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Creating nuclear spin entanglement using an optical degree of freedom
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Molecular nanostructures are promising building blocks for future quantum technologies, provided methods
of harnessing their multiple degrees of freedom can be identified and implemented. Due to low decoherence
rates, nuclear spins are considered ideal candidates for storing quantum information, while optical excitations
can give rise to fast and controllable interactions for information processing. A recent paper [M. Schaffry et al.,
Phys. Rev. Lett. 104, 200501 (2010)] proposed a method for entangling two nuclear spins through their mutual
coupling to a transient optically excited electron spin. Building on the same idea, we present here an extended
and much more detailed theoretical framework, showing that this method is in fact applicable to a much wider
class of molecular structures than previously discussed in the original proposal.
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I. INTRODUCTION

The controlled generation of entanglement is a crucial task
in quantum computing, quantum cryptography, quantum error
correction, and other quantum technologies. Experimentally,
controlled entangling operations have been demonstrated in a
wide range of systems including, among many others, pairs of
photons [1], pairs of atoms [2], pairs of ions [3], between an
atom and a photon [4], and between an ion and a photon [5].
However, a different approach typically needs to be used for
each of these systems, so that a given control method may not
readily be transferred to a different physical system.

Employing molecular systems as “quantum hardware” [6,7]
offers the advantages of high reproducibility, chemically
engineered system properties, and the potential for self-
assembly into more complex functional units. In general,
nuclear spins are widely considered to be the most promising
quantum bits (qubits) for a quantum memory in solid-state
systems, since they have remarkably long coherence times [8].
However, they are also hard to manipulate on a fast time scale,
as nuclei are usually only weakly coupled. Hence the key
challenge for nuclear spin-spin entanglement is achieving fast
and switchable control over the interactions between adjacent
qubits.

Several previous publications have proposed the introduc-
tion of a mediator spin, whose mutual coupling to the qubit
spins provides a route for a controlled entangling operation
[9-13]. In these studies the mediator spin is usually of the
same type as the qubit spins and possesses a spin of 1/2, so
the system comprises either three electron or three nuclear
spins. However, employing a mediator spin of the same kind
as the qubit spins often does not allow for operation times that
are many orders of magnitude shorter than the coherence time
of the qubits. By contrast, many molecular structures possess
transient optically excited triplet states (i.e., states with spin-1
character) that could be used as mediators for nearby nuclear
spins [14-18]. In this article we show how fast controlled
entangling operations with a high fidelity are possible in
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suitable structures of this type. This constitutes an instance of a
so-called hybrid approach to quantum computing [19], where
the advantages of different qubit systems are combined to
improve overall performance. In fact, the systems we consider
here possess three distinct degrees of freedom: an optical
one, an electron spin, and a nuclear spin. We believe that
a future quantum processor will also likely harness a similar
hierarchy of different degrees of freedom, providing additional
motivation to probe the interplay between different degrees of
freedom beyond the immediate purpose of this work.

A hybrid approach such as the one considered here offers
several further advantages besides achieving fast gating times.
For example, the presence of the optical excitation in this class
of system may facilitate dynamic nuclear polarization [20,21].
Further, recent experiments have shown that the principal
decoherence mechanism for nuclear spins that are controlled
through their interaction with electron spins is caused by
that very same interaction [22]. However, for the entangling
operations that are the subject of the present article, the electron
spin is transient and only exists as long as the system is in its
optically excited state, which should therefore be beneficial
for the nuclear spin coherence time. Finally, the fact that
the interaction is controllable implies that we do not rely on
dynamic decoupling schemes to switch off the interactions.

This paper is organised as follows: in Sec. Il we introduce
the most general Hamiltonian for our system and discuss sev-
eral possible physical implementations. Section III analyzes
the Hamiltonian for certain symmetry assumptions and for the
general case. The symmetry considerations lead us to simpli-
fied effective Hamiltonians, whose dynamical properties are
more easily accessible. We proceed by presenting appropriate
protocols for the controlled generation of entanglement for
different parameter regimes in Sec. [V. We also benchmark the
performance of these protocols with respect to the predominant
decoherence mechanisms. Finally, Sec. V contains a summary
and discussion of our results. Throughout this paper, we closely
relate our general ideas to the recent experiments [23,24] which
have motivated our analysis, but we would like to point out
that our results are more widely applicable and not limited to
these specific systems.
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II. MODEL

For our model we consider a structure comprising three
integral components: two nuclear spin qubits, labeled n
and n/, and a mediator spin system with an optical degree
of freedom. We denote the ground state of the mediator
|0) and the first excited state |e). Further, |0) is assumed
to be spin-silent, while |e) possesses an electronic spin-1
character. The spin-1 (quasi)particle is thus created upon
optical excitation of the mediator system. Importantly, the
two spin qubits do not directly interact with each other, yet
both are coupled to the excited state of the mediator with an
isotropic Heisenberg interaction as depicted schematically in
Fig. 1. The Hamiltonian for such a three-particle system in an
external magnetic field is then given by

H = _wnSz,n - wn’Sz,n’ + |e>(wesz,e + a)())(€|
+1e)(AS, - Se+ A'Sy - Se+ DSZ,)(el, (1)

where w,,» denotes the Zeeman splitting of the two qubits and
w, that of the central spin-1 particle; D is the uniaxial zero-
field splitting, A and A’ are the isotropic Heisenberg coupling
constants, and @y denotes the (typically optical) excitation
energy of the mediator. Here S ,,/,//. and S,,/,/. are the usual
component and total vector Pauli spin operators, respectively.

Hamiltonian (1) can describe many different nanostruc-
tures, in particular, a range of optically active molecules, in
which case the mediator ground (excited) state corresponds to
the absence (presence) of an electron-hole pair. The transition
between these two states can be induced by a short laser
pulse of frequency wgy; moreover, the excited state will
decay naturally through spontaneous emission. By contrast,
a nitrogen-vacancy center in diamond surrounded by two '3C
atoms [25] is an example of a system in which the spin-1
mediator is not susceptible to decay and is ever present. Many
of the results discussed in this article are equally valid for this
kind of system. However, the following discussion primarily
focuses on the example case of the molecular system consisting
of a functionalized Cgy molecule with two functional groups
as depicted in Fig. 2.

In what follows we first analyze the Hamiltonian, Eq. (1),
for two cases: that of a symmetric and that of an asymmetric
system. In order to understand the system properties and
dynamics, we determine the eigensystem using perturbation
theory. This will provide us with the necessary basis to design
suitable protocols for the controlled generation of nuclear spin
entanglement for both these cases.
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FIG. 1. (Color online) (a) There is no coupling between the
mediator and the two nuclear spins in the ground (or vacuum) state
|0). (b) The excited state of the mediator (e.g., an electron-hole pair)
has spin-1 character and couples to both nuclear spins.
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FIG. 2. (Color online) A functionalized buckyball with two
satellite atoms [far left and far right (blue) spheres]. In reality the
functional groups are likely much larger than a single atom, but for
simplicity we depict here only the two relevant atoms with a nuclear
spin 1/2, for example, '3C, '°N, or 3'P. Note that the two satellites
(or, rather, functional groups) are not necessarily both the same and
that the system may thus be “asymmetric.”

III. EIGENSPECTRUM AND EFFECTIVE HAMILTONIAN

A. Symmetric system

By definition, the symmetric system consists of two nuclear
spins with w,, = w,, and equal hyperfine coupling constants
A = A’. In the presence of the electronic excitation, i.e.,
after the application of a suitable laser pulse, the Hamiltonian
governing the spin dynamics is given by

I_Isym - (€|H|6) - _a)nSz,n + a)eSz,e - wnSz,n/
+A Sy Se+Sw - S+ DS 2

where we have neglected the term wp, which is proportional
to the identity and unimportant for the dynamics. Since the
electronic Zeeman splitting w, is typically the highest energy
scale of the system (and, in particular, much higher than w,),
it is safe to assume that

lwnl,|D],A < w. 3)

Based on the above assumption, we employ degenerate
perturbation theory to determine the eigenspectrum of Hgyp,.
We begin by partitioning the Hamiltonian as

Hym = Hosym + Hly, 4)
where
Hosym = =0, Sz + 0eS-c — 04 Sow + DS?, (5)
is treated exactly, and the perturbation is given by

H., = A(S,-S.+Sy-S.). (6)

sym

As Hy sym is diagonal in the computational basis (defined as
{leniny)|le =T+, Toand ny, = 1, {}) and (M Hosym|{ 1) =
(1 |Hosym|1{), degenerate perturbation theory is required.
However, since (T;Y|H,,|T;Z) =0 for j,I=—,0,+ and
Y,Z =]1, 1, the degeneracy is not removed in the first order.
To find the correct zeroth-order wave functions, we need to
solve the corresponding secular equations to second order [26].
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Making use of assumption (3) we then get the second-order
eigenenergies,

E;i1=Ej3—z¢j,
Ej3=Ej,—9j,

Ej,=—jwe+jID, )
Ej’4=Ej,2+8j, (8)
with the corresponding eigenvectors up to first order (see

Fig. 3),

1
|Ej) =115 1), 1Ej2) = —=(=IT; 1) +1T; 1), (9)

V2
1
V2

and where we have defined the following quantities for
compactness:

|Eja) = 1T; 11),  1E;3) = —=(T; 1) +1T; 1),  (10)

e =w, —A+2a_,e0=w, +2a,, and &, =w, + A;

(11)

8. =—-2a_, & = —2ay, and &, =2ay; (12)
1 A?

ay and ay=ay —a-_. (13)

- 2 :FD + w. + wy
Based on this spectrum, we now approximate Hgyy, in the
following way to obtain an effective Hamiltonian:

Hﬂym ~ VTdiag(E—l,l P aE1,4)V = Hsym, effs (14)

where V is the matrix of the approximate eigenvectors (see
Fig. 3),

V=(E_)I(E-2) - |E14)).

In the computational basis, Hgym, ef consists of three blocks
with the following structure:

5)

; (16)

where x denotes a nonzero entry and each block belongs to
one of the three spin states 7_, Tp, or T'y. Correspondingly,
we define the three subspaces 7; spanned by the vectors
IT; LDIT 44). 1T; 44), [T; 1), and [T; 1), with j =
—,0,+. In this paper, the index j denotes the electronic spin
state of the excitation, whereas the letter i always indexes the
four nuclear spin states.

In writing Eq. (14) we have neglected all matrix elements
between subspace 7; and subspace 7; (i # j); the effect
of these matrix elements is negligible because the electronic
Zeeman splitting w, is much larger than the nuclear Zeeman
splittings. The dynamics in each of the .7 is therefore closed

—|T; 11) +|T; 1) }”
|T; 1) + 175 t1)}s

e-’{ |75 1)

FIG. 3. Eigenspectrum of a symmetric system up to second order
of perturbation theory (eigenvectors not normalized). Our basis states
obey the relations S..|Ty) = F|T4), S..|To) =0, Sl 1) =11),
and Sz.nl T) =—| T)
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and can be described by an effective 4 x 4 Hamiltonian of the
form given above. We now analyze the nuclear spin dynamics
arising from each of those effective subspace Hamiltonians.
A term in the Hamiltonian that is proportional to the identity
has no effect on the dynamics within the subspace, so we
can subtract D + w, +a_, agp, and D — w, — a, from the
subspace Hamiltonians for .7, %, and 7, respectively
(thereby neglecting unimportant phases that are common
to all states in each block). We can simplify the resulting
Hamiltonians Hgym cfr, j further by transforming to a suitably
chosen rotating frame through the transformation

1

dU;
Hlp ot j = UjHoym et ;UL + iUj—". (17)
where
Uj(t) = R n(9j1) ® R: (9;1) (18)
and
¢r = —wn FA—ay, (19)
$o = —w, —a- —ay, (20)
R i(¢) = exp(—iS;,ip). 2D
In this rotating frame we obtain the Hamiltonians
Hyyn ot j = K(7)2a;(SxnSx.w + SynSyn)s (22)

where k(j)=1,1,—1 (with j =—,0,+, as it will be
throughout the paper). Each of these effective subspace
Hamiltonians therefore induces the dynamics of a direct XY
coupling of the two nuclear spins, with a time evolution
corresponding to Rabi flopping between nuclear spin state
[{1) and nuclear spin state [1]). The Rabi frequency a;
depends on the spin state j of the optical excitation. According
to Eq. (13), we expect a to be fairly similar to a_, whereas,
in comparison, ay will be much smaller.

We return to the symmetric case to discuss entanglement
generation in Sec. IV A but first complete our analysis of the
Hamiltonian for nonsymmetric cases.

B. Asymmetric system

Next we consider an asymmetric system with unequal
nuclear Zeeman splittings and/or unequal nuclear-electronic
excitation hyperfine coupling. The excited state Hamiltonian
is then given by

Hasym = (e|H|e) = —w, S n + WeS; 0 — WS, + AS, - S,
+A'S, - S. + DSZ,. (23)

For the purpose of applying perturbation theory, we consider
the nuclear-spin-mediator coupling as the perturbation and
split the Hamiltonian as follows:

HO,asym = —Wy Sz,n + a)eSz,e - a)n’Sz,n’ + DSZZYe, (24)

Hz;sym =AS,- S, + A/Sn/ - S,. (25)

For the asymmetric system we assume that the parameters A
and A’ and w, and w,, differ sufficiently to fulfill the following

two inequalities
A — A+ (0p — o) > lacl.ldy], (26)

3l — @l > lagl,lag, 27)
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where a; and a; are as defined in the previous section, with
the latter using w,s and A’ rather than w, and A. Under these
assumptions, nondegenerate perturbation theory can be used
for calculating the eigensystem. The state corrections to first-
order perturbation theory then introduce a small mixing of
computational basis states with corrections of magnitude

1 A 1 A’
V2 D £ (w, + w,) V2 D £ (w, + o)

which are negligible for A,A” < w,. The eigenstates of Hygym
thus coincide with those of Hy agym (Which are simply the
computational basis states) to a very good approximation.

Analogously to our approach in the symmetric case, we
proceed by analyzing individual effective Hamiltonians for the
subspaces .7; (j = —,0,+). After adding a suitable constant
to each subspace, we obtain three diagonal Hamiltonians,

. (28)

Hasym, eff,j = ¢; Sz,n’ + ¢j Sz,n’ (29)

where ¢>} and ¢; are as defined in Egs. (19) and (20) and the
prime denotes that w, and A’ are used for the expression,
instead of w, and A. All three effective Hamiltonians are
local, meaning that there is no direct coupling between the
two nuclear spins.

C. Crossover between a symmetric and an asymmetric system

In a certain region of parameter space neither the symmetric
nor the asymmetric analyses are justified. In this section we
consider this “crossover” regime, so that in the later discussion
we will be able to interpolate between those two cases.

We start with the approximated symmetric Hamiltonian

Hqym ofr and treat the asymmetry as the perturbation H/, i.e.,

Hco = llgym,eff + Hc/o’ (30)
Hc/o = _AlwnSz,n’ + AZASn’ . Se, (31)

where A is the fractional difference between the two nuclear
Zeeman splittings, A; = %, and A, is the fractional
difference between the two coupling constants, A, = A/T’A.
We begin with the vectors |E;;) and values E;; (j =
—,0,+;i=1,...,4) from Sec. I[II A as the eigenstates and
eigenvalues of Hamiltonian Hgyy, ofr. As in the other two cases,
we can still neglect those terms of H., which couple different
projections of the excitation spin with strength A, K /+/2 since
the relevant states differ in energy by about w,, yielding an

effective crossover Hamiltonian H,, ¢ With the eigenvectors

|E;1) = 1T 1),

1 (32)
1) = —5@011T; 1) + a2l Ty 1),
~ 1
1Ejab = 5 @anlT 41 FajaalT; 11,
E (33)
[Eja) =1T; 11),
where
1 Y2
ltj21pl® = lajsonl? =5 [ 1+ sen@)f; (34)

T\ JE s
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and
fr=3MALAw,) and fo=—1Aw,.  (35)

The corresponding eigenvalues are

Ejia=Ejiyaxtk(j)fj (36)
Ejon = Eja + k() (a; F sentapJa + 7). 6D

where k(j) is again 1, 1, —1 for j = —, 0, +, respectively.

It is easy to see that the eigenstates reduce to those of
the symmetric case for a vanishing perturbation (f; = 0),
whereas they tend to the computational basis states for a
larger perturbation as required for the asymmetric system
(1f3 > lazD.

IV. CONTROLLED GENERATION OF ENTANGLEMENT

The contrasting analyses presented in the previous section
suggest that the dynamics of the system will vary significantly
depending on its parameters. Therefore, different approaches
for achieving controlled entanglement between the two nuclear
spins will be required. In this section we show how to do this
in each case; we begin with the symmetric system introduced
in Sec. I[ITA.

A. Symmetric system: Entangling time evolution

For the symmetric system, we exploit the effective XY
coupling between spin state |1 ) and spin state || 1) for the
generation of entanglement. The fact that the magnitude of this
coupling depends on the spin state of the excitation will allow
us to control the interaction.

The free time evolution in any of the subspaces .7; takes
suitable initial product states of the nuclear spins to entangled
states at certain subsequent points of time. In order to quantify
the performance of the desired operation, we consider the
entangling power of the unitary operator that describes the time
evolution of the system. The entangling power is defined as the
mean linear entropy produced by the unitary operator acting
on a uniform distribution of all (pure) product states [27]. A
maximally entangling two-qubit gate, e.g., the controlled-NOT
(cNOT) or the controlled-PHASE (CPHASE) gate, possesses an
entangling power of 2/9.

For the symmetric system the entangling power of the free
time evolution U;(f) = exp(—i Hy,, .¢ ; 1) is given by the fol-
lowing simple expression for each of the three subspaces .7;:

ej = 5[3 + cos(2a;1)] sin*(a;1). (38)

The entangling power e; is only a function of the coupling
strength a; between state |T; | 1) and state |T; 1), becoming
maximally entangling at times that are odd-integer multiples
of tmax = 7 /(2a;). However, the characteristic time scale over
which entanglement builds up differs significantly between
the subspaces, since a1 /ag = w,./(2D) to leading order, and
this ratio is typically much higher than 1. Hence, e((¢) ~ 0
for t < w/(2a+) when |D| < w, as we have assumed so far.
Figure 4 shows the entangling powers e and ¢ for a typical
ratio of a4 /ay = 32.
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FIG. 4. (Color online) Entangling power e/, of the time evolu-
tion operators U, o(¢). Here a, = 32q, (see text).

Based on these observations, we can formulate a protocol
for the controlled generation of entanglement. Consider a
system that is initially in its ground state (i.e., there is no
excitation coupling to the nuclear spins). A laser pulse creates
the excitation, which will, in general, be in a mixture of
the three spin states |7_), |Tp), and |T,). For the present
discussion, we assume it to be in state |7p); the discussion
of a mixed initial state follows later. A short microwave pulse
allows us to flip the state of the excitation selectively to either
the |T) or the |7_) state since the transition frequencies
are split by the zero-field splitting. The entangling dynamics
proceeds much more rapidly in these outer subspaces, reaching
the first entangling power maximum after a time t = i We
can now apply another microwave pulse to flip the excitation
back into the |Tj) state, where the further evolution is much
slower and entanglement can be preserved.

There are, however, a few subtle points worth pointing
out. First, similar to the case of applying the maximally
entangling CNOT operation, only suitable initial states will
evolve into entangled states. Second, certain particular input
states can reach maximal entanglement in less time than i;
for example, the time evolution U (ﬁ) takes |74 1) to a
maximally entangled state.

Finally, the (optical) excitation, whose natural lifetime
is assumed to be longer than the time it takes to build up the
entanglement 2Z_i < 1, needs to be destroyed quickly enough
so that no further (slower) evolution unwinding the achieved
entanglement occurs in the .7 subspace. This can be achieved
either with a coherent optical 7 pulse or, alternatively, by
simply waiting for the system to decay back to its ground state
if the following hierarchy of time scales exists in the system,

l <
— <7 )
2a4 2|ayl

(39)

However, in contrast to the de-excitation with a coherent
laser pulse, it is not immediately obvious that the nuclear
spin entanglement can survive the optical decay process; we
therefore now take a small diversion to analyze this decay
process in detail.

1. Decoherence due to the optical decay process

In general, the optical decay of the mediator induces
decoherence on the nuclear spins. In order to quantify this,

PHYSICAL REVIEW A 84, 032332 (2011)

we make use of the quantum optical master equation (for a full
derivation see, e.g., Ref. [28]):

%ﬁ(t) = “TITOIA@HOAW)

w,w'

—A(@) A(w)p(1)] + Hee., (40)

where g denotes the density matrix in the interaction picture,
['(w) is the rate for a transition with frequency w, and H.c.
is the Hermitian conjugate. The sum is taken over all optical
transitions of the system with transition operators A(w) as
defined by

Alw) = Z [(E)ZTI(E"), (41)

E'—E=0

where E and E’ are eigenvalues of H that differ by
o and TI(E) denotes the projection onto the eigenspace
belonging to eigenvalue E. & denotes the system’s op-
tical dipole operator. The symmetric system features 12
optical transitions, |eT; {|) — [0 |]), |eTj)\/L§(ZF|¢T) +

1t — |0>J%($IH) + 1), and [eT; | ]) — |0 | |), for
j =—,0,+. We make the additional assumption that the
optical decay rates are all equal and can thus be characterized
by a single optical lifetime 7.

Equation (40) can often be simplified by applying an
instance of a rotating-wave approximation (RWA), based on
the assumption that fast-oscillating terms average out [28],
giving this more common form of the quantum optical master
equation:

%ﬁ(t) = ; T(@)[A(@)p(t)A(w)" — A(w)' A(w)p(1)] + Hec.
(42)

However, the RWA is only justified when |w —o/|”" is
small compared to the relaxation time of the system 7.
Under the assumptions of Eq. (39), this is fulfilled ex-
cept for the two transition frequencies w; = Ep, + wp and
wy = Ep2 4+ wp — &, which correspond to the transitions
IeTo)JLE(¢I¢T) +IM) — IO)%(¢I¢T) + [1)). Therefore
we can safely apply the RWA to all remaining frequencies,
obtaining

5 t
Ep( )
= ) T @IA@DINAE)
w,w' €S
— A@) A@)H(1)]
+)_ T@IA@HNAW) ~A@)' A@)A(1)] +Hee.
wgS

(43)
=Y T@[A@HNOAW@) — A@) A@)s(1)]
1
77 2A@DAD AW

T
— A(@)'A(@)A() = pH)A@) A(w)] + He., (44)

+ eZaOit
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where S = {w;,w,} and, using phenomenological decay rates,
= if >0,
M) = { 0 if w<O. (43)

This definition of decay rates describes the typical situation
of only spontaneous emission occurring, since stimulated
emission or absorption of photons is proportional to the
negligible power density of thermally activated photons in
the environmental modes.

Rather than solving the above master equation for the entire
Hilbert space of our system, we are interested here only in the
4 x 4 density matrix p/ of the two nuclear spins after the
decay has occurred:

= (015(r = 00)|0). (46)

Limiting the following discussion to this nuclear spin sub-
space, it is easy to see that only a small number of elements
of p/ can be populated by the decay process. These nonzero
elements are ,oab witha=b=]],a=b=11,and a,b €
{11, t!}. The final nuclear spin state after the optical decay
can be compactly written as

3 > _({eTsalpoleT;b)

j=%
+ (eT;al poleT;b)), (47)

pa » = (eToalpoleTob) +

where pp = p(0) is the full system’s density matrix in the
interaction picture before the decay process and the bar on top
of the nuclear spin states denotes that these are flipped, i.e.,
1 =1 and 1 =|. Hence the coherences between |eT | 1)
and |eTy 1) donot necessarily survive, but all the coherences
between |eTy | 1) and |eTy 1) survive the optical decay, re-
flecting the fact that no RWA approximation has been made for
the transitions [eTo)(£[{ 1) 4 [11)) = [0)(EN1) + 1)
Physically, this means that these two transitions produce
indistinguishable photons due to overlapping emission spectra.
In the absence of other decoherence processes, the spectra are
simply given by lifetime broadened Lorentzians [29]:
L(w) = AJ for
(@ —w)* +(1/7)
The photons emitted in all 10 other transitions can, in principle,
be distinguished, so that we are effectively dealing with 11
distinct, incoherent decay channels. It is worth noting that
there are three decay channels which populate the |0)(%|| 1) +
[1])) states, one each for the excitation spin projections Ty +,
but only the decays from the .7 subspace preserve coherence.
In Fig. 5 we plot the purity Tr[p(1)?] = Tr[(t)*] to
illustrate the decoherence induced by the optical decay for
three different initial density matrices p;(0) = |v;)(¥;| with

V1) = leT 1), [Y2) =leTo 1), and
[¥3) = 31eTo)(14 ) + 141) + 114) + [11)). (49)

Solving master equation (43) analytically, we then obtain the
following final density matrices of the nuclear spins after the
decay:

ol = LU U+ 1D (1D, (50)

i=12  (48)
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0.2
0
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FIG. 5. (Color online) Evolution of the purity Tr[p(¢)*] of a
system initialized in an excited state during the optical decay process.
The three different initial states shown are defined in (49), and
78 =005 K 7.

f_ ; 2.2 .

Py = 212800 ST MU+ idoT UM
=80Tt DU+ (24§77 I, (5D
pi = JA+H DA+ MDD, (52)

with the corresponding purities
Te(pf)> = 1/2 and Tr(p])* = 3/8, (53)
n2_ 248 6y &7

(o) = 5y Y 1 (54)

At first it may seem surprising that an initial state |e77)| 1)
can end up in a complete mixture of |0)|] 1) and |0)|1] ). This
is due to assumption (39), which underpins the optical master
equation (43). This means that we have implicitly included
the fast Rabi oscillations between |} 1) and |1]) in the 7,
subspace while the system is waiting for the decay. In contrast,
in the Jp subspace the inherent dynamics is much slower so
that the final result depends on the relative magnitudes of &
and 7.

Perhaps surprisingly, decay due to the spontaneous emis-
sion of a photon does not act as a source of decoherence
if two conditions are met: (i) the system decays from the
subspace spanned by the two states |7y | 1) and |Tp 1); and
(i1) Tép K m, i.e., the energetic splitting of these two states is
small compared to the inverse natural lifetime. This property
can be turned into a powerful feature for suitable molecular
systems, which we exploit in the following.

2. Dealing with a mixed electronic excitation

So far, we have assumed that the creation process yields a
completely polarized excitation, enabling the simple protocol
for the generation of entanglement described in a previous sec-
tion. Motivated by recent experimental data from a promising
candidate molecule [23], we now analyze the implications
of having an initial mixture of the states |7p), and |T%).
Experiments on a '3C-labeled methanocarbon of the diethyl
malonate monoadduct (DEMF) reveal that the population of
the electronic excitation in a sample oriented along the z axis
are equally distributed between |7..) and |7_). In this case the
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lifetime of the excitation also depends on the state of the exci-
tation, being much shorter for the |7p) state compared to |77 ).

In the following we demonstrate how the generic protocol
presented earlier can be adapted to accommodate for the
properties of the specific system presented in Ref. [23]. Aftera
short laser pulse for the optical excitation, subspaces .7 1. were
found to be populated as p_ = 0.49, py = 0.02, and p; =
0.49 with associated lifetimes 7_ = 0.57 ms, 79 = 0.02 ms,
and 7. = 0.57ms. We assume that the nuclear spins are
initialized in state || 1).

The basic idea of putting the system into |7y) states to
let the free time evolution generate entanglement, followed
by (mostly) switching off the interaction in the % subspace,
remains unchanged. As before, switching between different
electronic states is accomplished using microwave pulses that
are fast on the time scale of the nuclear spin evolution. The
adapted protocol proceeds in two stages following the optical
excitation. First, we let the desired entanglement build up in
the .7, subspace by waiting for the time ¢ = ﬁ. We then
swap the populations of |Tp) and |7.) and wait until the
entangled populations have decayed. The difference in decay
rates 1/79p > 1/t4 means that the population of |7_) largely
survives once the majority of |7) has decayed to the ground
state. Second, population in the 7_ subspace is maximally
entangled at times that are odd-integer multiples of ;7—. We
pick the first such point of time after the |7) has emptied out
and apply another microwave 7 pulse to swap the populations
of |Tp) and |7-). Once more, |Tp) will quickly drain into the
ground state, meaning there is now no more excited population
left. Ideally, we are left with an almost fully entangled nuclear
spin state.

However, the success of the above-described protocol is
predicated on the coupling strength A of the nuclear spins to
the excitation. In particular, for a very low coupling strength
A it takes a long time to entangle the nuclear spins  ~ 77%, s0
that there may be a substantial probability of the optical decay
having occurred before the nuclear spins can become properly
entangled. In this case the left-hand inequality of Eq. (39) is
violated. On the other hand, if the coupling strength A assumes
very large values, then the right-hand side of inequality (39)
is violated. In the latter case the photons resulting from the
transitions |€T0)\/%(:F|¢T> + 1) = IO)\/%(JFIH) + 114
become distinguishable and the decay is hence no longer
coherence preserving. In Fig. 6 we regard the hyperfine
coupling A as a tunable parameter and plot the entanglement
of formation (EF) [30] of the final state of the two nuclear
spins. We consider two different initial states for the mediator
spin: a completely polarized state and the mixed state reported
in Ref. [23].

3. Robustness to imperfections in the symmetry of the system

The previously described protocol for the controlled gener-
ation of entanglement assumes a perfectly symmetric system.
In the following we analyze the degree of imperfection in the
symmetry that may be tolerated. We already know that the
crossover between the symmetric and the asymmetric case is
not entirely abrupt. In Sect. III C we have found expressions
for the eigenstates and eigenvalues that can fully interpolate
between the symmetric and the asymmetric case. In this
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FIG. 6. (Color online) Entanglement of formation of the nuclear
spins after applying our protocols as described in the text for different
initial polarizations of the excitation: ppotarized = |70) (7| (solid line)
and perysal = 0.49|T_)(T_| + 0.02|Tp)(Tp| 4 0.49|T) (T, | (dashed
line). For the first case we used the simple protocol described first in
Sec. IV A 2; the switching time used is ﬁ. In the second case we use
the enhanced protocol described at the end of the section; switching
times here are ﬁ and 437”,' The nuclear spins for both curves are
assumed to be initially in state | | 1); for parameters we use the values
found in a recent characterization experiment [23]: D = —296 MHz,
w, = 9.6 GHz, w, =3.7 MHz, 7_ = 0.57 ms, 1y = 0.02 ms, and
7y = 0.57 ms.

crossover case, the effective Hamiltonian still consists of three
distinct blocks, each corresponding to the spin state of the
excitation |7;) (j = —,0,4), and matrix elements connecting
the blocks are negligible due to the large energy difference
w, > |w,|. This allows us to assign a separate entangling
power ¢; to the effective Hamiltonians describing each of the
blocks.

We now give an easily provable lemma which will enable
us to write the relevant analytic expressions of the entangling
powers ¢; for all three subspaces:

Lemma. Let H be the time-independent Hamiltonian of two
spin-1/2 particles with the following two properties.

M [E) =), |Ey) =—allt) +bItl),  |E3) =
by 1) +altl), and |Eq) = |11), with |a|* +[b* = 1, and
a,b € R are eigenvectors of H.

(2) The eigenenergies of H satisfy E; — E; — Es+ E4=0.

Then the entangling power of U(t) = exp(—iHt) is

given by
_16 s a o (BY 3200 a0 afB
eb,B) = 9(b b*) sin (2> 9(b b*)* sin (2>,
(55)

where 8 = |E3 — E»|t. In addition, we have e(a,8) = e(b,B).
Applying the above lemma to our effective Hamiltonians for
the crossover case gives three expressions ¢; = e(c;,f;), with

1 .
Bj =2t\/al + f} and c§=E 1+% . (56)
V&t

It is easy to see that the parameter a; now directly competes
with the strength of the perturbation f; in the expression for
the entangling power. With the measure for the asymmetry

£

aj

Xj = , (57)
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FIG. 7. (Color online) Entangling power ¢; of the free time
evolution for an asymmetric system, when the excitation is in state
|T;) for different strengths of the asymmetry ;.
we can write the entangling power compactly as

2 2\7 o 2)\2
[3+4x; + cos (2a;t, /1 + x7)]sin (a;2,/1+ x7)

o1+ x3)*

€; =

(58)

We plot ¢; for different asymmetries yx; in Fig. 7. Not
surprisingly, the entangling power decreases with increasing
asymmetry ;. The maximum of the entangling power, which
is achieved for B; = ki, where k is an odd integer, is given by

1600y 3200 4 21420
m1—9(cj cj) 9(Cj ) —9(1+X?)2’

(59)

this expression is plotted in Fig. 8. There is no significant
reduction in the achievable entanglement power as long as
Xx;j < 1/2,but the maximum drops quickly outside this regime.
We note that for equal hyperfine couplings (A, = 0) but
unequal nuclear gyromagnetic ratios,

ﬁ:a_i%&>>1’ (60)
X+ laol  2|D]
meaning that the % subspace’s entangling power ¢, is much
more affected by the asymmetry than e.. Fortunately, the
dynamics in this subspace is also the slowest, so that it
can still conveniently serve as a shelf for entangled states
generated in .7, or .7_ until the optical excitation has been

2/9F
0.20

0.15¢
mj
0.10

0.05F

0oL

X

FIG. 8. (Color online) Maximally attainable entangling power
of the free time evolution, when the excitation is in state |7;) with
respect to the strength of the asymmetry ;.
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de-excited or decayed. Importantly, Eq. (59) implies that
our scheme is robust against the small deviations from a
perfectly symmetrical system which one might expect in real-
world experiments. Further, intentionally introduced small
differences between frequency w, and frequency w, (e.g., a
chemical shift caused by different surrounding environments)
may actually be useful for individual control and tomography
of the nuclear spins, while a high-fidelity entangling operation
is still possible.

So far we have discussed the behavior of the entangling
power in terms of the parameter x;. While the dependence of
m; on x; is universal across the three subspaces .7}, we obtain
qualitatively different results when considering plots that are
based directly on the A/, asymmetry parameters. Figure 9
shows the entangling power as a function of A; and A,. We
see that the behavior is indeed quite different in each of the
three subspaces: In the .7_ subspace we obtain a ridge along
which an asymmetry between the nuclear Zeeman splittings
and the hyperfine coupling constants completely cancels out,
meaning that a perfect operation is possible even for a system
that is quite far removed from being symmetric. In contrast,
the asymmetries add up in the .7, subspace, so that the error
tolerance is much reduced in this case. Finally, the .7 subspace
is only sensitive to Aj, i.e., the difference in the nuclear
Zeeman splittings without any dependence on the hyperfine
constants [see Eq. (35)].

The entangling power vanishes completely in the limit of
an entirely asymmetric system [which we take to be defined
by inequalities (26) and (27)]. In this case x; > 1, and
the eigenstates consequently coincide with the computational
basis states, and the eigenvalues are such that the free time
evolution no longer generates any entanglement (this result

0 2 4 6 8 10
10744,

—_
(=]

107%A,
S N B~ O

—_
(=]

1074 A,
1074 A,

N A N

A

0 2 4 6 8 10
10744,

(]

0 02040608 1
10744,

FIG. 9. (Color online) Maximal attainable entangling power m_,
my, and m as a function of the asymmetry in the Zeeman splitting
Ay = =2 and hyperfine coupling asymmetry A, = A=A Other
parameters are A = 2.5 MHz, w, = 3.7 MHz, D = —296 MHz, and
w, = 9.6 GHz. The entangling power m ; only reaches its maximum
limit of 2/9 for certain values of A and A,. See the text for a more
detailed discussion.
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can be obtained by applying the above lemma). We analyze
this situation in the following section.

B. Control methods for the asymmetric system

For an asymmetric system we cannot rely on the system’s
free time evolution for the generation of entanglement; this is
a direct consequence of the Hamiltonian being decomposable
into local Hamiltonians [see Eq. (29)]. Therefore, we need to
apply a suitable sequence of radio-frequency and microwave
control pulses to accomplish our aim of creating an entangled
nuclear spin state. Hence, we proceed by analyzing the dipole-
allowed transitions of the asymmetric system (see Fig. 10).

The asymmetric system possesses six (different) nuclear
spin transitions on the radio-frequency scale, one per nuclear
spin for each of the three spin states of the excitation.
Referring to Sec. III B we obtain these from the second-order
eigenenergies:

wif,j =|—JA—w,—a_(8; _+8j0)—ay(8;0+6; 1),  (61)
wyp j=|—jA ~wy—a (8;-+8;0)—a, (8;0+8; 1), (62)

where 8y ; is the Kronecker 8, and as before, j indexes the spin
state of the excitation |77). Further, w ; denotes the transition
frequency of the first nuclear spin, and wj; ; the transition
frequency of the second nuclear spin. In general, all six of
these frequencies may be distinct.

Conversely, the spin state of the electronic excitation can
be flipped conditional on the nuclear spin state using a
suitable microwave pulse. With four nuclear spin states and
two excitation spin transitions, this gives a total of eight
microwave frequencies taking the excitation from |7}) to |T}:)
with (7, ") = (+,0) or (j, j") = (0,—), or vice versa. These are

ol i = oo+ (=D DELA+A),  (63)
@i n, = e+ (=1 D £ 5(A = A). (64)

Here we have neglected second-order perturbation theory
shifts proportional to a; and a}, as these are typically very
small compared to A and D.

Several possibilities exist for exploiting this rich transition
spectrum in order to realize an entangling operation. In the
following we discuss three methods in more detail: a single
microwave 27 pulse, a pulse sequence of radio- and microwave
pulses, and, finally, an adiabatic following method.

FIG. 10. (Color online) Microwave (dashed line) and radio-
frequency transitions (solid line) of the asymmetric system. The
computational basis states are eigenstates of the system Hamiltonian
[assuming that Eqs. (26) and (27) are fulfilled].
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1. CPHASE gate through a selective 2 pulse

Simply applying a selective 27 pulse with the frequency of
any of the microwave transitions given in Egs. (63) and (64)
naturally implements a CPHASE gate by imparting a phase of
e'™ = —1 to only one of the four nuclear spin states [31].

If the lifetime of the transition were infinite (and in the
absence of other spin dephasing mechanisms), the 27 pulse
could be made perfectly selective, achieved by a pulse that is
long in the time domain and, accordingly, spectrally narrow in
the frequency domain [32]. However, in practice, the optical
lifetime will be finite and this may limit the selectivity and
thus the amount of entanglement that can be achieved. The
challenge is to find the right balance between a fast pulse that
is only partially selective and a slow pulse during which the
system suffers from the decoherence induced by the decay.
We proceed by analyzing the trade-off that arises from these
constraints in the following.

Suppose we are given an initial state that is an equal
superposition of the computational basis states and a fully
polarized state of the excitation,

[Winiciat) = 31T0)(144) 4+ [L1) + 114) + [14), (65

and then apply a 2 microwave pulse with power €2y and witha
frequency wp corresponding to the energy difference between
level |T, 11) and level |Ty 11). To describe the dynamics of
the excited system we use either the effective asymmetric or
the more general effective crossover Hamiltonian, whichever
is more appropriate for the precise combination of system
parameters in question. In particular, Hysymefr,; iS adequate
whenever the eigenvectors closely coincide with the compu-
tational basis states, whereas Hcer,; is used otherwise. We
apply the following criterion for discriminating between the
two cases:

2 2
Hasym,eff,j|aj,2,l| < 0.001 or |aj,2,l| 2 0999a

Heff,j = {Hco,eff,j 0.001 < |Otj,2q1|2 < 0999,

(66)

with o 1 as defined in Eq. (34). In addition to the effective
system Hamiltonian H.g, we need to model the microwave
pulse (in the usual RWA), so that the total Hamiltonian during
the pulse is given by

Hp_w = |O)(_wnsz,n - wn/Sz,n’)<O| + |e) Heg(e|

+1e)(20Sx,e — wpSz.e)el. (67)

As this Hamiltonian is time independent, we can use a quantum
optical master equation like the one defined in Eq. (43) to
model the decay of the excitation in the interaction picture.
The transition operators A(w) are as defined by Eq. (41),
with appropriate projectors onto the eigenspaces of H,,. In
our calculations we perform the RWA in the master equation
(remember that this RWA is different and independent from the
RWA for the driving) whenever two frequencies differ by more
than 30t ~!, where 7 denotes the lifetime of the excitation.
While optical decay during the application of the pulse
may preserve some coherence between the nuclear spin states
for specific parameter combinations, this is no longer the
case once the pulse has finished: the decay to the ground
state for an asymmetric system in the absence of microwave
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driving invariably destroys the nuclear coherences. Therefore,
we must use a different approach for taking the system back
to its ground state. The first possibility is de-excitation using
a resonant optical  pulse. Another option is to significantly
“speed up” the decay process, e.g., by exciting the system
into a different metastable excited state which is known to
quickly decay to the ground state. Provided the lifetime of
this metastable state is short enough, the wave function of the
emitted photon does not carry information about the nuclear
spin state, so that the nuclear spin coherence will be preserved.
We assume that such a coherence-preserving de-excitation can
be accomplished.

As mentioned above, the system is susceptible to potentially
harmful decay events during the application of the 2 pulse,
such that the final nuclear spin state pp, is a mixture of a
population that has spontaneously decayed and the remaining
population to which the control sequence has been fully
applied. Since we are now dealing with mixed states pyc, the
entangling power is no longer a suitable measure for the quality
of our operation, and as before we employ the entanglement
of formation [30] as an alternative benchmark.

Assuming a simple top-hat pulse profile in the time domain,

the pulse duration for a 2 pulse is t = é—”ﬂ, where € is the
0

applied microwave power. For optimal performance the right
balance must be found between pulse selectivity and duration
for each combination of system parameters and lifetime t. We
thus maximize the achievable entanglement of formation by
varying €2 to obtain

E;k? = n}zax E r(0nuc)- (68)
0

As an example we choose 7 = 10 us to plot the quantity E’.
in Fig. 11 as a function of A and A’. Larger hyperfine coupling
constants allow a faster selective pulse, and the optimized
entanglement of formation of py,. hence increases with A and
A’. Remarkably, even for a lifetime as short as 10 us, a high
entanglement of formation can be obtained with only moderate
hyperfine coupling strengths.

Finally, we note that the currently presented protocol also
works for the symmetric system, where the entanglement
operation then only takes a time ¢ = ﬁ ~ Tz, which is
much faster than our protocol discussed in Sec. IV A. For a
short optical lifetime this approach may thus be advantageous,
assuming that a spectrally narrow highly selective 2w pulse
can be implemented.

2. Combined microwave and radio-frequency pulse sequence

In the previous section we discussed a simple imple-
mentation of the CPHASE gate that is maximally entangling
for suitable system parameters. However, other methods for
creating maximally entangled states also exist, and these may
be more advantageous if a particular final state is required.
Here we briefly discuss an alternative control method that
employs a sequence of microwave and radio-frequency pulses
instead of a single microwave pulse. Let us assume that we
have the initial spin state |7y | ) and would like to create the
entangled Bell state %(lTo W)Y 4+ 1To 11)). Tt is impossible
to perform this operation with only radio-frequency pulses.
However, we can achieve our aim by “shelving” parts of
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FIG. 11. (Color online) (a) Maximized entanglement of forma-
tion of the nuclear spins after the 27 pulse with respect to the
two hyperfine coupling strengths A and A’. (b) Optimal duration
= J%gg of the microwave 2w pulse with respect to the two
hyperfine coupling strengths A and A’. We use the illustrative lifetime
7 = 10, while the other parameters used in this plot are motivated
by Ref. [24]: D = —320 MHz, w, = 9.7 GHz, w, = 5.97 MHz, and
w, = 14.74 MHz.

the population in one of the other electronic spin states. An
example of how this approach works in detail is depicted in
Fig. 12.

Of course, the microwave and radio-frequency pulses also
need to be sufficiently selective for this approach, which
imposes a minimal overall pulse sequence duration. Once
more, we refrain from discussing sophisticated pulse shaping

To 1) z ITo 1) ITo 1)
Ty 11) i 1B [Ty 11) M * M -
Tl iy ——
[To ﬂ)@ i [Ty inm ‘/:-
Lo ll) o FTo b o
oy T

FIG. 12. (Color online) Pulse sequence for the creation of the
Bell state %(|T0 34) + Ty 11)). Black energy levels are populated
and gray levels are empty. Dotted arrows denote a coherence between
the adjacent energy levels. Only relevant spin levels are shown.
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techniques [32], instead considering Rabi’s instructive formula
for the transition probability of a driven two-level system,

@,
Poa(t) = A sin”(v/ €2 + A?r), (69)

where €2 denotes the strength of the pulse, and A the
detuning. We apply this to the closest neighboring transitions
of the (resonantly driven) target transition and demand that
Q?/(Q* + A?) « 1 for all neighboring transitions, allowing a
rough estimation of the duration required for each pulse in the
sequence.

We take the example of a recent characterization experi-
ment on an asymmetric system (phosphine oxide fullerene;
DMFPH) [24], where the two nuclear spins of interest are
provided by a hydrogen and a phosphorus atom in the
functional group attached to the fullerene. The hyperfine
coupling and the zero-field splitting were measured as

A~ 6MHz, A~ 11 MHz, and D~ —320MHz (70)

at an external magnetic field of B = 0.346 T. Setting an
upper bound of 0.01 for the unwanted transition probabilities,
the four required pulses can all be applied in less than
1 us for typical nuclear gyromagnetic ratios. The duration
of the pulse sequence is thus short compared to the expected
optical lifetimes in candidate molecules, so that a high-fidelity
entangling operation using this protocol should be feasible.
However, we refrain from performing a more detailed analysis
as in the previous section, since the results are similar and little
additional insight is gained.

3. Implementation of a CPHASE operation with
adiabatic following

The last method discussed in this paper for creating
entanglement in our system relies on the adiabatic following
of system eigenstates, similar to the protocol described in
Refs. [13] and [33]. Here, it is implemented by slowly
modulating the intensity of a microwave pulse that is close
to resonance with one or several of the microwave transitions
of the excitation spin. Prior to the application of the pulse, the
(asymmetric) system is prepared to be in a superposition of
computational basis states as follows:

[Vinita) = [To) @1V 1) +a2ld 1) +a3|tl) +aslt1)),  (71)
with normalization Z?zl la;|> = 1. Starting from this state,
the microwave power is then varied such that adiabatic
following of instantaneous eigenstates occurs. Once the power
is decreased again, all populations return to the computational
basis. During the pulse, the eigenstates are energetically shifted
and thus pick up a dynamic phase. However, the precise shifts
of the states differ due to the the hyperfine coupling, so that,
in general, each of the four states acquires a different dynamic
phase. This gives rise to an overall combination that can be
nontrivial and entangling [33].

Consider applying a microwave field with frequency wp
whose power envelope is changed gradually following a
Gaussian function Q(t) = Qqexp[—(¢/0)?]. We apply this
Gaussian microwave pulse from an initial time r = —30 to
t =30 and choose the frequency wp in such a way that
the pulse is off-resonant with all microwave transitions in

PHYSICAL REVIEW A 84, 032332 (2011)

the system. The diagonal form of the system Hamiltonian
Hgym eff permits a description of the dynamics of each state in
the superposition of Eq. (71) with a Hamiltonian connecting
all three excitation states of the form
A v{0)]
éét}l v Q?r)
i) = (i|2N) = | "5 N (72)
0 £ A
«/E i,2
written in the basis {|7T_i),|Tyi),|Ti)} for i={| , 1,
A, 11} with detunings A;; = wﬁ@; —wp and A;, =
wj@o — wp. Note that the usual RWA has been performed.
Choosing wp such that, for each i,
1) <A (73)
— 2,i
V2
then enables us to write an approximate Hamiltonian for each
of the nuclear spin states (valid to first order in perturbation
theory) as

A % 0
%,app(t) = % 0 0 . (74)
0 0 Ap»

To achieve adiabatic following, the eigenenergies need to be
varied slowly to suppress Landau Zener transitions between
different eigenstates. Following Ref. [13], this can be accom-
plished under the following conditions:

Q

oo for i={L 4t 09)
1i

As we have mentioned above, the net effect achieved by the

adiabatic pulse is the acquisition of a phase 6; for each of

the nuclear spin states. The “right” combination of control

parameters o, 2o, and A;; gives rise to an operation that is

locally equivalent to a CPHASE gate if the following condition

is met [13]:

T =60 —6,—03;+0,. (76)

In terms of the evolution of nuclear spins, the state |[ipiia) has
then evolved to

I To)are ™ [ 4) +ae™® || 1) +aze’™ 1)) +ase™|11)),  (77)

corresponding to a local phase on each nuclear spin in addition
to the application of a CPHASE gate.

We now address the question of how the optimal combi-
nation of control parameters may be found. The dynamical
phase that is acquired by a state during the pulse is directly
determined by the eigenenergy of the state |7i), yielding

30
6, = _f l(A,,l — A2, +2Q07)dt (78)

30 2
QQO’ 3 Ai 1 2
== — ) +2exp(—2x¥dx. (79)
2 )V e

Imposing condition (76) and solving for o = o(wp,$2p) yields

3 S\ 2 !
SETTRN(C e

032332-11



SCHAFFRY, LOVETT, AND GAUGER

where the sum is taken over the four nuclear spin eigenstates.
To mitigate the effect of decoherence caused by the decay of
the excitation, we minimize the duration of the pulse under the
constraint that the conditions in Eqgs. (73), (75), and (76) are
fulfilled, thus obtaining an optimal o *.

We incorporate the decoherence caused by the optical decay
by modeling the time evolution with the Schrodinger picture
master equation

d
Tp(0) = —il Higy(0).p0] + Y T@)2A@)P(DA)

—{A@)A(),p(1)}] (81)

in Lindblad form [28]. I'(w) is as defined by Eq. (45) and the
Lindblad operators A(w) are determined by (41), where the
projectors project onto the eigenspaces of Hogym eff instead of
Fpp- This simplification gives 12 (constant) incoherent decay
channels, rather than considering time-dependent Lindblad
operators and re-evaluating the validity of the RWA at every
instance in time (as would be required for the time-dependent
Hamiltonian). Effectively, our approach then overestimates the
destructiveness of the optical decay, thus giving a lower bound
for the entanglement of formation of the nuclear spins.
Figure 13 shows the results of a simulation that applies
such an optimized Gaussian pulse with a pulse duration o*.
For weak coupling strengths A and A’, this approach achieves
a somewhat lower value of the entanglement of formation than
the dynamic 27 pulse discussed earlier. However, a similarly
high-fidelity entangling operation is possible for stronger

(a)
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FIG. 13. (Color online) (a) Optimal duration of the adiabatic
pulse 60 * optimized over wp and 2. (b) Entanglement of formation
after applying a Gaussian pulse whose duration is characterized by
o*. As in Fig. 11, other parameters are T = 10 us, D = —320 MHz,
w, = 9.7 GHz, w,, = 5.97 MHz, and w,, = 14.74 MHz.
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hyperfine coupling. The term “adiabatic following” can
invoke the impression that the desired operation will
be much slower than a dynamical implementation. It is
therefore astounding that our adiabatic pulse takes only
about twice as along as the dynamic 2w pulse. Finally,
we note that the adiabatic method (where the pulse is
applied off-resonantly rather than having to hit a specific
resonance) is inherently robust against pulse imperfections.
This could be a significant advantage for experiments with
ensembles of identical molecules. In this case, static and
driving field inhomogeneities will inevitably lead to an over-
or under-rotation of some of the ensemble spins when a
dynamical pulse is applied (leaving the wrong excitation
subspace populated), whereas the adiabatic approach ensures
that all populations end up back in the correct spin levels.

V. SUMMARY

In this paper, we have given a detailed analysis showing
how a transient optically excited state can be harnessed
for the controlled generation of entanglement between two
remote nuclear spins. We have identified control methods
applicable over a wide range of system parameters and
studied their performance with regard to the predominant
decoherence mechanism. For a symmetric system consisting
of two identical nuclear spins as qubits, the free time evolution
is naturally entangling, but the characteristic time scale of the
dynamics depends on the state of the excitation and can vary
over several orders of magnitude, opening up the possibility
of effectively switching the interaction on and off. For an
asymmetric system, a different route needs to be taken, and
we have presented one adiabatic and two dynamic methods
for creating entanglement in this case. We have also included
a discussion of the crossover regime between the asymmetric
and the symmetric system to establish the robustness of the
symmetric operation.

We have shown that the symmetric control method can be
remarkably robust against uncertainty or fluctuations in the
coupling constants and nuclear Zeeman splittings. As another
advantage of the symmetric system, the system can decay
back to the ground state without destroying the nuclear spin
coherence. Conversely, for the asymmetric system additional
control is required for the de-excitation step, yet it is easier
to address the nuclear spins individually for single-qubit
operations, initialization, and readout.

Interestingly, the active control methods proposed for the
asymmetric system are much faster than waiting for the free
time evolution in the symmetric case, and they can also be
applied to the symmetric system if a short optical lifetime
makes this approach advantageous. Finally, we note that the
adiabatic control method is intrinsically more robust against
control pulse and static field inhomogeneities, making it
uniquely suitable for experiments with ensembles of identical
systems. Astonishingly, the time required for such an adiabatic
operation is only about twice as long as for its dynamical
counterpart.
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