and the
line shape exhibits saturation and broadening, which are
conceptually different from those of the two-level system.
The effect of optical pumping on a line shape has been
extensively studied in the context of saturated absorption
spectroscopy to explain size and shape as well as the occasional
inversion of observed spectra [1,2]. This effect was also
invoked to explain the line shape in a double-resonance
optical pumping [3] and a sub-Doppler linewidth in an indium
saturated absorption spectroscopy [4]. All of these studies
were, however, pump-and-probe spectroscopy using gaseous
samples, where two-level saturation and the Doppler effect
played dominant roles. Considering its ubiquitous presence, it
is surprising that a simple expression for the line shape of a
transition between two levels in a � configuration has never
been derived. Such an expression for a stationary three-level
atom would be a counterpart to the Lorentzian line shape for
a two-level atom.

In this paper, we consider a stationary three-level �

system interacting with a single probe beam. We consider
a spectroscopic situation in which (i) the atomic sample is
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optically thin, (ii) the probe intensity is low so that the two-
level transition is far below saturation, and (iii) the fluorescent
photons are detected by a broadband detector without spectral
discrimination. We will present a simple analytic expression
for the line shape and its experimental confirmation using a
slow atomic beam.

II. THEORY

We consider a three-level system shown in Fig. 1. Initially
atoms are in the |g〉 state. During 0 � t � τ , a near-resonant
laser beam with E(t) = E0 cos ωt is illuminated to drive a
transition to the excited state |e〉. Once excited, the atom can
decay to either the |g〉 or |r〉 state with respective probabilities
p and 1 − p. The total decay rate is �. We are interested
in the integrated fluorescence as a function of the detuning
�ω = ω − ω0, where ω0 is the resonance frequency of the
g-e transition. Starting from the optical Bloch equations for
the system, we can adiabatically eliminate the coherences and
obtain the following rate equations for the populations ne, ng ,
and nr :

ṅe = Wng − (W + �)ne,

ṅg = −Wng + (W + p�)ne, (1)

ṅr = (1 − p)�ne.

W is the g-e transition rate from Fermi’s golden rule,

W = 1

2

s

4�ν2 + 1
�, (2)

where �ν = �ω/� and s is the saturation parameter for the
two-level system, s = 2 |〈e | d | g〉|2E2

0/h̄
2�2, with d being an

electric dipole moment operator. The adiabatic elimination can
be justified by noting that while the coherences change at the
rate of �, the populations change at W with W/� = s � 1.

Unlike a two-level system, where the fluorescence line
shape can be deduced from a steady-state solution, in the
� system the atoms are eventually optically pumped to the
reservoir state, and at the steady state there is no fluorescence.
We are interested in the number of photons scattered while the
atom interacts with the laser beam,

GR(�ν,τ ) =
∫ τ

0
ne(�ν,t)�dt. (3)
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FIG. 1. A transition between two levels in a � configuration.

From the rate equations with the initial conditions, ng(0) = 1
and ne(0) = nr (0) = 0, we obtain

GR = W�

2Q

[
1−e−(W+ �

2 −Q)τ

W + �/2 − Q
− 1 − e−(W+ �

2 +Q)τ

W + �/2 + Q

]
, (4)

where Q =
√

W 2 + pW� + �2/4 . Although the line shape
is given in a closed form, it is rather complicated.

Alternatively, we calculate the number of emitted photons
using Poisson statistics. We assume that while the atom stays
within the (g, e) manifold, it is in a two-level steady state so
that the photon scattering rate is

R(�ν) = 1

2

s

4�ν2 + 1 + s
�. (5)

The probability for emitting n photons during 0 � t � τ is

P (n) =
[
e−a an

n!

]
pn +

[
1 − e−a

n−1∑
k=0

ak

k!

]
pn−1(1 − p), (6)

where a = Rτ . In the first term, the atom is in |g〉 after emitting
n photons and in the second term it is in |r〉. Summation
of the probabilities instead of the probability amplitudes is
justified because each event of a spontaneous emission is an
incoherent process. P (n) satisfies the normalization condition,∑∞

n=0 P (n) = 1, and the expectation value of n, GP (�ν,τ ) =∑∞
n=1 nP (n), gives the fluorescence line shape in a compact

form,

GP (�ν,τ ) = 1 − e−(1−p)R(�ν)τ

1 − p
. (7)

In the limit of either p → 1 or Rτ � 1, GP (�ν,τ ) reduces
to the steady-state two-level case R(�ν)τ , and when τ �
τe = 1/�, it goes to 1/(1 − p), which is the average number
of photons scattered before the atom is optically pumped to
the reservoir state. The above equation and Eq. (4) appear
to be different. When τ is large enough, however, Eq. (4)
reduces to Eq. (7). In fact, numerical evaluation with p =
0.5 shows that even when s = 10, the two line shapes are
almost identical for τ � 200τe. The fractional discrepancy,
[GP (�ν) − GR(�ν)]/GR(0), is less than 1.5 × 10−3 through-
out the line shape.

Figure 2 shows numerically calculated line shapes using
Eq. (7) when p = 0.5 and s = 0.1. When τ = 50τe, the
line shape is basically Lorentzian. As τ increases to 200τe,
however, the top becomes rounded, and eventually when
τ = 1000τe, a plateau of height 1/(1 − p) appears. When

FIG. 2. (Color online) Calculated line shapes using Eq. (7) with
p = 0.5. τ = (a) 50, (b) 200, and (c) 1000τe. Frequency offset from
the resonance is normalized to �.

σ = s(1 − p)τ/τe is small, the full width at half-maximum
(FWHM) in the unit of � is given approximately by√

1 + s + σ/2. When τ/τe is larger than 1, as s increases,
the FWHM increases more rapidly than that of a two-level
system,

√
1 + s. When σ is large, the FWHM is approximately√

σ/2 ln2. We note that, for the three-level system, σ plays the
role of a saturation parameter and that the saturation takes
place in the time domain.

For an atomic beam from an effusive oven probed by a
perpendicular laser beam, the expression in Eq. (7) can be used
as a kernel for convolution with an atomic velocity distribution
to find a fluorescence line shape:

F (�ν) = N

1 − p

[
1 − 2

∫ ∞

0
x3e−x2− 1

x
(1−p)Rτ0dx

]
. (8)

N is the number of atoms from the oven per unit time and τ0

is the probe width w divided by v = √
kBT /m. T is the oven

temperature and m is the atomic mass. If we consider a D2
transition of Rb [5] when T = 200 ◦C, s = 0.1, and p = 0.5,
F (�ν) appears to be Lorentzian for small w. However, even
for w = 1 mm, the FWHM is 1.6 times �. For w larger than
2.5 mm, the plateau becomes apparent. In spectroscopy using
trapped [6,7] or slow atoms [8], the σ saturation is inevitable.

Although we considered the case of uniform probe field in
Eq. (7), an atomic beam may experience time-varying probe
intensity as it traverses, for example, a Gaussian beam. In this
case, for an atom with a well-defined velocity v, the line shape
can be written as

G(�ν) =
∫ +∞

−∞
e−(1−p)R(t)tR(t)dt, (9)

where

R(t) = 1

t

∫ t

−∞
R(t ′)dt ′,

and R(t) is the photon scattering rate in Eq. (5) of the atom
at t .

III. EXPERIMENT

In order to study the line shape and the saturation behavior
experimentally, we use the D1 transition of 85Rb from
the |g〉 = |5S1/2,F = 2〉 to the |e〉 = |5P1/2,F = 2〉 state.
The other ground hyperfine state |r〉 = |5S1/2,F = 3〉 plays
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the role of the reservoir state. The branching ratio of the
|e〉→|g〉 decay is 2/9. The lifetime τe is 29.4 ns and � is
2π × 5.41 MHz. The D1 transition is preferred to the D2
because the hyperfine structure of the 5P1/2 state is simpler. We
aim to separate the saturation behavior of the � configuration
from the power broadening of the two-level system and use
s ≈ 0.2. We also use an atomic beam from a low-velocity
intense source (LVIS) [8].

Our LVIS beam has a standard deviation of only 3 m/s
around v̄ = 11 m/s [9] and it provides a few advantages: (i)
The narrow velocity distribution allows direct comparison of
the measured line shapes with Eq. (7) without the convolution
in Eq. (8). (ii) The low velocity allows us to observe the
saturation and the plateau with a narrow probe beam. At
w = 1 mm, τ = 3100 τe. Because we have to collect photons
emitted by an atom anywhere in the probe beam with equal
efficiency, it is advantageous to have a narrow beam. (iii) An
LVIS can be operated in a pulsed mode and it increases the
signal-to-noise ratio substantially. Even when saturated, an
atom emits only 1/(1 − p) = 9/7 photons on average, and
scattered background photons can easily swamp the signal.
For the same number of sample atoms, we have to integrate
the photodetector output over a much shorter period of time in
the case of pulsed operation than in a continuous beam.

Figure 3 shows the beam machine. It consists of an
LVIS built around a cube and a probe region. A gold-coated
quarter-wave plate with a 2-mm diameter hole is placed on
the downstream side of the cube. The atomic and the probe
beams intersect at the center of another cubical chamber at 13
cm downstream from the LVIS center. In designing the probe
chamber, special care was taken to maximize fluorescence
detection and minimize the scattered photon background. A
spherical mirror at the bottom reflects and a polished copper
cylinder at the top guides the fluorescent photons to the 28-mm
diameter detector at the top of the cube (inset in Fig. 3).
Because we do not want to discriminate photons originating
from the extended probe area, no imaging optics are employed.
A pair of 20-cm-long tubes with Brewster windows on both
sides of the cube guide the probe beam in and out of the
interaction region. There are three annuli in each tube to block
the photons scattered from the windows. Inside of the tubes
and the annuli are coated with graphite to minimize stray

FIG. 3. (Color online) The beam machine consisting of a low-
velocity intense source and a probe region. The inset shows the side
view of the probe region. PD denotes photodiode.

reflections. With these precautions, only 1 × 10−5 of the probe
power contributes to the background.

Two extended-cavity diode lasers (ECDL’s) provide the
trapping and repumping power for the LVIS magneto-optical
trap (MOT). To produce the probe beam, a master ECDL
is locked to the |r〉 = |5S1/2,F = 3〉 to |e〉 = |5P1/2,F = 2〉
transition and a slave ECDL is, in turn, locked to it with a
frequency offset of around 3 GHz provided by a frequency
synthesizer. The probe is scanned around the |g〉 = |5S1/2,F =
2〉 to |e〉 transition by scanning the synthesizer. The probe
beam is transferred via a polarization-maintaining single-mode
optical fiber. Its output is transformed to a vertically elongated
shape with the e−2 intensity diameters of 6.4 and 2.8 mm.
It goes through a linear polarizer and the output power is
stabilized with an acousto-optic modulator placed upstream of
the fiber. Then the beam width is defined by a variable slit and
1:1 imaged to the interaction region by a lens with a 17.5 cm
focal length. In the measurement, the maximum slit width is
1 mm so that the probe beam intensity is uniform to within
±10%. We assume that it is constant and use Eq. (7) instead of
Eq. (9) in comparing the measured line shapes with the theory.

A measurement cycle begins with loading the LVIS for
2 s while the plug beam keeps atoms from being pushed
toward the hole. The plug beam is blocked (t = 0) and a
pulse of atoms is launched. Because the MOT beam along
the beam machine, which pushes the atoms, does not contain
a repumping component, atoms are optically pumped to the
|g〉 = |5S1/2,F = 2〉 state on their way to the probe region.
At t = 10 ms, the MOT beams are shuttered off and the
anti-Helmholtz coil for the MOT is turned off. At t = 14 ms,
atoms arrive at the probe region and begin to interact with the
probe beam, which is always on. The fluorescence is integrated
for 14 ms, and after a 36-ms delay the detector output is
integrated again to measure the background. The frequency
synthesizer is stepped up and the whole cycle is repeated. The
scan is repeated a few times to obtain an average line shape.

IV. RESULTS AND DISCUSSION

We made two sets of measurements. In the first set, we
study the low saturation regime with small σ . We fix the
probe width w to 50 μm or τ = 155τe and change the

FIG. 4. (Color online) Line shapes at the low saturation regime.
The probe beam width is 50 μm and the probe intensities are (a)
0.018, (b) 0.036, (c) 0.054, (d) 0.09, and (e) 0.13 mW/cm2. The
signals are normalized to that at the plateau, IP = 3.6 mW/cm2 and
w = 200 μm. Solid lines are the theory curves from Eq. (10).
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FIG. 5. (Color online) Line shapes toward the high saturation
regime. The probe intensities are (a) 0.18, (b) 0.9, and (c) 3.6 mW/cm2

at w = 50 μm. The probe beam widths are (d) 200, (e) 600, and
(f) 1000 μm at IP = 3.6 mW/cm2. The inset shows the asymmetric
line shape for IP = 5 mW/cm2 and w = 1 mm. Solid line is from
Eq. (10) and the dotted line is without the second term in Eq. (10).

probe intensity IP from 0.018 to 0.13 mW/cm2. Because of
diffraction and limited mechanical precision of the slit, it is
not practical to reduce w below 50 μm. The results are shown
in Fig. 4. In the second set, we aim to confirm the validity
of Eq. (7) and demonstrate the time-domain saturation of the
� configuration. We increase IP from 0.18 to 3.6 mW/cm2

at w = 50 μm and then increase w from 50 μm to 1 mm or
τ = 3100τe at IP = 3.6 mW/cm2. The results are shown in
Fig. 5. Measured signals in both data sets are normalized to the
value at the plateau of IP = 3.6 mW/cm2 and w = 200 μm.

In order to compare the observed line shapes in Figs.
4 and 5 with Eq. (7), we have to first find the saturation
intensity IS for the |g〉 = |5S1/2,F = 2〉 to |e〉 = |5P1/2,F =
2〉 transition. For unpolarized atoms, IS is 17.7 mW/cm2.
However, atoms from the LVIS are produced by a circularly
polarized light and their Zeeman distribution is not known. We
use IS as a fitting parameter and find that IS = 20 mW/cm2

gives the best fit to all the data. When IP = 3.6 mW/cm2,
s = 0.18. In addition, even for the line shape (a) in Fig. 4
with σ = 0.11, the FWHM is 7.9 MHz. We think that the
extra width is contributed by a residual Doppler shift from
the transverse atomic motion, a Zeeman shift by ambient
field, and laser frequency fluctuations. We incorporate this

extra width by adding ε = 1.1 to the denominator of R in
Eq. (5): R(�ν) = s�/2(4�ν2 + 1 + ε + s). Finally, we note
that when w � 200 μm, the plateau keeps on rising and the
line shape becomes asymmetric. See the inset in Fig. 5 for
IP = 5 mW/cm2 and w = 1 mm. This is due to the |g〉
to |e′〉 = |5P1/2,F = 3〉 transition, which is 362 MHz blue
detuned from the g-e transition. The saturation intensity for
the g-e′ transition is I ′

S = 5.1 mW/cm2 and the |e′〉 state
decays to the |g〉 state with a probability p′ = 5/9. When
IP = 5 mW/cm2 and w = 1 mm, the FWHM of the parasitic
transition is 168 MHz, and its effect on our main transition is
apparent.

From these considerations, we use as a fitting function

g(�ν) = (1 − p)[GP (�ν,τ ) + G′
P (�ν − ν0,τ )], (10)

where R(�ν) = s�/2(4�ν2 + 1 + ε + s) and for the second
term ν0 = 67, p′ = 5/9, and I ′

S = 5.1 mW/cm2. Note that
g(�ν) is normalized to 1 when the contamination from the
parasitic transition is neglected. The theoretical curves are
represented as solid lines in Figs. 4 and 5 and they show
excellent agreement with the data.

V. SUMMARY

In summary, we derived a simple analytic expression
for the line shape of a transition between two levels in
a � configuration. It is a three-level counterpart to the
Lorentzian line shape of a two-level system. We compared the
theory with the line shapes obtained in an ideal experimental
situation. We note that one can measure a branching ratio in
a � configuration or a Franck-Condon factor of a diatomic
molecule by comparing the sizes of the plateaus. In the recent
work on a CaF beam [10], the rate equations involving four
levels were numerically integrated to extract the excited-state
lifetime and Franck-Condon factor from the observed line
shape.
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