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Quantum energy teleportation in a quantum Hall system
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We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET),
which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system
as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using
reasonable experimental parameters.
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I. INTRODUCTION

The phenomenon of quantum teleportation (QT) has been
experimentally demonstrated in quantum optics [1,2]. But, as
is well known, this protocol can teleport only information (i.e.,
quantum-mechanical information or quantum states) and not
physical objects. Thus, this protocol cannot teleport energy
because that requires a physical entity to act as an energy
carrier. For example, electricity is transported over power
transmission lines by electromagnetic waves that act as the
carrier. Recently, however, one of the authors proposed a
quantum protocol termed quantum energy teleportation (QET)
that avoids the problem by using classical information instead
of energy carriers [3]. In this counterintuitive protocol, the
counterpart of the classical transmission line is a quantum-
mechanical many-body system in the vacuum state (i.e., a
correlated system formed by vacuum state entanglement [4]).
The key lies in using this correlated system (hereinafter, the
quantum correlation channel) to exploit the zero-point energy
of the vacuum state, which stems from zero-point fluctuations
(i.e., nonvanishing vacuum fluctuations) originating from
the uncertainty principle. This energy, however, cannot be
extracted conventionally [5] as that would require a state with
lower energy than vacuum—a contradiction. In fact, no local
operation can extract energy from vacuum but instead, must
inject energy; this property is called passivity [6]. According to
QET, however, if we only limit the local vacuum state instead
of all the vacuum states, the passivity of the local vacuum state
can be destroyed, and a part of the zero-point energy, in fact,
can be extracted.

As schematically illustrated in Fig. 1, a QET system to
transfer energy from subsystem A to B consists of four
elements: (i) a quantum correlation channel, (ii) a local
measurement system for subsystem A defined on the quantum
correlation channel, (iii) a classical channel for communicating
the measurement result, and (iv) a local operation system
for subsystem B. Essentially, QET can be regarded as a
quantum feedback protocol implemented via local operations
and classical communication (LOCC). The procedure is as
follows: First, we measure the local-field fluctuations at
subsystem A. The obtained result includes information about
local fluctuations at subsystem B because of the vacuum state
entanglement via the quantum correlation channel [4]. This
is because the kinetic-energy term in the field Hamiltonian
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generates the entanglement and provides partial correlation
between local vacuum fluctuations. Thus, owing to passivity
of the vacuum state, the measurement causes some energy
(EA) to be injected into subsystem A. Next, the obtained
result is communicated to subsystem B via a classical channel.
Since the measurement performed at subsystem A is local,
subsystem B remains in a local vacuum state. As mentioned
above, if a good local operation is performed at subsystem B
using the information gained at subsystem A, it will be possible
to extract some amount of the zero-point energy of subsystem
B, EB . Thus, this protocol only gives permission to use the
otherwise unavailable energy at B. If we define teleportation
as a process of transferring energy to a remote location without
a physical energy carrier, we can say that energy is teleported
by this protocol.

Although the validity of this protocol has been confirmed
mathematically, its physical significance remains question-
able: What type of physical system is necessary for implement-
ing QET? What is the composition of the quantum correlation
channel? Can significant amounts of energy be teleported?
Unfortunately, all past proposals for experimental verification
of QET cannot teleport sufficient amounts of energy to be
measured with the present technology [7,8]. Here, we discuss
a more realistic possible implementation and estimate the
order of the teleported energy using reasonable experimental
parameters.

II. OVERVIEW OF QET PROTOCOL IN THE QUANTUM
HALL SYSTEM

Verification of QET in a realistic system requires the
following: (i) a dissipationless system, (ii) a quantum cor-
relation channel with a macroscopic correlation length, (iii)
detection and operation schemes for well-defined fluctuations
in the vacuum state, and (iv) a suitable implementation
of LOCC.

To this end, we consider a quantum Hall (QH) system
as a potential candidate. The QH effect is observed in
two-dimensional (2D) electron systems in semiconductors
subjected to a strong perpendicular magnetic field [9]. The
QH system satisfies requirement (i) because the QH effect
does not offer any resistance. Furthermore, in this system,
quasi-one-dimensional channels, called edge channels, appear
at the boundary of the 2D incompressible region of the
QH system (i.e., QH bulk). Such an edge channel can
behave as a chiral Luttinger liquid [10], along which electric
current flows in a unidirectional manner. This attribute is
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FIG. 1. (Color online) Schematic of the QET protocol.

indicative of the chirality of the edge channel. Moreover, in
experiments, the edge channel shows power-law behaviors
and does not have a specific decay length [11,12], preferable
for fairly long-distance teleportation. Thus, an edge channel
satisfies requirement (ii). Furthermore, an edge channel can
be characterized universally by charge fluctuations described
by a gapless free-boson field in the vacuum state, independent
of the detailed structures of the QH bulk state. Therefore,
the target zero-point fluctuation is the fluctuation of the
charge density wave (i.e., a magnetoplasmon [13]) propagating
in a unidirectional manner along an edge channel). This
implies that, owing to the Coulomb interaction, a conventional
capacitor can be used as a sensitive probe and control
method for detecting and manipulating zero-point fluctuations
of vacuum. Given these facts, it can be said that (iii) is
satisfied. Last, for a QH system, semiconductor nanotechnol-
ogy can be used to design on-chip LOCC, thus, satisfying
requirement (iv).

As shown in Fig. 2, element (i), i.e., the quantum correlation
channel, is the left-going edge channel S. To produce the vac-
uum state, S should be connected to an ideal electric ground,
and experiments should be performed at low temperatures—on
the order of millikelvin (mK). Regions A and B, physically
corresponding to subsystems A and B, respectively, are defined
by fabricating micrometer-scale metal gate electrodes (i.e., a
microscopic capacitor) on S.

QH edge S
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FIG. 2. (Color online) Schematic of the QH system used in this
paper. Edge channels S and U are formed at the boundaries of QH
bulk regions S and U , respectively. The arrows indicate the directions
of the propagation of charge waves.

Element (ii), used for local measurement of the zero-point
fluctuations (i.e., charge fluctuations), comprises a metal gate
electrode fabricated on S at region A as well as an amplifier
and a switch. The input resistance R of the amplifier and
capacitance C between S and the gate electrode at region
A constitute an RC circuit. When the switch is turned on,
the information on the charge fluctuations in S is imprinted
on the quantum voltage fluctuations of the electric circuit
via the Coulomb interaction and then is enhanced by the
amplifier. Here, the on-chip electrical circuit serves the
function of the voltmeter shown in the schematic in Fig. 1.
As explained later, we can assume that this RC circuit and
amplifier can operate fast enough, and the circuit can be
considered as performing a positive-operator-valued-measure-
(POVM)-type measurement [11]. The amplified signal υ (i.e.,
measurement result) is transferred through a classical channel
[element (iii)], which corresponds to an electric wire.

Element (iv), used for the local operation, includes another
edge channel P placed such that P and S approach each other
at region B. It also consists of a metal gate electrode fabricated
on P at region G and a measurement instrument, such as a
picoammeter (Fig. 2).

The experimental procedure is as follows: First, we cool
down the entire system, except the measurement instruments,
to the lowest temperature possible (on the order of several mK)
to achieve the vacuum state. Next, we only turn on the switch
for a period of τm. When a voltage signal υ arrives at region G,
it excites a charge wave packet on P via capacitive coupling.
Because of the chirality of the edge channel, the charge wave
packet travels in a unidirectional manner along P , carrying
energy E1 toward region B, where the wave packet interacts
with the zero-point fluctuation of S [14]. Then, the energy
carried by the wave packet changes from E1 to E2. Finally,
we measure the signal with the picoammeter connected to P

and, thereby, estimate the energy carried by the wave packet.
This is a unit cycle of a single-shot measurement. We may
repeat this single-shot measurement a sufficient number of
times to generate meaningful statistics. Finally, we can use
the results to estimate the average energy 〈E2〉 carried by
the wave packets. To verify that QET is actually occurring,
we must also perform a control experiment in which region
G is disconnected from the classical channel and instead,
is connected to a signal generator to excite wave packets
independent of υ. If wave packets are created by the signal
generator (i.e., no information about υ is communicated),
they will inject energy into S because of the passivity of
the vacuum state [6]. Thus, EB = E2 − E1 will be negative.
However, in our system, since wave packets explicitly depend
on υ, passivity is disturbed, and 〈E2〉 can take a positive
value; in other words, positive energy is extracted from the
zero-point fluctuations of S. Finally, if 〈E2〉 is larger in the
QET experiment than in the control, we can conclude that
the QET theory is valid—energy is teleported from A to B
without physical carriers to transport that energy. In what
follows, we prove this argument theoretically and estimate
EB by setting the experimental parameters R ∼ 10 k� [15];
C ∼ 10 fF; and vg ∼ 106 m/s [16,17], where vg is the group
velocity of a charge density wave. Length b of regions G and
B and the length of region A are approximated by a typical
length scale of l ∼ 10 μm.
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III. QET FORMULATION IN THE QH SYSTEM

A. Formulation of chiral edge channel and local measurement
of charge fluctuations

Here, we discuss the chiral field of the edge channels.
Details on the treatment of the chiral field can be found in the
literature [9]. Let us start the detailed discussion with a model
of the edge channel S. The chiral field operator �S(x) satisfies
a commutation relation [�S(x),�S(x ′)] = i ν

2π
∂xδ(x − x ′). The

energy density operator of �S(x) is written as

εS(x) = πh̄vg

νS

:�S(x)2:,

where νS is the Landau level filling factor of S and : : denotes
normal ordering, which makes the expectation value of εS(x)
zero for the vacuum state |0S〉; 〈0S |εS(x)|0S〉 = 0. The free
Hamiltonian of S is given by HS = ∫ ∞

−∞ εS(x)dx. The eigen-
value of the vacuum state vanishes: HS |0S〉 = 0. If the vacuum
state is not entangled, the two-point correlation function of
〈0S |�S(xA)�S(xB)|0S〉 with xA �= xB is exactly zero. However,
this entangled vacuum state provides a nontrivial correlation,

〈0S |�S(xA)�S(xB)|0S〉 = − νS

4π2(xA − xB)2
.

This correlation function can be calculated by using creation
and annihilation operators of the free field. Taking region
A for x ∈ [a−,a+], we adopt the RC-circuit-detector model
proposed by Fève et al. [18] to measure the voltage induced
by the zero-point fluctuations of �S(x). The charge fluctuation
at A is estimated as

QS(t) = e

∫ ∞

−∞
�S(x + vgt)wA(x)dx, (1)

with a window function wA(x) that equals 1 in x ∈ [a−,a+]
and decays rapidly outside A. In this model [18], the voltage at
the contact point between the detector and S is given by V (t) =
1
C

[QS(t) − Q(t)], where Q(t) is the charge of the capacitor.
The coupled Hamiltonian of S and the RC circuit can be
diagonalized directly, enabling analytical estimation of various
physical quantities [18]. For example, the quantum noise of the
voltage V (t) is described by an operator V̂ defined by

V̂ = −
√

h̄

πRC2

×
∫ ∞

0
dω

[ √
ω

ω − 1
iRC

ain(ω) +
√

ω

ω + 1
iRC

a†
in(ω)

]
, (2)

where ain(ω)[ain(ω)†] is the annihilation (creation) operator of
excitation of the charge density wave in the local-measurement
RC circuit and [ain(ω),ain(ω′)†] = δ(ω − ω′). Prior to the
measurement (i.e., the signal input from S to the detector),
V (t = −0) equals V̂ . Using the fast detector condition (RC 

l/vg), the voltage after the measurement is computed as

V (t = +0) = V̂ + RQ̇S(0), (3)

where RQ̇S(0) denotes the voltage shift induced by the signal
and the dot in Q̇S(0) stands for the time derivative. Using

Eq. (2), the amplitude �V of V̂ in the vacuum state |0RC〉 of
the RC circuit can be estimated as

�V =
√

〈0RC |V̂ 2|0RC〉 ∼
√

h̄

RC2
,

which is expected to be on the order of 10 μV. From
Eq. (1), the root-mean-square value of the voltage shift√

〈0S |[RQ̇S(0)]2|0S〉 is estimated to be on the order of 100 μV,
showing that the quantum fluctuations of the edge current are
detectable.

Now, we estimate the corresponding measurement
operators [19] of this voltage measurement. Clearly, this is
difficult to achieve with sufficient accuracy with a microscopic
model. However, after the amplification of the quantum noise
of the voltage V (t), the signal becomes macroscopic and
classical. Thus, we may estimate the measurement operators
of the macroscopic system comprising subsystem A, the
amplifier, and the electric wire by reducing the measurement
to the pointer basis proposed by von Neumann [20]. For this,
let us begin with a gedankenexperiment in which a high-speed
voltage meter is connected to the amplifier. Thus, the position
of the meter pointer instantaneously shifts according to the
signal strength. Assume that the pointer shift is equal to
Eq. (3). In the same manner as that used by von Neumann [20],
we can treat the macroscopic system including this voltage
meter with quantum mechanics, even though the meter is
macroscopic and classical. Therefore, the readout of the meter
pointer can be treated as a kind of quantum measurement,
which can be described by measurement operators Mv [19]
with the output value of v. The shift of the meter pointer
RQ̇S(0) in Eq. (3) can be reproduced by a macroscopic
measurement Hamiltonian given by

Hm(t) = h̄δ(t)RQ̇S(0)PV̂ ,

where PV̂ is the conjugate momentum operator of V̂ . In fact,
the time evolution generated by this effective Hamiltonian is
given by

Um = T exp

(
− i

h̄

∫ +0

−0
Hm(t)dt

)
= exp[−iRQ̇S(0)PV̂ ],

with time-ordered exponentiation, T exp, of the time-
dependent Hamiltonian and reproduces Eq. (3) as follows:

U †
mV̂ Um = V (t = +0) = V̂ + RQ̇S(0).

We are able to derive the measurement operators Mv by using
Um. First, by using the eigenvalue υ of V̂ (V̂ |υ〉 = υ|υ〉), we
can assume the initial wave function of the quantum pointer
in the υ representation as

i(υ) ∝ exp

[
− 1

4 �V 2
υ2

]
,

whereas, the wave function after the measurement is translated
as

f (υ) ∝ exp

[
− 1

4 �V 2
[υ − RQ̇S(0)]2

]
,

using Um. Next, after turning the measurement interaction
on (i.e., turning the switch on), we perform a projective
measurement of V̂ to obtain an eigenvalue υ of V̂ . This
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reduction analysis proves the measurement operator Mυ to be
f (υ),

Mυ =
(

1

2π �V 2

)1/4

exp

[
− 1

4 �V 2
[υ − RQ̇S(0)]2

]
.

The corresponding POVM is given by �υ = M†
υMυ and

satisfies the standard sum rule:
∫ ∞
−∞ �υdυ = IS , where

IS is the identity operator of the Hilbert space of �S(x).
The emergence probability density of the result being υ is
p(υ) = 〈0S |�υ |0S〉. The postmeasurement state of �S(x)
corresponding to the result υ is computed as Mυ |0S〉 up to
the normalization constant. Hence, the average state of �S(x),
right after the measurement, is given by

ρ1 =
∫ ∞

−∞
Mυ |0S〉〈0S |M†

υdυ.

The amount of energy injected by the measurement is
calculated as

EA =
∫ ∞

−∞
〈0S |M†

υHSMυ |0S〉dυ

= h̄vgνS

4π

(
evgR

2 �V

)2 ∫ ∞

−∞
dx

[
∂2
xwA(x)

]2
.

Using the experimental parameters mentioned earlier, EA can
be estimated to be on the order of 1 meV for νS ∼ 3. Since the
meter that we consider is sufficiently macroscopic such that
quantum effects can be neglected, the estimation of Mυ and
EA remains unchanged even if we directly send the amplified
classical signal to region G without the voltage meter we
assumed above.

B. Formulation of local operation and estimated
energy gain at B

Now, let us turn to the edge channel P and discuss how wave
packets can be excited at G (i.e., how to send the measurement
result to B). After the measurement result, υ is amplified
and is transferred to region G as a voltage signal through
the wire; the voltage signal (i.e., the electric field) excites a
charge wave packet of �P (y). Here, �P (y) is the chiral field
operator, the counterpart of �S(x) in the edge channel S. In
other words, by performing a υ-dependent unitary operation
Uυ on the vacuum state |0P 〉 of �P (y), a localized right-
going coherent state is generated: |υP 〉 = Uυ |0P 〉 in a region
with y ∈ [b− − L,b+ − L], where L is the distance between
regions G and B. The length b+ − b− of region B is given
by b (∼ l). This operation is realized by applying an electric
field with a strength proportional to the measurement υ on the
edge channel P . Such a unitary operation is experimentally
feasible, since charge coherent states have been demonstrated
experimentally in semiconductor quantum dots [21]. However,
in order to realize QET experimentally, proper tuning of the
unitary operation Uυ is important. Here, let Fυ(y,t) be the
electric potential (i.e., classical external potential) produced
by the amplified voltage signal at region G. By using Fυ(y,t),
the interaction Hamiltonian of Uυ is given by a linear term of
�P (y) as

Hυ =
∫ b+−L

b−−L

Fυ(y,t)�P (y)dy. (4)

Taking negative values of Fυ(y,t) ensures that the sign of EB

is positive. A standard inverting amplifier allows us to achieve
this sign reversal for Fυ(y,t) with respect to υ. Now, we assume
the potential Fυ(y,t) is as follows, and then, we discuss how
to generate this potential experimentally:

Fυ(y,t) = − πh̄

νP �V
υλB(y)δτm

(t − to),

where δτm
(t − to) is a real localized function at to with a

short-time width τm satisfying limτm→0 δτm
(t − to) = δ(t − to).

In addition, λB(y) is a window function related to the
total number of excited electrons and quasiholes from the
vacuum state. In other words, the excited wave packet, which
extends over the region with [b− − L,b+ − L], contains the
same order of λB(y). Therefore, λB(y) is related to the
shape of the metal gate electrode at region G. By using
[�P (y),�P (y ′)] = −i νP

2π
∂yδ(y − y ′), the wave form is com-

puted as 〈υP |�P (y)|υP 〉 = υ
2 �V

∂yλB(y). Because the charge
density 〈υP |�P (y)|υP 〉 can be measured directly in experi-
ments, λB(y) also is measured depending on the design of the
gate electrode at G. Here, we take the amplitude of λB(y) to be
on the order of 10. To clarify the relation between Fυ(y,t) and
the voltage signal υ, let us analyze the gain α of the amplifier.
By setting α as

α = πh̄

νP �V τm

max
y

λB(y),

the potential Fυ(y,t) is order estimated as

O(Fυ) = αO(υ) = α �V.

This suggests that the order of the potential is simply propor-
tional to the quantum noise �V multiplied by the gain. If τm is
of nanosecond order, Fυ(y,t) is on the order of 10 μV. Thus,
the amplitude and the spatial profile of Fυ(y,t) experimentally
are tunable by the gain of the amplifier and the shape of the gate
electrode, respectively. Using the approximation τm ∼ 0, this
simple interaction in Eq. (4) generates a displacement operator
given by

Uυ = exp

(
πiυ

νP �V

∫ b+−L

b−−L

λB(y)�P (y)dy

)
.

The composite state of S and P at a time T , when generation
of a charge wave packet completes, is calculated as

ρSP =
∫ ∞

−∞
dυ e−(iT /h̄)HS Mυ |0S〉〈0S |M†

υe(iT /h̄)HS ⊗ |υP 〉〈υP |.

This state is the scattering input state for the Coulomb
interaction between S and P . Then, the charge wave packet
evolves into region B by the free Hamiltonian,

HB = πh̄v

νP

∫ ∞

−∞
:�P (y)2:dy.

The average value of the energy of the wave packet is E1 =
T r[HBρSP]. This is calculated as

E1 = πh̄vg

νP

∫ ∞

−∞
[∂yλB(y)]2dy

[
〈0S |G2

S |0S〉 + 1

4

]
,

where

GS = − evgR

2 �V

∫ ∞

−∞
�S(x)∂xwA(x)dx.
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Here, E1 is estimated to be on the order of 10 meV for νS and
νP of 3 and 6, respectively. At region B, the two channels S

and P interact with each other via Coulomb interaction such
that

Hint = e2

4πε

∫ b+

b−
dx

∫ b+

b−
dy �S(x)f (x,y)�P (y).

Here, ε is 10ε0 for the host semiconductor (e.g., gallium
arsenide, GaAs), where ε0 is the dielectric constant of vacuum.
The function f (x,y) is given by 1√

(x−y)2+d2
, and d (∼ l) is

the separation length between the two edge channels at B.
After exchanging energy with �S(x), the energy carried by the
wave packet becomes E2. The energy gain EB = E2 − E1 is
estimated by the lowest-order perturbation theory in terms of
Hint as follows:

EB = −i
e2vg

4ενS

∫ ∞

−∞
dz

∫ b+

b−
dxB

∫ b+

b−
dyBf (xB,yB)

×
∫ ∞

−∞
dt

∫ ∞

−∞
dυ〈0S |M ′†

υ �S(xB + vgt)M
′
υ |0S〉

× 〈υ ′
P |[�B(z − vgtf )2,�B(yB − vgt)]|υ ′

P 〉,

where M ′
υ = US(ti − T )†MυUS(ti − T ) and |υ ′

P 〉 =
UB(ti)†|υB〉. By substituting the commutation relation
given by [�B(z)2,�B(yB)] = −i νS

π
∂δ(z − yB)�B(z) and

performing the z integral, we obtain the following
relation:

EB = e2vg

4πε

∫ b+

b−
dxB

∫ b+

b−
dyBf (xB,yB)

×
∫ ∞

−∞
dt ∂2λB[yB − vg(t − ti)]

×
∫ ∞

−∞
υ〈0S |M ′†

υ �S(xB + vgt)M
′
υ |0S〉dυ.

Note that the last integral is computed as

∫ ∞

−∞
υ〈0S |M ′†

υ �S(xB + vgt)M
′
υ |0S〉dυ

= − eυR

4 �V

∫ ∞

−∞
dx̄A∂wA(x̄A)

×�[x̄A − xB − vg(t + T − ti)] + c.c.,

where

�(x) = νS

4π2

∫ ∞

0
dk k exp(−ikx).

For the t integral of EB , let us use the Fourier transform ∂2λB

in EB as

∂2λB(y) = − 1

2π

∫ ∞

−∞
k′2λ̃B(k′)eik′ydk′.

Using
∫ ∞
−∞ dt exp[−i(k′ ± k)vgt] = 2π

vg
δ(k′ ± k), EB is esti-

mated as

EB = 3e3vRνS

4π3ε �V

∫ a+

a−
dx̄A

∫ b+

b−
dȳB

∫ b+

b−
dxB

∫ b+

b−
dyB

× 1√
(xB − yB)2 + d2

× wA(x̄A)λB(ȳB − L)

(xB + yB − x̄A − ȳB + L + vgT )5
, (5)

where vgT = O(10−2L). The parameter L + vgT [= O(L)]
corresponds to the distance between A and B. Thus, the energy
output EB is estimated as

EB ∼ e2λB

4πεl

evgR

l �V

(
l

L

)5

. (6)

Here, it should be emphasized that a positive function
λB(ȳB + L) guarantees positive EB . Obviously, from Eq. (6),
an increase in L rapidly degrades the magnitude of EB (e.g.,
EB ∼ 1 μeV for L ∼ 4l). Nevertheless, for L ∼ 2l, EB attains
a value on the order of 100 μeV. This is much larger than
the thermal energy ∼1 μeV at a temperature of ∼10 mK, at
which experiments on the QH effect are often performed (using
a dilution refrigerator). Note here that, to estimate the actual
value of EB , we need to know E1 since the energy, which can
be measured by the setup in Fig. 2, is E2 (= EB + E1). E1 can
be estimated by letting d be sufficiently large [22].

To observe EB experimentally, we turn on the switch and
measure the current passing through the edge channel P once
(single-shot measurement). The relation

ε = πh̄

νP e2vg

j 2,

between the energy density ε and the current j gives an
energy density of 10 μeV/μm, which corresponds to a
current of 10 nA. This current can be detected experimentally
using a picoammeter. To verify that energy is extracted at
B, a sufficient number of single-shot current measurements
should be conducted (by switching the circuit on and off) to
generate meaningful statistics for the POVM measurement.
In this process, the electrical noise, which can be introduced
in the classical channel, is averaged out and, thus, does
not affect 〈EB〉. Note here that (l/L)5 dependence of the
estimated EB is based on the first-order perturbation theory,
and the dependence might be slower than in higher-order
approximations or in a framework of more suitable local
operations. Careful discussions are needed for optimizing the
experimental setup to obtain maximum EB .

IV. DISCUSSION AND CONCLUSION

We now examine energy conservation and dynamics in the
system. As we have shown, the extraction of EB from the local
vacuum state requires measurement (energy injection) at A.
What is the source of EA? We consider a POVM measurement
so that switching on the RC circuit causes energy EA to be
injected into S. Therefore, if the switch is electrically operated,
a battery may provide EA to drive the switching device [23].
After extracting EB , the total energy EA − EB of the system
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will be non-negative, as expected, because EA > EB . Accord-
ing to the local energy conservation laws, the transfer of energy
EB from S to P results in a negative average quantum energy
density around B. This negative energy density is obtained by
squeezing the amplitude of the zero-point fluctuation to less
than that of the vacuum state during the interaction [24]. Then,
−EB and EA will flow unidirectionally along the edge toward
the downstream electrical ground with identical velocities of
vg , and S around region B will remain in a local vacuum state
with zero energy density.

Although no studies have been conducted on QET in QH
systems, several successful experimental studies have been
conducted in quantum optics by introducing LOCC including
QT [1,2]. Light is a massless electromagnetic field; however,
at present, it is difficult to directly measure the zero-point
fluctuations of light owing to the lack of an appropriate
interaction, such as the Coulomb interaction in QH systems.
Thus, our QH system is considered to be very suitable for
demonstrating the QET protocol.

QET can be interpreted in terms of information thermo-
dynamics as a quantum version of Maxwell’s demon [25];

in particular, two demons cooperatively extract energy from
quantum fluctuations at zero temperature. Moreover, this type
of quantum feedback is relevant to black-hole entropy, whose
origin has been discussed often in string theory [26], because
energy extraction from a black hole reduces the horizon area
(i.e., the entropy of the black hole [27]).

In conclusion, theoretically, we have shown the imple-
mentation of QET and estimated the order of the energy
gain EB in a QH system using reasonable experimental
parameters.
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