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Long-lived states of antiprotonic lithium p̄Li + produced in p̄+ Li collisions
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Antiproton capture by lithium atoms (p̄ + Li → p̄Li+ + e) is investigated at collision energies from 0.01 to
10 eV by using a semiclassical (also know as quantum-classical hybrid) method, in which the radial distance
between the antiproton and the Li+ ion is treated as a classical variable, and the other degrees of freedom are
described by quantum mechanics. Analyzing the wave packet of the emitted electrons and making use of the
energy conservation rule enable us to calculate the state distribution of the produced antiprotonic lithium p̄Li+

atoms and also to distinguish between the capture and ionization (→ p̄ + Li+ + e) channels at collisional energies
above the ionization threshold. This method is tested for the capture of negative muons by hydrogen atoms, which
was rigorously investigated in previous quantum mechanical studies. Most of the p̄Li+ atoms produced in p̄ + Li
are found to be sufficiently stable against Auger decays and are experimentally observable as long-lived states.
The present system bears close similarities to the system of p̄ + He(2S). It is therefore expected that long-lived
antiprotonic helium p̄He+ atoms can be efficiently produced in the p̄ capture by metastable He(2 3S) atoms.
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I. INTRODUCTION

Special attention is payed to long-lived states of an-
tiprotonic helium atoms (p̄He+) produced in the capture of
antiprotons (p̄) by helium atoms [1–3]. Delayed annihilation
of p̄ in gaseous, liquid, and solid helium is attributed to the
existence of the long-lived p̄He+ atoms [1]. Furthermore, a
spectroscopic measurement of the p̄He+ atoms is an effective
means of determining the fundamental physical constants such
as the p̄ mass [2,3]. The p̄He+ states produced in the capture
reaction are embedded in the continuum p̄He2+ + e, and are
usually unstable due to a prompt Auger transition. However,
if the p̄ orbital in p̄He+ has a large principal quantum number
N and, additionally, an angular momentum quantum number
L close to the maximum N − 1 (i.e., a circular or near-circular
state), the Auger transition requires a large angular momentum
change and hence can be suppressed [4–7]. This mechanism
of Auger suppression was proposed by Condo [4] and Russell
[5], and is considered to be the reason for the existence of
long-lived p̄He+ atoms. As for the p̄ capture by other rare-gas
atoms, however, no positive evidence was experimentally
found for long-lived antiprotonic atoms [1,8]. For these targets,
although it was estimated that the probability of capture into
the near-circular states should be negligible [9], the full details
are still unknown.

Ahlrichs et al. [10] calculated the Born-Oppenheimer (BO)
potentials of the p̄ + Li+ and p̄ + Li2+ systems and suggested
that the Auger process of the circular state (L = N − 1) in
antiprotonic lithium atoms (p̄Li+) can be much slower than
that in p̄He+. A similar study was made by Révai and Belyaev
[11]. Shimamura et al. [12] further pointed out that the Auger
transition can also be strongly suppressed for much lower L

other than for L ∼ N − 1. Thus, one can expect a more en-
larged possibility of producing long-lived antiprotonic atoms
in the p̄ + Li collisions as compared with the case of p̄ + He.
Nevertheless, in confirmation of the experimental observabil-
ity of p̄Li+ as the quasibound system, it is very important
to know the precise distribution of the p̄Li+ states produced
in the capture process and then to investigate the stability

of the individual states. Cohen made a theoretical study of
the capture in p̄ + Li by using a fermion-molecular-dynamics
(FMD) method [13]. Unfortunately, only the total capture cross
sections were calculated in his study. At the present time,
no theoretical calculation has been performed for the state
distribution of the p̄Li+ products in the p̄ + Li collisions.

Recently, several quantum mechanical (QM) calculations
were carried out to provide the product-state distribution in
the captures by H, He+, and He [14–17]. However, the QM
calculation becomes exceedingly troublesome for the p̄ + Li
system because the diffuse orbital of the valence 2s electron is
involved. In the capture reaction, the binding energy of the p̄

orbital in the p̄Li+ product likely matches that of the valence
electron in the Li target. Then, the produced p̄Li+ states consist
of very high principal quantum numbers N ∼ 60, which
further complicate a sophisticated QM treatment. Another
possibility of performing a reasonable study for such cases
is to employ a semiclassical (SC) approximation, in which
the electron motion is described by quantum mechanics, and
the heavy particle motion is assumed to be classical.1 The
SC calculations of the capture process were carried out for
a H target by Kwong et al. [18] and the present author
[19,20]. Although the SC method succeeded in reproducing
the total capture cross sections obtained by previous QM
calculations [20], it was unable to provide the product-state
distribution. A previous study [20] has confirmed, however,
that the mechanism of electron emission can be properly
understood within the framework of the SC method. It suggests
that the SC method might also be usable for getting information
of the product-state distribution if one made good use of the
conservation laws of angular momentum and of energy.

In this paper, an SC method is developed which allows the
calculation of the state distributions of the antiprotonic atoms
produced in p̄ capture by atoms. The results are presented for

1This approach is also referred to as a quantum-classical hybrid
approximation
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the capture process p̄ + Li → p̄Li+ + e, and the possibility
of the formation of long-lived p̄Li+ atoms in this process is
discussed. The cross section for the ionization process p̄ +
Li → p̄ + Li+ + e is also calculated. A further comment is
provided on the long-lived p̄He+ atoms produced in p̄ capture
by metastable He(2 3S) atoms.

II. THEORY

A. Interaction

We assume that the p̄ + Li system can be regarded as a
three-body (p̄,Li+,e) problem, and that the interaction is given
by the sum of the two-body terms; that is,

V = Ve-Li+ (r) + 1

|R − r| + Vp̄-Li+(R), (1)

where r is the position vector of e from Li+, and R is that of
p̄ from Li+. Thus, in the present study, the processes related
to multielectron emission and to inner-electron excitation are
neglected. It is naturally expected that these processes occur
much less frequently than valence-electron emission. The
effect that the Li+ core is not a point charge is included in
the two-body local potentials Ve-Li+(r) and Vp̄-Li+(R), which
behave as Ve-Li+(r) = −1/r and Vp̄-Li+(R) = −1/R at large
distances. For the valence electron in Li, Peach et al. [21]
provided a semiempirical-model potential, which gives the
2s-state energyELi = −5.39 eV. This potential was adopted for
Ve-Li+ (r). The relative motion between p̄ and Li+ is determined
by the potential Vp̄-Li+(R). In the case of p̄He+, the BO
approximation is appropriate for the high p̄ orbital motion,
which can thus be regarded as the molecular vibration [22].
For this reason, the BO energies, calculated by Ahlrichs et al.
[10], were used for obtaining Vp̄-Li+(R). The same type of
approximation for the interaction was employed by Tong et al.
in the study of the p̄ capture by He [15].

B. Semiclassical method

In the present SC method, differently from the ordinary
method, only the radial distance R is treated as a classical
variable, and all the other motions are described by quantum
mechanics [23]. For the quantum mechanical part of the
Hamiltonian, we consider

H̃ = L̃2

2mRR2
− 1

2mrr

∂2

∂r2
r + l̃2

2mrr2
+ V0, (2)

where L̃ is the angular momentum operator of p̄Li+, l̃ is
the electron angular momentum operator, mR and mr are the
reduced masses of p̄ + Li+ and e + Li+, respectively, and

V0 = Ve-Li+(r) + 1

|R − r| (3)

is the interaction associated with the quantum mechanical
motion. Here and in the following, we use a.u. unless otherwise
stated. The advantage of the present SC treatment is that the
conservation of the total angular momentum J̃ = L̃ + l̃ is taken
into account quantum mechanically. This allows us to directly
calculate the angular momentum distribution of the products
after the collisions. In the coordinate system (R,r) employed
in Eq. (2), the cross term actually arises in the kinetic energy

operators (known as the mass polarization effect in the atomic
structure [24]). However, because the p̄ mass is much smaller
than the Li+ mass, we can practically neglect the cross term
(cf. Sec. III B).

The time-dependent Schrödinger equation in the SC method
becomes

i
∂

∂t
�JM (R̂,r,t) = H̃�JM (R̂,r,t). (4)

For the convenience of numerical calculations, the body-fixed
(BF) frame in which the z axis is chosen along R is introduced.
Using L̃2 = (J̃ − l̃)2 in the BF frame, we can write the total
wave function �JM (R̂,r,t) in the form [23]

�JM (R̂,r,t) = 1

r

∑
λ�0

DJ
Mλ(R̂)ψJλ(r,t)

× exp

[
− i

∫ t J (J + 1)

2mRR2
dt ′

]
, (5)

where (J,M) are the total angular momentum quantum
numbers, λ is the magnetic quantum number of l̃z = J̃z, and

DJ
Mλ(R̂) =

[
2J + 1

8π (1 + δλ0)

]1/2

× [DJ
Mλ(R̂) + (−1)λDJ

M−λ(R̂)]∗ (6)

is the symmetrized and normalized form of the Wigner’s
rotation matrix element DJ

Mλ(R̂).

C. Initial condition and classical trajectory

The initial condition of the wave function ψJλ(r,t) in
Eq. (5) can be chosen as [20]

ψJλ(r,t = 0) = χ (r; R0) δλ0, (7)

where χ (r; R0) represents the BO state of p̄ + Li, correlating
with the ground state of Li, and R0 = R(t = 0) is the initial
radial distance. The BO wave function χ (r; R) is given by[
− 1

2mrr

∂2

∂r2
r + l̃2

2mrr2
+ V0

]
1

r
χ (r; R) = EBO(R)

1

r
χ (r; R).

(8)

The BO electronic energy EBO(R) has the limit EBO(∞) =
ELi = −I , with I being the first ionization energy of Li.

As was discussed in the previous SC study [20], the time
dependence of the variable R(t) can be given by the following
classical equation of motion:

E + ELi = mR

2

(
dR

dt

)2

+ Ueff(R), (9)

where E is the collision energy and

Ueff(R) = (J + 1/2)2

2mRR2
+ EBO(R) + Vp̄-Li+(R) (10)

is the effective potential. The p̄ + Li adiabatic potential
Uad(R) = EBO(R) + Vp̄-Li+(R) has the asymptotic (R → ∞)
form

Uad(R) → ELi − α

2R4
, (11)

where α is the polarizability of Li.
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D. Capture state analysis

In the present treatment, the trajectory R(t) given by
Eq. (9) never exhibits capture behavior: R always diverges
at t → ∞. However, it is found that the probability of electron
emission can be obtained with reasonable accuracy by using
this trajectory [20]. Here, we consider the collision energies
to be below the first ionization threshold of Li (i.e., E < I ).
Then, the electron emission probability is just equal to the
capture probability, and the whole of the angular-momentum
and kinetic-energy distribution of the emitted electrons can be
related to the state distribution of the produced p̄Li+ atoms.

To discuss the product-state distributions, one needs to
express the total wave function �JM in the space-fixed (SF)
frame; that is,

�JM (R̂,r′,t) = 1

r

∑
Ll

YJM
Ll (R̂,r̂′)f J

Ll(r,t)

× exp

[
−i

∫ t J (J + 1)

2mRR2
dt ′

]
, (12)

where r′ is the electron coordinates represented in the SF
frame, L is the angular momentum quantum number of p̄Li+,
l is the electronic quantum number, the summation is restricted
to (−1)J+L+l = 1 owing to the parity conservation, and
YJM

Ll (R̂,r̂′) is the eigenfunction of the total angular momentum
given by

YJM
Ll (R̂,r̂′) =

∑
MLm

(LMLlm|JM)YLML
(R̂)Ylm(r̂′), (13)

with the Clebsch-Gordan coefficient (LMLlm|JM) and the
spherical harmonics YLML

. We notice the following relation
between the SF and BF angular basis functions [25]:

YJM
Ll (R̂,r̂′) =

∑
λ�0

UJl
LλDJ

Mλ(R̂)Ylλ(r̂), (14)

with the orthogonal transformation matrix element

UJl
Lλ =

(
2L + 1

2J + 1

)1/2

(L0lλ|Jλ)
1 + (−1)J+L+l

[2(1 + δλ0)]1/2
. (15)

Then, we can show that the wave function f J
Ll(r,t) in Eq. (12)

is calculated from ψJλ(r,t) in Eq. (5) by using

f J
Ll(r,t) =

∑
λ�0

UJl
Lλ〈Ylλ|ψJλ(t)〉r . (16)

For a sufficiently large r = r0, the wave function f J
Ll(r0,t) rep-

resents the motion of emitted electrons and can be expressed
in the wave-packet form as

f J
Ll(r0,t) =

∫
gJ

Ll(r0,ε)CJ
Ll(ε)e−iεt dε, (17)

where gJ
Ll(r,ε) is the out-going stationary wave function of

the electron having the kinetic energy ε and satisfying the
unit-energy normalization. From this definition, the coefficient
CJ

Ll(ε) is related to the probability density by

dP J
Ll

dε
= ∣∣CJ

Ll(ε)
∣∣2

. (18)

For the numerical calculation of |CJ
Ll(ε)|2, it is convenient to

analyze the outgoing flux of electrons [26,27]. This analysis
leads to

dP J
Ll

dε
= 1

mr

Im

[(
AJ

Ll

)∗ dAJ
Ll

dr

]
r=r0

, (19)

where

AJ
Ll(r,ε) = 1√

2π

∫
eiεtf J

Ll(r,t)dt. (20)

Integration of dP J
Ll/dε over ε and the summation over l yield

the probability of capture into the L state:

P J
L =

∑
l

∫
dP J

Ll

dε
dε = 1

mr

∑
l

∫
Im

[(
f J

Ll

)∗ df J
Ll

dr

]
r=r0

dt.

(21)

Further summation over L gives the total capture probability:

P J =
∑
L

P J
L = 1

mr

∑
λ�0

∫
Im

〈
ψJλ

∣∣∣∣dψJλ

dr

〉
r=r0

dt. (22)

In order to obtain the relation between the electron energy
ε and the internal state of the p̄Li+ atom, we apply the
conservation rule of the total energy Etot; that is,

Etot = E + ELi = ENL + ε, (23)

where ENL is the energy of the vibrational motion supported
by the potential Vp̄-Li+ (R). The principal quantum number N of
the p̄ orbital in p̄Li+ can be defined by N = v + L + 1, with
v being the classical counterpart of the vibrational quantum
number; namely,

v + 1

2
=

√
2mR

π

∫ R2

R1

[
ENL − (L + 1/2)2

2mRR2

−Vp̄-Li+ (R)

]1/2

dR, (24)

where R1 and R2 are the turning points of the vibrational
motion. It should be noted that N is a continuous variable in
the present treatment. By using Eq. (23), we can have

dP J
Ll

dN
=

∣∣∣∣∂ENL

∂N

∣∣∣∣ dP J
Ll

dε
, (25)

and the derivative ∂ENL/∂N is easily calculated from Eq. (24).
We define the probability (density) of the capture into the
(N,L) state as

dP J
L

dN
=

∑
l

dP J
Ll

dN
. (26)

The idea of utilizing the energy conservation in the SC method
was adopted by Ovchinnikov and Macek [28] in the calculation
of p̄ capture by H. However, the addition of the angular
momenta and the relation between the BF and SF frames were
not properly taken into account in their study.

The total capture cross section is given by

σ = π

2mRE
�, (27)
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with

� =
∑

J

(2J + 1)P J . (28)

We define the energy distribution of the emitted electrons by

F (ε) = 1

�

∑
JLl

(2J + 1)
dP J

Ll

dε
(29)

and the state distributions of the products p̄Li+ by

F (N,L) = 1

�

∑
J

(2J + 1)
dP J

L

dN
, (30)

F (N ) = 1

�

∑
JL

(2J + 1)
dP J

L

dN
, (31)

F (L) = 1

�

∑
J

(2J + 1)P J
L . (32)

E. Collision energies above the ionization threshold

When the collision energy is above the first ionization
threshold (i.e., E > I ), the ionization channel (→ p̄ + Li+ +
e) becomes open. In the present study, we can distinguish
between the capture and ionization channels according to
ε > E + ELi or ε < E + ELi. At collision energies E > I , the
total capture probability thus becomes

P J =
∑
Ll

∫ ∞

E+ELi

dP J
Ll

dε
dε (33)

and the total ionization probability is given by

P J
ion =

∑
Ll

∫ E+ELi

0

dP J
Ll

dε
dε. (34)

The total ionization cross section σion is defined in the same
way as in Eq. (27).

III. NUMERICAL CALCULATION

A. Numerical consideration

The BO electronic energies EBO(R) of the p̄ + Li system
was calculated by using the grid-representation method based
on orthogonal polynomials [20,23]: the Laguerre polynomials
with 150 points for the r coordinate and the Legendre
polynomials with three points for the angular (θ = cos−1 R̂ · r̂)
coordinate. This set of parameters gives the polarizability of
Li, α = 168 a.u., which is very close to the accurate value
162 a.u. [29]. In Fig. 1, the electronic energy EBO(R) and the
p̄ + Li adiabatic potential Uad(R) are plotted and compared
with those of the p̄ + H system. For reference, several energy
levels ENL of the p̄Li+ atom are shown for L = 50. Because
V0 → R · r/r3 in the limit r → ∞, an infinite series of
electronic bound states exists in Eq. (8) at R > 0.639 a.u. [30],
and EBO(R) should be zero at R = 0.639 a.u. The present
calculation provides R = 0.949 a.u. for such a critical point. If
the distance is R � 1 a.u., it is hard to determine numerically
the accurate value of EBO(R), which is very close to zero.
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FIG. 1. Electronic energies EBO(R), adiabatic potential Uad(R) −
ELi, and polarization potential −α/(2R4) of p̄ + Li. Electronic
energies and adiabatic potential of p̄ + H are also shown. The
horizontal bars are the energy levels ENL − ELi of p̄Li+ for L = 50.

However, the accurate value is not so important in the present
study since the term Vp̄-Li+(R) dominates the p̄ + Li adiabatic
potential Uad(R) at R < 2 a.u. In the trajectory calculation,
EBO(R) = 0 is assumed at R < 0.949 a.u., as in the previous
treatment [20].

For the numerical calculation of the wave function ψJλ(r,t)
in Eq. (5), the grid-representation method was also employed.
The details are given in Ref. [23]. Depending on whether
λ = even or odd, the Legendre or Gegenbauer polynomials
with three points were adopted for the θ coordinate. For
the electron motion, since it was necessary to accurately
evaluate an outgoing flux at r = r0 = 45 a.u., the Chebyshev
polynomials with 530 points were adopted in the range
0 � r � 80 a.u., and the complete absorbing potential [23]
was applied to avoid reflection from the outer boundary. The
channels of λ = 0 and 1 were coupled, and the initial distance
was chosen as R0 = 5 a.u. The SC calculation was carried
out at collision energies 0.01 � E�10 eV. The total angular
momenta considered in the calculation are J � 33 at E =
0.01 eV and J�125 at E = 10 eV.

The existence of the unphysical 1s state supported by
the potential Ve-Li+ (r) may have an adverse effect on the
present results. One can remove this effect by applying the
projection operator P̃ = 1 − |1s〉〈1s|, with |1s〉 representing
the unphysical 1s state. In the present study, the SC calculation
was carried out also by using the projected Hamiltonian. It can
be found that the effect of the unphysical 1s state is negligible.
This is because the unphysical state has an energy (∼−50 eV)
much lower than the 2s state. Therefore, we do not need to
worry about the presence of the unphysical 1s state.

The relation between the principal quantum number N and
the energy level ENL is plotted in Fig. 2 for L = 20,40,60, and
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FIG. 2. Principal quantum numbers N plotted against the bound-
state energy ENL of p̄Li+. The hydrogenic formula ENL =
−mR/(2N 2) is also shown.

70. If the Li+ core can be regarded as a point charge, the energy
is given by the hydrogenic formula −mR/(2N2). As can be
seen in Fig. 2, the hydrogenic formula is applicable for L � 60
and is no longer useful for low L � 40. The core (Li+) effect is
larger for lower L, and the potential Vp̄-Li+(R) is more attractive
than −1/R at small distances [10]. Therefore, the energy ENL

for a fixed N decreases with decreasing L. As in the case
of Rydberg atoms [31], it is interesting to express the energy
level in the form ENL = −mR/[2(N − ηNL)2], with ηNL being
the quantum defect. Figure 3 shows the quantum defect ηNL

plotted against N for several L. As L decreases, the effective
potential of p̄ + Li+ becomes deeper and, accordingly, the
quantum defect has weaker N dependence [31]. For very
high L, although the N dependence becomes significant, the
quantum defect itself is very small (ηNL 
 N ) so that the
hydrogenic formula is a very good approximation to the energy
level.

FIG. 3. Quantum defects ηNL of p̄Li+ for several L plotted
against the principal quantum number N .

The procedure of the calculation in the SC method is
summarized as follows: (1) The time dependence R(t) is
assumed to be the trajectory determined by the adiabatic
potential Uad(R). Then, the time evolution of the wave packet
ψJλ(r,t) of the electrons is calculated in quantum mechanics.
(2) From the analysis of the outgoing flux of the electrons,
the angular-momentum and kinetic-energy distributions of the
emitted electrons are calculated. (3) Since the conservation
of total angular momentum is properly taken into account,
the L-state distribution of the capture products can be
straightforwardly obtained. (4) By assuming conservation of
total energy, one can derive the (N,L)-state distribution of the
capture products.

B. Applicability assessment of the present method

Before discussing the results of p̄ + Li, we examine the
applicability of the present method for calculating the product-
state distributions. For this purpose, we consider the capture of
negative muons μ− by H atoms [i.e., μ− + H → μ−p(N,L) +
e], since accurate QM studies of the product-state distributions
are available [14,16]. The product μ−p in this reaction is called
muonic hydrogen, and its energy level is rigorously given by
the hydrogenic formula. In the μ− + H system, the interaction
is the sum of the pure Coulomb forms.

We examine the approximation assumed in obtaining
Eq. (2); namely, that the cross term in the kinetic-energy opera-
tors is neglected. (We call it the no-cross-term approximation.)
In the present study, the QM calculation based on the R-matrix
method [16] was carried out for the capture probabilities in
μ− + H with use of this approximation. The comparison with
the previous accurate R-matrix calculation [16] shows that
the approximation is reasonably accurate. Since the μ− + H
system has a mass ratio of μ− to p similar to that of p̄ to Li+,
the no-cross-term approximation is expected to be satisfactory
also for the p̄ + Li system.

Next, the SC calculation was carried out for the state
distributions of the capture products in μ− + H. The total
angular momenta needed in this case are J�25 at collision
energies �10 eV. In Figs. 4 and 5, the SC results of the
state distributions F (N ) and F (L) are compared with the
previous QM results obtained by the R-matrix method [16]
at low energies (�1 eV) and by the time-dependent method
[14] at high energies (> 1 eV). We see that the SC method
can reasonably reproduce the QM results at all the collision
energies of �10 eV. Although the number N appears to be
continuous in the SC calculation, we may draw attention to
only its integer value. The present SC method is found to
be sufficiently reliable for the detailed investigation of the
product-state distributions. For the p̄ + Li system, much larger
values of J , N , and L are involved so that the present SC
method is expected to be more appropriate.

IV. FORMATION OF ANTIPROTONIC LITHIUM

A. State distribution

First of all, we investigate the energy distribution F (ε) of the
emitted electrons in the p̄ capture by Li. The results calculated
at several collision energies E are shown in Fig. 6. At the low
collision energies E = 0.1 and 1 eV, the distributions F (ε) are
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FIG. 4. N -state distributions F (N ) of μ−p produced in the μ−

capture by H at several collision energies E, obtained by the QM
[14,16] and the present SC methods.

almost the same and have the maximum peak at ε ∼ 0.2 eV. At
high collision energies E � 2 eV, the E dependence becomes
recognizable, and the peak position of the distribution shifts
toward higher ε with increasing E. At all the collision energies
considered here, we see that most of the emitted electrons can
only have kinetic energies falling within ε � 1.5 eV.

Figure 7 shows the L-state distribution of the capture
products p̄Li+. With increasing energy E, higher angular
momentum states can be produced. At the low energies
E = 0.01 and 0.1 eV, the distributions show an abrupt decrease
beyond a certain value L = L0 (L0 = 32 and 55, respectively).
This occurs due to the barrier (local maximum) of the effective
potential Ueff(R), which can exist for J�70. [The highest

FIG. 5. L-state distributions F (L) of μ−p produced in the μ−

capture by H at several collision energies E, obtained by the QM
[14,16] and the present SC methods.

FIG. 6. Electron-energy distributions F (ε) obtained by the
present SC method at several collision energies.

barrier height of Ueff(R) measured from ELi is 0.283 eV for
J = 70.] Let Jmax be the maximum total angular momentum
such that the barrier height is below a certain collision energy
E (cf. orbiting collisions). Then, at this energy E, the capture
reaction is classically allowed only if J�Jmax. Since the
electron angular momentum l is always very small, we can
roughly assume L0 � Jmax [16]—indeed, Jmax = 33 for E =
0.01 eV and Jmax = 57 for E = 0.1 eV (for reference, the pure
polarization potential gives Jmax = 33 and 59, respectively).
At high energies (E > 0.283 eV), there is no such potential
barrier effect, and hence the L distributions become entirely
smooth.

For each given L, the N distribution is shown at E = 0.1 eV
in Fig. 8. The principal quantum number N takes values up
to the maximum Nmax determined by Eq. (23) with ε = 0.
Furthermore, because the energies of the emitted electrons are
mostly limited to ε � 1.5 eV (Fig. 6), the capture into the

FIG. 7. L-state distributions F (L) obtained by the present SC
method at several collision energies.
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FIG. 8. (N,L)-state distributions F (N,L) for several specified L

obtained by the present SC method at the collision energy E = 1 eV.

N < 60 states remains a rare event. As just seen in Fig. 7,
the product states span a range L � 55 at E = 0.1 eV. For
such low L, the level structure of p̄Li+ is quite different from
the hydrogenic one (Fig. 2). Accordingly, Nmax is strongly
dependent on L and is getting larger as L decreases: The
assumption of the hydrogenic level provides Nmax � 64. The
peak position ε � 0.2 eV in the distribution F (ε) at E =
0.1 eV corresponds to ENL � −5.5 eV from Eq. (23). We
can roughly estimate the peak positions in Fig. 8 by drawing
the line ENL = −5.5 eV in Fig. 2. For the case of a high
collision energy (E = 4 eV), the N distribution for each L is
shown in Fig. 9. At this energy, as seen in Fig. 7, the states
with very high L (>50) are abundantly produced. Because the
level structure becomes hydrogenic for these high-L values
(Fig. 2), most of the major distributions in Fig. 9 are gathered
around N � 115 and have a similar value of Nmax (�125). An
interesting feature observed in Fig. 7 is that the distribution
profile for low L (�45) seems to be qualitatively different
from that for high L (�45) at all the energies E � 0.1 eV. It
is evident that this feature reflects the level structure of p̄Li+.
No such feature can be observed in μ− + H (Fig. 5): The level
structure of μ−p is purely hydrogenic.

Figure 10 shows the N -state distribution of the capture
products p̄Li+. In this figure, only the integer values of N

are plotted. As the energy E increases, the product states with
higher N becomes energetically allowed. The fact that very
high states N > 60 are always associated with the capture
process encourages us to apply the SC method to this problem.
As in the case of the L distribution F (L) (Fig. 7), the
N distribution also consists of two parts (e.g., N ≶ 67 at
E = 0.1 eV, N ≶ 82 at E = 2 eV, and N ≶ 126 at E = 4 eV).
From the discussion given above, we can associate the lower-N
part of the distribution with the products having the hydrogenic
high-L states and the higher-N part with the products having
the nonhydrogenic low-L states. The comparison with the
μ− + H system is also interesting: In Fig. 4, the “high-N tail”
(i.e., the nonhydrogenic part) of the distribution is intrinsically
missing. In order to accurately calculate the product-state

FIG. 9. (N,L)-state distributions F (N,L) for several specified L

obtained by the present SC method at the collision energy E = 4 eV.

distributions in p̄ + Li, one must take account of the fact that
the p̄Li+ atom has a nonhydrogenic level structure.

B. Total cross section

The total capture cross sections σ at collision energies E =
0.01 − 5 eV are shown in Fig. 11. The capture cross section
for the Li target is much larger than that for the H and He
targets [14,15,20] because the 2s valence state of Li is very
diffuse. At very low energies, the so-called Langevin cross
section σL = π (2α/E)1/2 can be a measure of the ion-molecule
reaction cross section. In Fig. 11, the scaled Langevin cross
section κσL with κ = 0.67 is plotted, and we see that it agrees
well with the present SC cross section at E � 0.2 eV; the
factor κ = 0.67 is smaller than κ = 0.89 in p̄ + H [20]. If
the local maximum of the effective potential Ueff(R) plays no
important role (i.e., E > 0.283 eV), the adiabatic ionization
(AI) model [32] may be more reasonable. However, the AI

FIG. 10. N -state distributions F (N ) obtained by the present SC
method at several collision energies.
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FIG. 11. Total capture cross sections σ obtained by the present
SC method at collision energies E = 0.01 to 5 eV. Also shown are
the FMD results [13], the Langevin cross sections multiplied by the
factor κ = 0.67, and the cross sections obtained by assuming the AI
form with the fitting parameter R0 = 1.3 a.u.

model usually provides too-small capture cross sections [32].
Here, the capture cross section is assumed to have the same
form as the AI one:

σAI = π (R0)2

E
[E − Uad(R0) + ELi], (35)

where R0 is treated rather as a fitting parameter: R0 may be
regarded as an effective interaction range. In Fig. 11, the result
of the AI model with R0 = 1.3 a.u. is shown, and it nicely
reproduces the present cross sections at E � 0.2 eV. As in the
case of the p̄ + H system [20], we may offer an empirically
fitting formula for P J vs RTP, with RTP being the classical
turning point in Eq. (9). Using the present SC data, we may
have

P J
fitting = [1.08 − 0.493 exp(1.14RTP)]

× exp[−0.0237(RTP)5.14], (36)

within the error of ∼10%. This formula is useful for roughly
estimating the total capture cross section in p̄ + Li at any
energy below the ionization threshold. Equation (36) provides
very small probabilities for RTP > 3 a.u. and has the local
maximum at RTP � 1.1 a.u., which is slightly smaller than
R0 in Eq. (35). Cohen carried out the FMD calculation of
the total capture cross sections in p̄ + Li [13]. His results are
also shown in Fig. 11. The FMD cross sections at the two
lowest energies reported by Cohen are not so different from
the present results. However, the applicability of the FMD
method at very low energies is problematic because it cannot
accurately describe the polarization effect [13].

In the energy range E = 4 to 10 eV, the total capture cross
sections σ are displayed in Fig. 12. The breakup ionization
channel is open at energies above the threshold I = 5.39 eV.
The total ionization cross sections σion obtained by using
Eq. (34) are also shown in Fig. 12. At collision energies
exceeding E = I , the capture cross section decreases rapidly,
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FIG. 12. Total capture (σ ) and total ionization (σion) cross sections
obtained by the present SC method at collision energies E = 4 to 10
eV. The ionization threshold of Li is I = 5.39 eV. Total capture cross
sections obtained by the FMD method [13] are also shown.

and, competitively, the ionization cross section rises up. Let
�ε be the width (∼1.5 eV) of the distribution F (ε) at E � I . It
is evident from Eqs. (33) and (34) that the drastic change in the
cross sections occurs at energies in a narrow range (I,I + �ε).
Since �ε is small, the ionization cross section turns out
to take large values even near the threshold (E � I + �ε);
such a feature was reported in a QM study for p̄ + H [33].
The obvious alteration in the behavior of the capture cross
section just above the ionization threshold was reported also
in the FMD and classical trajectory Monte Carlo (CTMC)
calculations for the captures by H and He targets [13,32,34,35].
For heavier targets including Li atoms, however, the FMD
calculation shows rather a smooth behavior around the first
ionization threshold [13,32]: At the energy E = 8.16 eV
(0.3 a.u.) in Fig. 12, the FMD capture cross section [13]
takes a significantly large value, although the present one is
negligibly small. Cohen presumed that multielectron processes
were attributable to the smoothness around the first ionization
threshold. In the present method, unfortunately, such effects
cannot be taken into account. For the p̄ capture by He+, the
FMD method was found to considerably overestimate the
capture cross section [17]. This may suggest that the FMD
method is unsuitable for the capture process accompanied by
the emission of inner (i.e., strongly bound) electrons. The QM
treatment of the electrons is crucial for fruitful discussion on
the multielectron effect.

V. LONG-LIVED ANTIPROTONIC ATOMS

A. Antiprotonic Lithium

The p̄Li+ atom has a decay channel due to the Auger
transition; that is,

p̄Li+(N,L) → p̄Li2+(N ′,L′) + e. (37)

Here, we discuss the stability against this Auger channel.
Figure 13 shows the effective potentials of the p̄ + Li+ and
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FIG. 13. Effective potentials of p̄ + Li2+ for the relative angular
momenta L′ = 28,35,38, and 39 (from bottom up) and of p̄ + Li+ for
L = 30,40,50, and 60 (from bottom up). The BO electronic energies
of these systems are taken from Ahlrichs et al. [10].

p̄ + Li2+ systems obtained by using the data of Ahlrichs
et al. [10]. We can see that the p̄ + Li2+ effective potential is
everywhere positive for L′ � 39, and thus that L′ must be �38
in Eq. (37) for any L. This means that, if the state of p̄Li+ is
L � 39, then the angular momentum change �L = |L′ − L|
is �L � L − 38. Since �L is roughly equal to the angular
momentum l′ of the Auger electron, the Auger transition
should be strongly suppressed for L � 39. The minimum
of the p̄ + Li2+ effective potential for L′ = 28 is lower than
the minimum of the p̄ + Li+ one for L = 30. Therefore, it
is easily inferred that the p̄Li+ states with L � 30 can have
large Auger decay rates. If the condition that the p̄Li+(N,L)
state be measurable within the lifetime can be satisfied by
�L > 2, as in the case of p̄He+ [1,6], the states with L > 40
are measurable in p̄Li+. Figure 13 further shows that the
Franck-Condon overlap between the two states to be connected
by the Auger transition is very small if L � 50. Also in
this sense, the Auger transition would become practically
negligible for L � 50. These conclusions hold for any value
of N � L, and are not limited to the near-circular states.

Next, we examine the stability of the produced p̄Li+ state
in the capture reaction. Figure 14 shows the quantum numbers
L0 and N0 which give the maximum values of the distributions
F (L) and F (N ), respectively. From the discussion in the
previous section, we can assume L0 � Jmax if E < 0.283 eV. It
follows that L0 → 0 as E → 0. However, if E > 0.02 eV, we
have L0 > 40 so that most of the produced p̄Li+ turn out to be
fairly stable against the Auger process. Shimamura et al. [12]
suggested that the Auger transition can be suppressed always
for N > 45 unless L 
 N . In contrast to the L distribution, the
product states are always N � 60 regardless of the energy E.
Furthermore, we can see in Figs. 8 and 9 that the capture into
low-L states results in a relatively large amount of the products
having rather very-high-N states. In conclusion, long-lived
p̄Li+ is expected to be effectively produced in almost all
the capture processes except at extremely low energies. As

FIG. 14. Quantum numbers L0 and N0 which give the maximum
values of the distributions F (L) and F (N ), respectively. Shown by
the vertical dotted line is the energy (0.283 eV) corresponding to the
barrier height of the effective potential Ueff (R) − ELi for J = 70.

was suggested in previous studies [10–12], the formation
of the long-lived antiprotonic atoms occurs indeed far more
frequently in the p̄ + Li collisions than in p̄ + He. Also, for
the targets of alkali-metal atoms other than Li, the efficient
formation of long-lived antiprotonic atoms can be expected
by the same token. The present result strongly encourages the
performance of spectroscopic studies of antiprotonic lithium
in the same way as was done for antiprotonic helium [1,3],
although no delayed annihilation of p̄ was experimentally
observed in solid Li metal [36]: The capture dynamics may
differ considerably between the gas phase and the metal phase
for alkali-metal atoms.

B. Antiprotonic helium

Finally, we consider the p̄He+ atom. Figure 15 shows the
effective potentials of the p̄ + He+ and p̄ + He2+ systems
obtained by using the data of Shimamura [22]. It is interesting
that the potential feature of Fig. 15 is very similar to that
of Fig. 13. The p̄ + He2+ effective potential is always above
the He+(1s) energy for L′ � 38. We can see that the Auger
transition is strongly suppressed for the p̄He+ states with L �
38 and is promoted when L � 30.

In p̄ capture by He, Tong et al. [15] provided detailed
information on the product-state distribution at a single colli-
sion energy of 10 eV and show that the dominantly populated
(N,L) states of p̄He+ are N � 40 � 45 and L � 25– 40. As
the collision energy decreases, those corresponding L should
become small. Therefore, the p̄He+ states produced in the
capture would be mostly unstable due to the Auger transition
if the collision energy is much lower than 10 eV. For this
reason, only the near-circular states, which are produced at
a rate of only a few percent in the capture by He, can play
an important role in the measurements of p̄He+ [1,9]. It
should be mentioned here that Tong et al. [15] employed the
no-cross-term approximation, in the same way as introduced in
Eq. (2). This approximation can be validated for heavy mass
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FIG. 15. Effective potentials of p̄ + He2+ for the relative angular
momenta L′ = 27,32,37, and 38 (from bottom up) and of p̄ + He+

for L = 30,40,50, and 60 (from bottom up). The energies are
measured from the He+(1s) level. The BO electronic energies of
p̄ + He+ are taken from Shimamura [22].

targets like Li atoms (cf. Sec. III B), but its applicability to
the He target is uncertain: The no-cross-term approximation is
indeed poor with regard to the low-lying prominent resonances
in p̄ + He+ collisions [17] although resonances are absent in
p̄ + He. A further theoretical study of the p̄ capture by He is
needed.

If the He atom is in a metastable state such as 2 3S (its
binding energy being 4.77 eV), then all the conditions for
the capture and subsequent Auger processes in the case of
p̄ + He(2 3S) become analogous to those in p̄ + Li. Matching

the p̄He+ energy to the 2 3S level of He leads to the most
probable N ∼ 65, and it indeed follows that the long-lived
p̄He+ atoms having L � 38 can be produced in the capture.
The potential observability of such high-L states was also
suggested by Tolstikhin et al. [37]. On the analogy of the
present result for p̄ + Li, we can naturally expect that the states
with L � 38 are produced abundantly in p̄ + He(2 3S). Thus,
p̄ capture will be an efficient formation process of long-lived
p̄He+ if the metastable He(2 3S) atom is chosen as the target.

VI. CONCLUSION

The SC method has been developed for the calculations of
not only the total cross sections but also the product-state
distributions in the capture of antiprotons by atoms. The
applicability of the present method has been demonstrated
for the capture of negative muons by H atoms: the accurate
QM calculation was already performed for this system. By
using the present method, one can calculate the cross sections
for the capture and ionization separately even at energies
above the ionization threshold. It has been found that the p̄

capture by Li atoms occurs to form antiprotonic lithium atoms
p̄Li+ mostly in the states with L � 50 (if E � 0.1 eV) and
N > 60. Therefore, most of the p̄Li+ atoms produced in the
capture exhibit sufficient stability against Auger transition and
can be observed in experiments as long-lived states. Noting
similarities between p̄ + Li and p̄ + He(2S), one can also
expect efficient formation of long-lived antiprotonic helium
atoms p̄He+ in p̄ capture by He(2S) atoms.
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