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We discuss the coupling of two identical atoms, separated by a metal or metamaterial slab, through surface
modes. We show that the coupling through the surface modes can induce entanglement. We discuss how to control
the coupling for the metal or metamaterial slab by adjusting the symmetrical and antisymmetrical property of
the surface modes. We analyze the dispersion relation of the surface modes and study the parameter ranges
that support the surface modes with the same properties. Our results have potential applications in quantum
communication and quantum computation.
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I. INTRODUCTION

Generation and preservation of entanglement is an impor-
tant subject in quantum information and quantum computing
[1]. The vacuum fluctuations can affect the state of qubits in a
number of ways. On the one hand, the vacuum fluctuations can
lead to decay that can adversely affect the quantum coherence
and reduce entanglement [2,3]. On the other hand, the decay
due to the vacuum fluctuation can generate entanglement from
initially unentangled qubits [4–10], thus leading to induced
entanglement. This latter effect has been studied for identical
qubits coupled to either a common multimode vacuum field
[4–8] or to a damped single-mode cavity field [9,10]. Such
a process has been called the delayed sudden birth of entan-
glement [8] as opposed to the sudden death of entanglement
from an initially entangled state. Most previous studies about
the sudden birth of entanglement [4–8] require two close-lying
atoms with a distance less than one wave length at the transition
frequency. Recently, it has been proposed to realize such
entanglement generation between two distant qubits (about
ten wavelengths apart) by using left-handed materials [11] via
enhancement of the interaction between distant qubits. An-
other way to attain entanglement between atoms such that the
qubit-qubit distance is larger than one operating wavelength
employs the surface plasmonic mode. The entanglement of two
qubits mediated by metal nanowire [12] and a one-dimensional
plasmonic waveguide [13] has been studied.

With the development of techniques in quantum infor-
mation, the miniaturization of practical quantum devices
is an important issue. The present techniques based on
semiconductor technology require us to precisely locate each
qubit as well as to insulate them from each other by solid-state
materials. The generation and preservation of the entanglement
of qubits, as well as the insulation of qubits, are the current
research frontier. In this paper, we study the entanglement of
two two-level atoms separated by a slab of materials (including
metal and metamaterials), which is the simplest model of a
miniaturized quantum device.

The paper is organized as follows. In Sec. II, we derive the
model and show the general principle of induced entanglement
of two atoms. In Sec. III, we analyze the coupling of two atoms
through surface modes for the metal and metamaterial slab.
In Sec. IV, the induced entanglement from initial separable
state has been calculated. We give a discussion about the
influence of dissipation in Sec. V and draw conclusions
in Sec. VI.

II. MODEL AND DENSITY MATRIX OF TWO ATOMS

We consider a system of two identical two-level atoms
(bold arrows in Fig. 1) separated by a slab with thickness d
and indexes εM and μM , as shown in Fig. 1. The medium
where the atoms are located is assumed to be a vacuum for the
sake of simplicity. These two identical two-level atoms have a
lower level |gi〉 and an upper level |ei〉 (i = 1, 2) separated by
energy h̄ω0. We assume that the two atoms are symmetrically
located on both sides of the slab at positions z1 = z0 and z2 =
d − z0 and have the same dipole moment P = P ex . The atoms
are coupled to the multimode electromagnetic field where all
modes are initially in the vacuum |{0}〉. It is convenient to work
in the basis of the four Dicke states, defined as [14]

|4〉 = |e〉1|e〉2, |1〉 = |g〉1|g〉2,

|s〉 = (|e〉1|g〉2 + |g〉1|e〉2)/
√

2, (1)

|a〉 = (|e〉1|g〉2 − |g〉1|e〉2)/
√

2.

In this basis, the two-atom system behaves as a single four-level
system with two unentangled states, the ground state |1〉
and the upper state |4〉, and two maximally entangled states,
the symmetric state |s〉 and the antisymmetric state |a〉. The
evolution of the two-atom system is governed by a master
equation, which can be solved analytically. The resulting
solution is [15]

ρ44(t) = ρ44(0)e−2γ t , (2)
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FIG. 1. Scheme of the structure considered. The bold arrows
represent two identical atoms.

ρss(t) = ρss(0)e−(γ+γ12)t + ρ44(0)e−2γ t γ + γ12

γ − γ12
[e(γ−γ12)t − 1],

(3)

ρaa(t) = ρaa(0)e−(γ−γ12)t +ρ44(0)e−2γ t γ − γ12

γ + γ12
[e(γ+γ12)t −1],

(4)

ρsa(t) = ρsa(0)e−(γ+2i�12)t = ρ∗
as(t), (5)

with ρ11(t) = 1 − ρss(t) − ρaa(t) − ρ44(t). In Eqs. (2)–(5), the
evolution of the matrix elements depends on three parameters,
namely, the decay rate γ , the collective damping rate γ12, and
the energy shift �12.

For measuring the entanglement between the two atoms,
we adopt the concurrence, which is defined by [16]

C(t) = max{0,CM (t)}, (6)

where

CM (t) =
√

[ρss(t) − ρaa(t)]2 − [ρsa(t) − ρas(t)]2

− 2
√

ρ11(t)ρ44(t). (7)

The quantity CM (t) is determined by the evolution of the
matrix elements, Eqs. (2)–(5), subject to appropriate initial
conditions. From Eqs. (2)–(5), we find the following: If γ12 =
γ , we have ρ44(t) and ρss(t) decaying exponentially with rate
2γ , while ρaa(t) is trapped at ρaa(0). Consequently, we have
C(t) = ρaa(0). If γ12 = −γ , we similarly have C(t) = ρss(0).
For γ12 ≈ 0, all elements except ρ11(t) decay exponentially,
and as a result, CM (t) could be negligible after t > 1/γ for
an arbitrary initial state. Therefore, constructing a certain
environment to get a strong collective damping rate γ12 is
the key to generating and preserving the entanglement. Thus
the control of the collective damping under the structure shown
in Fig. 1 is the main objective of this paper.

The expressions for the decay rate γ , the collective damping
rate γ12, and the energy shift �12 for the two atoms are given
by [17]

γ (z1) = 2

h̄ε0

ω2
0

c2
P · Im

↔
G(z1,z1,ω0) · P, (8)

γ21(z2,z1) = 2

h̄ε0

ω2
0

c2
P · Im

↔
G(z2,z1,ω0) · P, (9)

�21(z2,z1) = 1

h̄ε0

ω2
0

c2
P · Re

↔
G(z2,z1,ω0) · P, (10)

where the Green’s tensors fitted for the structure of Fig. 1
are [18]

↔
G (z1,z1,ω0) = iμ0

2(2π )2

∫
d2K||

1

Kz

∑
q=e,m

[
e+
q e+

q + e−i2Kzz1

× r
q

ML + r
q

RMe2iKMzd

1 − r
q

LMr
q

RMe2iKMzd
e−
q e+

q

]
, z1 /∈ [0,d],

(11)
↔
G (z2,z1,ω0) = iμ0

2(2π )2

∫
d2K||

1

Kz

eiKz(z2−d−z1)

×
∑

q=T E,T M

t
q

MLt
q

RMeiKMzd

1 − r
q

LMr
q

RMe2iKMzd
e+
q e+

q , (12)

Here Kz =
√
ε0μ0ω

2/c2 − K2
|| and KMz =√

εMμMω2/c2 − K2
|| are the z components of the wave

vector in vacuum and in the slab, respectively, while K‖ is the
component parallel to the interface. The reflective coefficients
for TE and TM polarization modes incident from the slab (M)
to the left (L) or right (R) are

rT E
LM = rT E

RM = μ0KMz − μMK0z

μ0KMz + μMK0z

,

(13)

rT M
LM = rT M

RM = ε0KMz − εMK0z

ε0KMz + εMK0z

.

Similar expressions can be given for the transmission coeffi-
cients t

q

ML and t
q

RM . Note e+
q (e−

q ) is the unit vector of electric
field incident from left (right) to right (left) for q polarization
in the vacuum, which is

e±
T M (K||) = 1

K0

(
∓K0z

K||
K||

+K||ez

)
, e±

T E(K||) = K||
K||

× ez.

(14)

The two atoms have the same decay rate γ due to their
symmetric location.

The integrations in Eqs. (11) and (12) are taken over
all electromagnetic modes, which include propagating wave
modes, waveguide modes, and surface modes [19]. When
atoms are far away from the slab, the contribution of the
waveguide modes and the surface modes can be neglected due
to the exponential decrease of their amplitudes. However, when
the atoms are close to the slab, the surface modes dominate the
decay rate and the collective damping rate due to high mode
density.

In the next section, we analyze the role of the surface modes
played in the collective damping rate and would like to find a
way to control the collective damping rate in the structure of
Fig. 1.

III. THE DEPENDENCE OF THE COLLECTIVE DAMPING
RATE ON THE SURFACE MODES

The surface modes in a metal have been studied extensively,
and their properties are discussed in detail in [20]. The
surface mode is referred to as the surface plasmon polariton
(SPP) mode. These modes play a key role in the control
of molecular fluorescence and phosphorescence [21–24] as
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TABLE I. Analysis of the terms in Eqs. (15) and (16).

Function K|| = ω/c K|| = ∞ Property

kM/k0 ∞ 1 monotonously decreasing
coth(kMd/2) coth[

√
ω2/c2(|εM | + 1)d/2]>1 1 monotonously decreasing

tanh(kMd/2) tanh[
√

ω2/c2(|εM | + 1)d/2]< 1 1 monotonously increasing

well as the modification of the decay rate of an atom or
a quantum dot [25–27]. However, most of these works are
focused on a single-body system. Recently, the effect of the
surface mode on a multibody system has attracted a lot of
attention [12,13,28,29]. For the structure as shown in Fig. 1, the
surface modes exist only when 1 − r

q

LMr
q

RMe2iKMzd = 0, which
corresponds to the pole of the Green’s tensors of Eqs. (11)
and (12) [19]. To satisfy this condition, the necessary condition
is that either the permittivity or permeability is negative.

In addition to metals, metamaterials also support surface
modes [30,31]. Metamaterials are a new kind of man-made
material in which the effective permittivity or the effective
permeability or both are negative [32]. They provide a new
way to manipulate the electromagnetic properties of materials
at will. The material with negative effective permittivity [33]
is equivalent to metal. The material with negative effective
permeability [34] is referred to as negative-permeability
materials and has similar properties to metals. The materials
with both negative effective permittivity and permeability
are the so-called left-handed materials (LHM) [35,36]. In a
left-handed material, the electric field, the magnetic field, and
the wave vector form the left-handed triplet. In this section,
we analyze the properties of the surface modes in a slab with
different indexes and their influence on the collective damping.
We divide our analysis into two parts. The first part focuses on
the case εM < 0 and μM = 1, and the other refers to the case
of εM < 0 and μM < 0.

A. Slab with εM < 0 and μM = 1

In this case, the refractive index of the slab is imaginary, and
there is only evanescent electromagnetic field inside the slab.

Metals belong to this case, and it is well known that metals
are opaque to propagating electromagnetic waves. The two
atoms separated by a metal slab could not be coupled through
the propagating wave. As the surface mode is local near the
interface of the slab, intuition leads us to believe that it would
result in strong collective damping between the two atoms near
the metal. However, the situation is different.

The range of K‖ for the surface modes in this case should
be larger than ω/c in order to get pure imaginary z components
of wave vectors in all spaces, i.e., Kz = ik0 and KMz = ikM .
There are only TM polarized surface modes with dispersion
relations

εM (ω) = −kM

k0
coth(kMd/2), (15)

εM (ω) = −kM

k0
tanh(kMd/2). (16)

The mode defined in Eq. (15) is symmetric, while that defined
in Eq. (16) is antisymmetric.

According to Table I, when K|| varies from ω/c to
infinity, the right sides of both Eqs. (15) and (16) change
from -∞ to -1. Therefore, for a usual metal withεM < −1,
there must be solutions for both Eqs. (15) and (16). As a
result, a usual metal slab withεM < −1 supports both sym-
metric and antisymmetric surface modes independent of the
thickness.

As an example, we consider a Ag film with ω0 = 4.3 ×
1015 Hz whose permittivity at the operating wavelength
λ = 440 nm is equal to εM = −6.0. Here we ignore the
imaginary part of the permittivity [37]. In Fig. 2(a), we
plot the dispersion relation of the surface modes as a
function of the slab thickness. It is clear that there are

FIG. 2. (a) Dispersion relations of surface modes vs thickness d and (b) the decay rate of atom 1 γ (z1,z1) and the collective damping rate
γ21(z2,z1) vs d with εM = −6, atom 1 at z1 = −0.05λ, and atom 2 at z2 = d − z1.
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FIG. 3. (Color online) The normalized γ21(z,z1) vs z for (a) d = 0.05λ and (b) d = 0.3λ. The two red solid lines indicate the positions of
the two atoms (z2 = d − z1) shown in Fig. 1.

two modes for any thickness. However, for small thickness
d < 0.2λ, the propagation constants (K‖SP) of these two
modes can be distinguished, whereas they become degenerate
for larger thickness (d > 0.2λ). Then with atom 1 located
at z1 = −0.05λ and atom 2 located at z2 = d − z1, we
can compare the decay rate γ (z1,z1) with the collective
damping γ21(z2,z1) for different d in Fig. 2(b). It is shown
that the collective damping can be ignored in compari-
son with the decay rate for d > 0.2λ. Only for d <

0.06λ does the collective damping rate approach the decay
rate.

To make clear the role of the surface modes in the collective
damping, we plot the field emitted by atom 1 as a function of
position z. According to the electromagnetic theory [38], the
field at position z emitted by atom 1 located at z1 can be
expressed with a Green’s tensor as

E(z,z1) = ω2
0

c2

↔
G (z,z1,ω0) · P. (17)

What we are interested in is the x component of the emitted
field as only this component can act on atom 2 with polarization

P = P ex . The x component, by using Eq. (9), is

Ex(z,z1) = ω2
0

c2
ex · ↔

G (z,z1,ω0) · P = h̄ε0

2P
γ21(z,z1). (18)

It is clear from Eq. (18) that, apart from a constant h̄ε0/2P , the
x component of the field emitted by atom 1 is determined by
γ12(z,z1). Thus γ12(z,z1) yields the field distribution, whereas
γ12(z2,z1) is the collective damping rate.

In Fig. 3, by setting z1 = −0.05λ and εM = −6, we plot
γ21(z,z1) versus z for d = 0.05λ and for d = 0.3λ. Two dashed
curves in Fig. 3 are the contribution of the two surface fields
emitted by atom 1, one with a symmetric profile and the other
with an antisymmetric profile. On the right side of the slab
(z > d), these two fields are opposite. For d = 0.05λ, the
amplitudes of the symmetric and the antisymmetric modes are
quite different due to different propagation constant K‖SP, and
the antisymmetric modes can be ignored. Only the symmetric
mode contributes to the emitted field, and the field on the right
is nearly equal to that on the left. However, for d = 0.3λ, the
two modes have nearly the same amplitudes, and the total
field on the right side is nearly zero, leading to a negligible
propagation field.

FIG. 4. (a) Dispersion relations of surface modes vs thickness d and (b) the decay rate of atom 1 γ (z1,z1) and the collective damping rate
γ21(z2,z1) vs d with εM = −2, where atom 1 is at z1 = −0.05λ and atom 2 is at z2 = d − z1.
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FIG. 5. (Color online) The normalized γ21(z,z1) vs z with (a) d = 0.25λ and (b) d = 0.4λ. The two red solid lines indicate the positions of
the two atoms (z2 = d − z1) shown in Fig. 1.

We note that γ21(z = z1,z1) is just the decay rate of atom 1
at z1, while γ21(z = z2,z1) is the collective damping between
the two atoms. These are marked by the intersection between
the black curves and the short red lines in Fig. 3. This makes
clear the interpretation of Fig. 2(b). The collective damping
should be significant only for a thin metal slab, which is
consistent with the result in Ref. [28]. In addition, with
higher |εM |, a significant collective damping is obtained in
a thin slab, and the contribution of the surface mode becomes
lower. So for a usual metal film such as Ag and Au as well
as Cu, with permittivity smaller than -100 for λ > 1 μm
[37], the surface mode can be neglected for an atom near
usual metals.

However, when |εM | tends to 1, the contribution of the
surface mode becomes dominant for arbitrary thickness. For
example, we set εM = −2 and μM = 1 and repeat the results
of Figs. 2 and 3 in Figs. 4 and 5. From Figs. 4 and 5, it is
clear that the superposition of surface modes determines the
collective damping. For a thin slab, the symmetric surface
mode dominates the collective damping, and then apparent

collective damping appears. However, for a thicker slab, the
symmetric and the antisymmetric surface modes have the
same contributions to the collective damping, thus resulting
in negligible collective damping.

Besides a thin metal slab, there is another way to get
considerable collective damping, which is cancelling one of
these two kinds of surface modes. According to Table I, the
only possible way is to choose εM ∈ (−1,0), in which only
antisymmetry surface modes would survive if the smallest
value of function tanh(kMd)kM/k0 is less than |εM |. Such
parameters can be realized by metamaterials. In Fig. 6(a),
we mark the parameter region of εM as well as thickness
d supporting two antisymmetric modes with shading. As an
example, we choose the slab with (εM = −0.75,d = 0.1λ),
and locate atom 1 at z1 = −0.2λ, then plot γ21(z,z1) as a
function of z in Fig. 6(b). It is shown that the two surface modes
are both antisymmetric, and their constructive superposition
leads to nearly the same amplitude distribution on both sides of
the slab. As the two atoms are symmetrically located on both
sides of the slab (marked by short red lines), the collective

FIG. 6. (Color online) (a) Parameter region of εM and d supporting two antisymmetry surface modes. (b) Normalized γ21(z,z1) vs z on the
slab with εM = −0.75 and d = 0.1λ, while atom 1 is located at z1 = −0.2λ and atom 2 is located at z2 = d − z1.
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TABLE II. Analysis of the terms in dispersion relations for LHM with nM � −1.

Function K|| = |nM |ω/c K|| = ∞ Property

kM/k0 0 1 monotonously increasing
coth(kMd/2) ∞ 1 monotonously decreasing
tanh(kMd/2) 0 1 monotonously increasing
coth(kMd/2)kM/k0 2(

√
n2

M − 1ωd/c)−1 1 not sure
tanh(kMd/2)kM/k0 0 1 monotonously increasing

damping is almost equal to the decay rate. The tiny differ-
ence between them originates from the asymmetric radiative
field.

B. LHM slab with εM < 0 and μM < 0

LHM are man-made materials with εM < 0 and μM < 0.
The wave vector of the electromagnetic field in LHMs is
opposite to the energy flux, which makes the LHM act
as phase compensation device, such as a perfect lens [39]
and a broadband ground-plane cloak [40]. In Ref. [41], it
was shown that two atoms separated by an ideal LHM
(εM = μM = −1) slab have strong collective damping and
lead to superradiance without the consideration of surface
modes. However, this result is only good for the ideal
case εM = μM = −1. Here we consider more general LHM
indexes, in which the collective damping through propagating
modes is weak due to reflection and invalidates the phase
compensation. To deal with this problem, we resort to
manipulating surface modes of LHM to control the collective
damping.

As opposed to a metal that can only support TM surface
modes, the LHM slab can support both TE and TM surface
modes due to εM < 0 and μM < 0. According to Ref. [31],
besides the TM modes of Eqs. (15) and (16), dispersion
relations for TE surface modes are as follows:

μM (ω) = −kM

k0
tanh(kMd/2), (19)

μM (ω) = −kM

k0
coth(kMd/2). (20)

The mode defined in Eq. (19) is symmetric, while that
defined in Eq. (20) is antisymmetric. It follows, on combining
Eqs. (19) and (20) with Eqs. (15) and (16), that there
are four dispersion relations for LHM. Since the ranges of
permittivity and permeability of LHM are much wider than
metal, we only focus on the case nM = √

εM
√

μM � −1. In
this case, the range of K‖ corresponding to surface modes
is K|| ∈ (|nM |ω/c,∞), which is different from that of metal

with K|| ∈ (ω/c,∞). Therefore, here kM/k0 is a monotonously
increasing function from 0 to 1 with K‖. The analysis of terms
in Eqs. (15), (16), (19), and (20) for nM � −1 are presented
in Table II.

In order to clarify the discussion for LHM with |nM | > 1,
we consider two subcases, (i) |εM |, |μM | � 1 and (ii) εM <

−1, μM > −1.

1. εM and μM � −1

With Table II in mind, it is easy to see that Eqs. (16) and (19)
have no solution when εM and μM � −1. In other words, only
the TE antisymmetric mode Eq. (20) and TM symmetric mode
Eq. (15) may exist. However, their coexistence can lead to a
destructive superposition for the collective damping. To deal
with this problem, a feasible way is to suppress one mode
and enhance the other. We give the conditions for different
solutions in Table III.

According to Table III, we classify surface modes cor-
responding to εM and μM for fixed thickness d = 0.2λ in
Fig. 7(a). The indexes of (εM , μM ) falling in the yellow
region can support both the TM symmetric surface mode
and the TE antisymmetric surface mode, while (εM , μM )
falling in the green (blue) region can support only the TE
antisymmetric (TM symmetric) surface modes. For example,
we choose the parameters (εM = −3, μM = −1) correspond-
ing to only the TE antisymmetric surface mode and plot
the field distribution emitted by atom 1 in Fig. 7(b). As
expected, the collective damping γ21(z = z2,z1) (intersection
between the right short red line and the solid curve) has
nearly the same amplitude as the decay rate γ21(z = z1,z1)
(with the left short red line). Conversely, we pick up the
parameters (εM = −1.5, μM = −1.2) corresponding to both
antisymmetric and symmetric surface modes and plot the
field distribution along the z axis in Fig. 7(c). Due to the
destructive superposition, the field on the right side of the slab
is much smaller than that on the left side. More importantly,
the collective damping γ21(z = z2,z1) in this case is nearly
zero. Therefore, though the LHM slab is transparent to an

TABLE III. The conditions for different solutions under εM and μM � −1.

Solution Condition

TM symmetric surface mode only |εM | < 2(
√

n2
M − 1ωd/c)−1 < |μM |

TE antisymmetric surface mode only |μM | < 2(
√

n2
M − 1ωd/c)−1 < |εM |

Both TE and TM surface modes |εM |,|μM | < 2(
√

n2
M − 1ωd/c)−1|

No surface mode other
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(a) (b)

(c) (d)

FIG. 7. (Color online) The classification of surface modes according to Table III for (a) fixed thickness d = 0.2λ and (d) fixed
μM = −1. The normalized γ21(z,z1) vs z with z1 = −0.05λ and d = 0.2λ for (b) εM = −3, μM = −1 and (c) εM = −1.5, μM = −1.2.
Notice z2 = d − z1.

electromagnetic wave, two atoms separated by it could be
decoupled by manipulating the surface modes. We can judge
the property of the surface modes for an arbitrary LHM slab
according to Table III even when we fix μM = −1, as shown
in Fig. 7(d).

2. εM < −1 and μM > −1

Similar to the discussion in Sec. III B 1, we now consider
the case of εM < −1 and μM > −1. With the help of Table II,
it is clear that there must be one solution for Eq. (19) and no
solution for Eq. (16). The right sides of Eqs. (15) and (20)
change from 2(

√
n2

M − 1ωd/c)−1to 1 with K||. We compare
the properties of the surface modes in Table IV. It is shown
that, if 2(

√
n2

M − 1ωd/c)−1 > |μM |, there are only symmetric

modes. Otherwise, the symmetric and the antisymmetric
modes coexist for 2(

√
n2

M − 1ωd/c)−1 < |μM |.
In Fig. 8(a), we plot 2(

√
n2

M − 1ωd/c)−1as a function of d
with fixed (εM = −1.5, μM = −0.9). According to Table IV,
there are three regions of d possessing different kinds of surface
modes, i.e., both TE and TM symmetry modes for d < 0.36λ,
only the TE symmetry mode for 0.36λ < d < 0.6λ, and TE
symmetric and antisymmetric modes for d > 0.36λ. As an
example, we choose d = 0.2λ,0.5λ,and λ and then plot the
corresponding field distributions in Figs. 8(b), 8(c), and 8(d),
respectively.

In Figs. 8(b) and 8(c), the collective damping γ21(z =
z2,z1) is significant only due to the symmetry mode. How-
ever, the density of state of the surface modes decreases
with an increase of thickness. The collective damping

TABLE IV. Conditions for different solutions under εM < −1 and μM > −1.

Condition TM symmetric (14) TM antisymmetric (15) TE symmetric (16) TE antisymmetric (17)

2(
√

n2
M − 1ωd/c)−1 > |εM | yes no yes no

|εM | > 2(
√

n2
M − 1ωd/c)−1 > |μM | no no yes no

|μM | > 2(
√

n2
M − 1ωd/c)−1 no no yes yes
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FIG. 8. (Color online) (a) For a slab with εM = −1.5 and μM = −0.9, classification of the surface modes according to Table IV with d.
Normalized γ21(z,z1) with z for (b) d = 0.2λ, (c) d = 0.5λ, and (d) d = λ. Here z2 = d − z1.

γ21(z = z2,z1) is therefore smaller than the decay rate γ (z1) =
γ21(z = z1,z1) due to the relative apparent radiative decay
rate, as shown in Fig. 8(c). When d = λ, the destructive
superposition of symmetric and antisymmetric surface modes
nearly cancels the collective damping γ21(z = z2,z1), as shown
in Fig. 8(d).

In conclusion, the choice of the appropriate parameters
can enhance or inhibit the collective damping relative to the
decay rate based on the properties of the surface modes. This

is useful in controlling the entanglement, as we discuss in the
following section.

IV. GENERATION OF ENTANGLEMENT
FROM AN INITIAL SEPARABLE STATE

We consider that, initially, atom 1 is in the excited state,
while atom 2 is in the ground state, i.e.,

ψ(0) = |e〉1 |g〉2 |0〉 . (21)

FIG. 9. (Color online) Concurrence evolution vs thickness for (a) the vacuum and (b) the dielectric slab with εM = 3 and μM = 1. Atom 1
is at z1 = −0.05λ, while atom 2 is at z2 = d − z1.
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FIG. 10. (Color online) Concurrence evolution with time for different thicknesses for (a) a metal with εM = −2 and μM = 1 and (b) a slab
with εM = −0.75 and μM = 1. z1 = −0.05λ, z2 = d − z1.

In this case, the initial values of density matrix elements
are

ρss(0) = ρsa(0) = ρas(0) = ρaa(0) = 1
2 ,

(22)
ρ44(0) = ρ11(0) = 0.

It follows, on inserting Eq. (22) into Eqs. (2)–(7), that the
concurrence is given by

C(t) =
max{0,

√
0.25[e−(γ+γ12)t − e−(γ−γ12)t ]2 + sin(2�12t)e−2γ t }.

(23)

An inspection of Eq. (23) shows that, at initial time, two atoms
are disentangled with C(0) = 0. If the collective damping
rate γ12 is present, the entanglement may appear with time.
To test the relation between collective damping rate and the
entanglement, we place atom 1 at z1 = −0.05λ and the atom
2 at z2 = d − z1 and then vary the parameter of the slab to get
the evolution of concurrence.

In Fig. 9, we plot the concurrence versus the slab thickness
with atom 1 at z1 = −0.05λ and atom 2 at z2 = d − z1 for the
vacuum and a dielectric slab. It is shown that the maximum
concurrence can reach to 0.4 only for a thin thickness, d >

0.02λ. This, however, is hard to achieve experimentally. When
the thickness is larger than 0.02λ, the maximum concurrence

decreases quickly with the thickness and is no more than 0.3
for d > 0.1λ. As only the propagation field contributes to
the collective damping in two cases, the collective damping
decreases continuously with an increase of thickness, so does
the concurrence.

We also check the case of the slab with εM = −2 < 0 and
μM = 1 and plot the concurrence evolution versus the slab
thickness with atom 1 at z1 = −0.05λ and atom 2 at z2 =
d − z1in Fig. 10(a). For this slab, the maximum concurrence
decreases monotonically with the thickness for d > 0.04λ.
This is consistent with Fig. 4(a) (collective damping versus
the thickness). On comparing Fig. 10(a) with Fig. 4(a), we
find that the collective damping determines the concurrence: an
increase of the thickness results in a decrease of the collective
damping, which leads to a decrease in concurrence. However,
for εM = −0.75, due to the existence of two antisymmetric
modes for d < 0.1λ with no surface mode for d > 0.1λ, as
shown in Fig. 6(a), the two atoms separated by such a slab will
induce a large concurrence for d < 0.1 and a small concurrence
for d > 0.1λ, as shown in Fig. 10(b). We thus note the threshold
effect of the concurrence around d = 0.1λ, which may be a
potential quantum switch of entanglement.

Finally, we check the cases of the LHM slab. Corre-
sponding to Fig. 7(a), we plot the concurrence evolution
versus permittivity with fixed μM = −1.2 and d = 0.2λ in
Fig. 11(a). Although there is no surface mode for |εM | > 2.4,

FIG. 11. (Color online) (a) Concurrence evolution vs εM with μM = −1.2 and d = 0.2λ. (b) Concurrence evolution vs thickness with
εM = −2 and μM = −0.9. Atom 1 is at z1 = −0.05λ, while atom 2 is at z2 = d − z1.
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FIG. 12. (Color online) The quantity |γ12(z1,z2)|/γ1(z1) as a function of z0 and dissipation α. z1 = z0, z2 = d0 − z0; other indexes are
shown on the plots.

entanglement can also be generated due to the focus effect
of the LHM on the propagation field. It is interesting to
note the following. When εM ≈ −1.5, no entanglement can
be generated, accompanied by negligible collective damping
due to the destructive superposition of the surface modes.
Therefore, we can use LHM so that there is no interaction
between two closely located atoms (i.e., they are insulated from
each other). On the other hand, corresponding to Fig. 8(a), we
plot the concurrence evolution versus the thickness with fixed
εM = −2 and μM = −0.9 in Fig. 11(b). It is shown that the
maximum concurrence for d < 0.59λ is much larger than that
for d > 0.59λ. This effect can be explained by the character
of the collective damping as shown in Fig. 8(a): the collective
damping is large for d < 0.59λ due only to the symmetric
surface mode, while the collective damping is negligible for
d > 0.59λ due to the coexistence of both the symmetric and the
antisymmetric surface modes. So, in this case, surface modes
play the key role in providing large collective damping and
inducing the entanglement from the initial separable state.

Here we just take the initial state with ψ(0) = |e〉1|g〉2|0〉
into account to show the effect of collective damping on
entanglement. However, it has been shown [8,11–13] that
a large collective damping can prolong entanglement for
an initial entangled state and induce entanglement for an
initial separated state, while the opposite situation happens
for negligible collective damping.

V. THE INFLUENCE OF DISSIPATION

A real metamaterial is always accompanied with dissi-
pation, which is characterized by the small imaginary parts
of the indexes εM and μM . The influence of the dissipation
must therefore be taken into account. With dissipation, there is
another decay channel for an atom near the slab, namely, the
decay through dissipation [19]. Such decay has no contribution
to the collective damping because the energy in this decay pro-
cess will be transformed into heat in the slab. The dissipation
can therefore increase the difference between the decay rate
and the collective damping rate and weaken the generation
and preservation of entanglement. Here we define the quantity
|γ12(z1,z2)|/γ1(z1) as relative collective damping. Complete
collective damping happens only if |γ12(z1,z2)|/γ1(z1) tends
to 1. We choose the cases in Figs. 6(b) and 8(b) to check the
influence of dissipation as these cases correspond to complete

collective damping for a transparent slab. Now considering
the dissipation, we plot |γ12(z1,z2)|/γ1(z1) as a function of
the dissipation coefficient α and the atomic position z0 in
Fig. 12. We note that the two atoms are always located
symmetrically all the time, i.e., at z1 = z0 and at z2 = d0 − z0.
It is clear that, when α → 1, the quantity |γ12(z1,z2)|/γ1(z1)
tends to zero. However, |γ12(z1,z2)|/γ1(z1) is larger than
0.9 even if α > 0.01 for appropriate locations of atoms.
Recently, the maximum figures of merit [Im(n)/Re(n)] in
experiment reach 8 at λ = 2.4 μm for 3D negative index
metamaterials formed by nanotransfer printing [42], and the
theoretic predicted maximum FOM is 15.2 at 408 nm by
optimizing the fishnet structure metamaterial [43]. Therefore
α ∼ 0.01 may be realizable in the not-so-distant future.

VI. CONCLUSION

We believe that, with the developments in the fields
of quantum information and quantum computation, there
will soon be great interest and effort in integrating and
miniaturizing quantum devices. At the heart of any potential
quantum device lies the creation and control of entanglement
between qubits. For a solid-state device, the qubits would be
atoms, and a possible method would be to use the present
integration chip (IC) techniques.

In this paper, we have discussed, with an eye for potential
quantum devices, the collective damping between the two
atoms separated by a slab. This is the simplest model for
localizing and separating qubits spatially at a subwavelength
scale. Specifically, we focus on the effect of surface modes
on collective damping between two such atoms as the surface
mode is local near the surface of the slab. It is known that
there are two kinds of surface modes in a slab, symmetric
and antisymmetric. Choosing the appropriate index of the
slab can keep down only one kind of mode, so that the
two atoms can have significant collective damping through
the surface mode. On the other hand, choosing indexes to
retain both symmetric and antisymmetric modes can lead to
negligible collective damping. We analyzed the index region
(including permittivity, permeability, and thickness) of the
slab for different modes. The results illustrate that the surface
modes can be easily controlled and that the collective damping
can be switched on and off conveniently.
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