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Quantum entanglement in multiparticle systems of two-level atoms
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We propose the necessary and sufficient condition for the presence of quantum entanglement in arbitrary
symmetric pure states of two-level atomic systems. We introduce a parameter to quantify quantum entanglement
in such systems. We express the inherent quantum fluctuations of a composite system of two-level atoms as a
sum of the quantum fluctuations of the individual constituent atoms and their correlation terms. This helps to
separate out and study solely the quantum correlations among the atoms and obtain the criterion for the presence
of entanglement in such multiatomic systems.
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I. INTRODUCTION

Over the past few years there has been a growing interest
in quantum mechanically correlated multiatomic systems
[1–4]. Quantum entanglement, which is the basic ingredient
of quantum information theory, is yet to be understood
completely in the context of such systems. The proposal of the
criterion made by Peres and Horodecki in Refs. [5] and [6],
regarding the presence of quantum entanglement in a quantum
system, forms an important step toward the understanding of
quantum entanglement in the context of bipartite states. It has
also been found that spin squeezing has a close relationship
with quantum entanglement and a lot of work has been done
in this direction [7–13]. A system that is in a spin squeezed
state is also quantum mechanically entangled. But, quantum
entanglement does not ensure spin squeezing. A system that
is in a quantum mechanically entangled state may not always
show spin squeezing. Therefore, spin squeezing cannot always
be used to detect and quantify quantum entanglement.

In this paper, we introduce the necessary and sufficient
condition for the presence of quantum entanglement in
multiatomic systems and also introduce a parameter to quantify
quantum entanglement.

An atom has many energy levels, but when it is interacting
with an external monochromatic electromagnetic field, we
concentrate mainly on two of its energy levels, among which
the transition of the atom takes place. Hence, the atom is called
a two-level atom.

We consider a system of N such two-level atoms. If among
the two energy levels of the n-th atom in the assembly, the
upper and lower energy levels are denoted as |un〉 and |ln〉,
respectively, then we can construct a vector operator Ĵn whose
components are

Ĵnx
= (1/2)(|un〉〈ln| + |ln〉〈un|), (1)

Ĵny
= (−i/2)(|un〉〈ln| − |ln〉〈un|), (2)

Ĵnz
= (1/2)(|un〉〈un| − |ln〉〈ln|), (3)

such that [
Ĵnx

,Ĵny

] = iĴnz
(4)

and two more relations with cyclic changes in x, y, and z. Since
the operators Ĵnx

, Ĵny
, and Ĵnz

obey the same commutation
relations as the spin operators, these are called pseudo-spin
operators.

For the entire system of N two-level atoms, we construct
collective pseudo-spin operators

Ĵx =
N∑

i=1

Ĵix , Ĵy =
N∑

i=1

Ĵiy , Ĵz =
N∑

i=1

Ĵiz , (5)

where it is implicitly assumed that each term in the above
summations is in direct product with the identity operators of
all other atoms.

The individual atomic operators satisfy[
Ĵ1x

,Ĵ2y

] = 0,
[
Ĵ1x

,Ĵ1y

] = iĴ1z
,

[
Ĵ2x

,Ĵ2y

] = iĴ2z
,... (6)

As a direct consequence of these commutation relations we
have

[Ĵx,Ĵy] = iĴz (7)

and two more relations with cyclic changes in x, y, and z.
The simultaneous eigenvectors of Ĵ 2 = Ĵ 2

x + Ĵ 2
y + Ĵ 2

z and

Ĵz are denoted as |j,m〉, where

Ĵ 2|j,m〉 = j (j + 1)|j,m〉 (8)

and

Ĵz|j,m〉 = m|j,m〉. (9)

Here j = N/2 and m = −j, − j + 1,...,(j − 1),j . The col-
lective quantum state vector for a system of N two-level atoms
can be expressed as a linear superposition of |j,m〉 as

|ψj 〉 =
j∑

m=−j

cm|j,m〉. (10)

To find out whether a quantum state |ψj 〉 of the system is an
atomic coherent state [16] or an atomic squeezed state [14],
[15] we calculate the mean pseudo-spin vector

〈Ĵ〉 = 〈Ĵx〉î + 〈Ĵy〉ĵ + 〈Ĵz〉k̂ (11)

for the quantum state |ψj 〉. The vector 〈Ĵ〉 may have arbitrary
direction in space. We calculate the variances

�J 2
1,2 = 〈

Ĵ 2
1,2

〉 − 〈Ĵ1,2〉2, (12)
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where Ĵ1 and Ĵ2 are the components of Ĵ along two mutually
perpendicular directions in a plane perpendicular to 〈Ĵ〉. If
these variances satisfy

�J 2
1 = �J 2

2 = j/2 = N/4, (13)

then the state |ψj 〉 is called an atomic coherent state. If

�J 2
1 or �J 2

2 < j/2 = N/4, (14)

the state |ψj 〉 is said to be an atomic squeezed state or
spin squeezed state [14]. This definition of spin squeezing
is free from the coordinate dependency and includes quantum
correlation among the atoms in the notion of squeezing. We
can now define quantities

Q1 =
√

2

j
�J1 (15)

and

Q2 =
√

2

j
�J2 (16)

such that if Q1 and Q2 are equal to 1, then |ψj 〉 is called an
atomic coherent state. If

Q1 or Q2 < 1, (17)

the state |ψj 〉 is said to be an atomic squeezed state [15].
It is to be mentioned here that

Q1Q2 � 1, (18)

which is Heisenberg’s uncertainty principle.
Now, normally, to perform the above calculations, we rotate

the coordinate system {x,y,z} to {x ′,y ′,z′}, such that the mean
pseudo-spin vector 〈Ĵ〉 points along the z′ axis. We then
calculate the variances

�J 2
x ′,y ′ = 〈

Ĵ 2
x ′,y ′

〉 − 〈Ĵx ′,y ′ 〉2 (19)

and investigate the behavior of

Qx =
√

2

j
�Jx ′ (20)

and

Qy =
√

2

j
�Jy ′ . (21)

If

Qx = Qy = 1, (22)

the corresponding quantum state of the system is a coherent
state. If

Qx or Qy < 1, (23)

the quantum state is a spin squeezed state. Here, Qx and Qy

satisfy

QxQy � 1. (24)

A collective state vector |α〉 for a system of two atoms is
said to be quantum mechanically entangled if |α〉 cannot be

expressed as a direct product of the two individual atomic state
vectors, i.e.,

|α〉 �= |α1〉 ⊗ |α2〉, (25)

where |α1〉 and |α2〉 are the state vectors of the two individual
atoms [17].

This paper is organized as follows. In Sec. II we formulate
the necessary and sufficient condition for the presence of
quantum entanglement in arbitrary symmetric pure states
of two two-level atoms. We also construct a parameter,
called quantum entanglement parameter, to quantify quantum
entanglement in such systems. In Sec. III we establish
the relationship between quantum entanglement parameter
and experimentally measurable quantities. That is, we show
how the quantum entanglement parameter can be measured
experimentally. In Sec. IV, we generalize these ideas in case
of systems containing N number of two-level atoms.

II. QUANTUM ENTANGLEMENT IN A SYSTEM OF TWO
TWO-LEVEL ATOMS

We consider a system of two two-level atoms. To formulate
the necessary and sufficient condition for the presence of
quantum entanglement in arbitrary symmetric pure states of
this system, we first find out the quantum fluctuations of the
composite system in terms of the components of Ĵ along two
mutually orthogonal directions in a plane perpendicular to 〈Ĵ〉.
We then express these fluctuations as an algebraic sum of
the quantum fluctuations of the individual constituent atoms
and their correlation terms. This helps us to isolate and study
solely the quantum correlation terms among the two atoms and
obtain the necessary and sufficient condition for the presence
of quantum entanglement. From there we also construct a
parameter to quantify quantum entanglement.

A normalized collective quantum state |ψ〉 for this system
can be expressed as

|ψ〉 = C1|j = 1,m = 1〉 + C2|j = 1,m = 0〉
+C3|j = 1,m = −1〉, (26)

where C1, C2, and C3 are constants satisfying

|C1|2 + |C2|2 + |C3|2 = 1. (27)

The state |j = 1,m = 1〉 corresponds to the case when both
the atoms are in their respective upper states. |j = 1,m = −1〉
means both the atoms are in their lower states and |j = 1,m =
0〉 implies one atom in the upper and the other in its lower
state.

In {m1,m2} representation, if |m1,m2〉 is the simultaneous
eigenvector of Ĵ1z

and Ĵ2z
with eigenvalues m1 and m2,

respectively, then we can write

|j = 1,m = 1〉 = |m1 = 1/2,m2 = 1/2〉, (28)

|j = 1,m = −1〉 = |m1 = −1/2,m2 = −1/2〉, (29)

and

|j = 1,m = 0〉 = 1√
2

[|m1 = 1/2,m2 = −1/2〉
+ |m1 = −1/2,m2 = 1/2〉] (30)
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[18]. Thus, |ψ〉 in Eq. (26) can be written as

|ψ〉 = C1|1/2,1/2〉 + 1√
2
C2[|1/2, − 1/2〉

+ | − 1/2,1/2〉] + C3| − 1/2, − 1/2〉. (31)

This state vector is symmetric under the exchange of two
atoms.

Since |ψ〉 is arbitrary, the quantities 〈ψ |Ĵx |ψ〉, 〈ψ |Ĵy |ψ〉,
and 〈ψ |Ĵz|ψ〉 have arbitrary values and, hence, 〈Ĵ〉 =
〈ψ |Ĵ|ψ〉 has arbitrary direction. We now perform a rotation
of the coordinate system from {x,y,z} to {x ′,y ′,z′} such that
the vector 〈Ĵ〉 points along the z′ axis. In doing so, we assume
that the vector 〈Ĵ〉 was in the first octant of the coordinate
system {x,y,z}. After the rotation, the components {Ĵx ′ ,Ĵy ′ ,Ĵz′ }
in the rotated frame {x ′,y ′,z′} are related to {Ĵx,Ĵy,Ĵz} in the
unrotated frame {x,y,z} as

Ĵx ′ = Ĵx cos θ cos φ + Ĵy cos θ sin φ − Ĵz sin θ, (32)

Ĵy ′ = −Ĵx sin φ + Ĵy cos φ, (33)

Ĵz′ = Ĵx sin θ cos φ + Ĵy sin θ sin φ + Ĵz cos θ, (34)

where

cos θ = 〈Ĵz〉
|〈Ĵ〉| , (35)

cos φ = 〈Ĵx〉√
〈Ĵx〉2 + 〈Ĵy〉2

. (36)

We can check using Eqs. (32), (35), and (36), that for the
arbitrary state |ψ〉 we have

〈Ĵx ′ 〉 = 〈Ĵx〉 cos θ cos φ + 〈Ĵy〉 cos θ sin φ − 〈Ĵz〉 sin θ (37)

= 1

|〈Ĵ〉|
√

〈Ĵx〉2 + 〈Ĵy〉2
[〈Ĵx〉2〈Ĵz〉 + 〈Ĵy〉2〈Ĵz〉

− 〈Ĵz〉(〈Ĵx〉2 + 〈Ĵy〉2)] = 0. (38)

Similarly, using Eqs. (33), (34), (35), and (36), we have,

〈Ĵy ′ 〉 = 0, (39)

〈Ĵz′ 〉 = |〈Ĵ〉|. (40)

Thus, the mean pseudo-spin vector is now along the z′ axis.
We now calculate the quantum fluctuations in the com-

ponents of Ĵ along two mutually orthogonal directions, in
a plane perpendicular to 〈Ĵ〉. For simplicity, we take the
above-mentioned two orthogonal directions along the x ′ and
y ′ axes, respectively. Therefore, we calculate the quantum
fluctuations �J 2

x ′ and �J 2
y ′ .

Now, we have already shown in Eqs. (38) and (39) that we
have here 〈Ĵx ′ 〉 = 〈Ĵy ′ 〉 = 0. Therefore, according to Eqs. (19),
(32), and (33), we obtain for the quantum state |ψ〉

�J 2
x ′ = 〈

Ĵ 2
x ′
〉 = 〈

Ĵ 2
x

〉
cos2 θ cos2 φ + 〈

Ĵ 2
y

〉
cos2 θ sin2 φ

+ 〈
Ĵ 2

z

〉
sin2 θ + 1

2 〈Ĵx Ĵy + Ĵy Ĵx〉 cos2 θ sin 2φ

− 1
2 〈Ĵx Ĵz + ĴzĴx〉 sin 2θ cos φ

− 1
2 〈Ĵy Ĵz + ĴzĴy〉 sin 2θ sin φ (41)

and

�J 2
y ′ = 〈

Ĵ 2
y ′
〉 = 〈

Ĵ 2
x

〉
sin2 φ + 〈

Ĵ 2
y

〉
cos2 φ

− 1
2 〈Ĵx Ĵy + Ĵy Ĵx〉 sin 2φ, (42)

respectively.
It is to be mentioned here that we are not using the forms of

cos θ , cos φ, etc., as given in Eqs. (35) and (36), respectively,
as to keep the mathematical expressions neat. At the end of the
calculation, we use the above-mentioned equations to ensure
that we are calculating the fluctuations in a plane perpendicular
to 〈Ĵ〉.

We now express these fluctuations as an algebraic sum of
the quantum fluctuations of the individual constituent atoms
and their correlation terms. From Eq. (5), we have for a system
of two two-level atoms,

Ĵx = Ĵ1x
+ Ĵ2x

, (43)

Ĵy = Ĵ1y
+ Ĵ2y

, (44)

Ĵz = Ĵ1z
+ Ĵ2z

. (45)

Therefore, we have〈
Ĵ 2

x,y,z

〉 = 〈
Ĵ 2

1x,y,z

〉 + 〈
Ĵ 2

2x,y,z

〉
+ 〈

Ĵ1x,y,z
Ĵ2x,y,z

+ Ĵ2x,y,z
Ĵ1x,y,z

〉
. (46)

Now, using Eqs. (43) and (44), we have

〈Ĵx Ĵy + Ĵy Ĵx〉 = 〈
Ĵ1x

Ĵ1y
+ Ĵ1y

Ĵ1x

〉 + 〈
Ĵ2x

Ĵ2y
+ Ĵ2y

Ĵ2x

〉
+ 〈

Ĵ1x
Ĵ2y

+ Ĵ2y
Ĵ1x

〉 + 〈
Ĵ1y

Ĵ2x
+ Ĵ2x

Ĵ1y

〉
.

(47)

Similarly, using Eqs. (43), (44), and (45), we have

〈Ĵx Ĵz + ĴzĴx〉 = 〈
Ĵ1x

Ĵ1z
+ Ĵ1z

Ĵ1x

〉 + 〈
Ĵ2x

Ĵ2z
+ Ĵ2z

Ĵ2x

〉
+ 〈

Ĵ1x
Ĵ2z

+ Ĵ2z
Ĵ1x

〉 + 〈
Ĵ1z

Ĵ2x
+ Ĵ2x

Ĵ1z

〉
(48)

and

〈Ĵy Ĵz + ĴzĴy〉 = 〈
Ĵ1y

Ĵ1z
+ Ĵ1z

Ĵ1y

〉 + 〈
Ĵ2y

Ĵ2z
+ Ĵ2z

Ĵ2y

〉
+ 〈

Ĵ1y
Ĵ2z

+ Ĵ2z
Ĵ1y

〉 + 〈
Ĵ1z

Ĵ2y
+ Ĵ2y

Ĵ1z

〉
.

(49)

It is to be noted here that though the operators of atom 1
commute with those of atom 2, we are not taking advantage of
that as to keep the expressions symmetric with respect to the
indices 1 and 2.

Using Eqs. (46) to (49) in Eq. (41) and (42), we get

�J 2
x ′ =

2∑
i=1

[〈
Ĵ 2

ix

〉
cos2 θ cos2 φ + 〈

Ĵ 2
iy

〉
cos2 θ sin2 φ

+ 〈
Ĵ 2

iz

〉
sin2 θ

] +
2∑

i=1

2∑
l=1
l �=i

[〈
Ĵix Ĵlx

〉
cos2 θ cos2 φ

+ 〈
Ĵiy Ĵly

〉
cos2 θ sin2 φ + 〈

Ĵiz Ĵlz

〉
sin2 θ

]
+ 1

2

2∑
i=1

2∑
l=1

[〈
Ĵix Ĵly + Ĵly Ĵix

〉
cos2 θ sin 2φ
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− 〈
Ĵix Ĵlz + Ĵlz Ĵix

〉
sin 2θ cos φ

− 〈
Ĵiy Ĵlz + Ĵlz Ĵiy

〉
sin 2θ sin φ

]
(50)

and

�J 2
y ′ =

2∑
i=1

[〈
Ĵ 2

ix

〉
sin2 φ + 〈

Ĵ 2
iy

〉
cos2 φ

]

+
2∑

i=1

2∑
l=1
l �=i

[〈
Ĵix Ĵlx

〉
sin2 φ + 〈

Ĵiy Ĵly

〉
cos2 φ

]

− 1

2

2∑
i=1

2∑
l=1

〈
Ĵix Ĵly + Ĵly Ĵix

〉
sin 2φ. (51)

Now, since |ψ〉 is symmetric under the exchange of two
atoms and both the atoms have been treated on equal footing
in the state |ψ〉, we have〈

Ĵ1x

〉 = 〈
Ĵ2x

〉
, (52)〈

Ĵ1y

〉 = 〈
Ĵ2y

〉
, (53)〈

Ĵ1z

〉 = 〈
Ĵ2z

〉
, (54)〈

Ĵ1x
Ĵ2y

〉 = 〈
Ĵ1y

Ĵ2x

〉
, (55)〈

Ĵ1x
Ĵ2z

〉 = 〈
Ĵ1z

Ĵ2x

〉
, (56)〈

Ĵ1y
Ĵ2z

〉 = 〈
Ĵ1z

Ĵ2y

〉
, (57)〈

Ĵ1x
Ĵ1y

+ Ĵ1y
Ĵ1x

〉 = 〈
Ĵ2x

Ĵ2y
+ Ĵ2y

Ĵ2x

〉
, (58)〈

Ĵ1x
Ĵ1z

+ Ĵ1z
Ĵ1x

〉 = 〈
Ĵ2x

Ĵ2z
+ Ĵ2z

Ĵ2x

〉
, (59)〈

Ĵ1y
Ĵ1z

+ Ĵ1z
Ĵ1y

〉 = 〈Ĵ2y
Ĵ2z

+ Ĵ2z
Ĵ2y

〉
. (60)

Therefore, using Eqs. (52), (53), and (54), we can reduce
cos θ and cos φ given in Eqs. (35) and (36), respectively, as

cos θ =
〈
Ĵ1z

〉
|〈Ĵ1〉|

, (61)

cos φ =
〈
Ĵ1x

〉
√〈

Ĵ1x

〉2 + 〈
Ĵ1y

〉2 , (62)

where

|〈Ĵ1〉| =
√〈

Ĵ1x

〉2 + 〈
Ĵ1y

〉2 + 〈
Ĵ1z

〉2
. (63)

Using Eqs. (32), (43), (61), and (62), it can be shown that〈
Ĵix′

〉 = 〈
Ĵix

〉
cos θ cos φ + 〈

Ĵiy

〉
cos θ sin φ − 〈

Ĵiz

〉
sin θ

= 0. (64)

Therefore, from Eqs. (19) and (32), we have

�J 2
ix′ = 〈

Ĵ 2
ix′

〉 = 〈
Ĵ 2

ix

〉
cos2 θ cos2 φ

+ 〈
Ĵ 2

iy

〉
cos2 θ sin2 φ + 〈

Ĵ 2
iz

〉
sin2 θ

+ 1
2

〈
Ĵix Ĵiy + Ĵiy Ĵix

〉
cos2 θ sin 2φ

− 1
2

〈
Ĵix Ĵiz + Ĵiz Ĵix

〉
sin 2θ cos φ

− 1
2

〈
Ĵiy Ĵiz + Ĵiz Ĵiy

〉
sin 2θ sin φ, (65)

where, i = 1,2. Using the above equation we can write
Eq. (50) as

�J 2
x ′ =

2∑
i=1

�J 2
ix′ +

2∑
i=1

2∑
l=1
l �=i

[〈
Ĵix Ĵlx

〉
cos2 θ cos2 φ

+ 〈
Ĵiy Ĵly

〉
cos2 θ sin2 φ + 〈

Ĵiz Ĵlz

〉
sin2 θ

+ 〈
Ĵix Ĵly

〉
cos2 θ sin 2φ − 〈

Ĵix Ĵlz

〉
sin 2θ cos φ

− 〈
Ĵiy Ĵlz

〉
sin 2θ sin φ

]
. (66)

Similarly, it can be shown that

�J 2
iy′ = 〈

Ĵ 2
iy′

〉 = 〈
Ĵ 2

ix

〉
sin2 φ + 〈

Ĵ 2
iy

〉
cos2 φ

− 1
2

〈
Ĵix Ĵiy + Ĵiy Ĵix

〉
sin 2φ (67)

and, hence, we have

�J 2
y ′ =

2∑
i=1

�J 2
iy′ +

2∑
i=1

2∑
l=1
l �=i

[〈
Ĵix Ĵlx

〉
sin2 φ

+ 〈
Ĵiy Ĵly

〉
cos2 φ − 〈

Ĵix Ĵly

〉
sin 2φ

]
. (68)

We now take advantage of the fact that the operators of
atom 1 commute with those of atom 2 and obtain, using
Eqs. (58) to (60) in Eq. (66),

�J 2
x ′ = �J 2

1x′ + �J 2
2x′ + 2

〈
Ĵ1x

Ĵ2x

〉
cos2 θ cos2 φ

+ 2
〈
Ĵ1y

Ĵ2y

〉
cos2 θ sin2 φ + 2

〈
Ĵ1z

Ĵ2z

〉
sin2 θ

+ 2
〈
Ĵ1x

Ĵ2y

〉
cos2 θ sin 2φ − 2

〈
Ĵ1x

Ĵ2z

〉
sin 2θ cos φ

− 2
〈
Ĵ1y

Ĵ2z

〉
sin 2θ sin φ. (69)

Thus, the quantum fluctuation �J 2
x ′ of a composite system

of two two-level atoms is equal to the sum of the fluctuations
�J 2

1x′ and �J 2
2x′ of the individual constituent atoms and the

correlation terms 〈Ĵ1x,y,z
Ĵ2x,y,z

〉, 〈Ĵ1x
Ĵ2y

〉, 〈Ĵ1x
Ĵ2z

〉, and 〈Ĵ1y
Ĵ2z

〉,
which depend upon the correlation among the two atoms.

In a similar fashion, we have

�J 2
y ′ = �J 2

1y′ + �J 2
2y′ + 2

〈
Ĵ1y

Ĵ2y

〉
cos2 φ

+ 2
〈
Ĵ1x

Ĵ2x

〉
sin2 φ − 2

〈
Ĵ1x

Ĵ2y

〉
sin 2φ, (70)

where the last three terms represent the correlation among the
two atoms.

Thus, we can see from Eqs. (69) and (70) that, by expressing
the quantum fluctuations �J 2

x ′ and �J 2
y ′ of the composite

system of two two-level atoms in the above way, we can
separate out the correlation terms among the two atoms from
their intrinsic quantum fluctuations. This helps to visualize and
study solely the quantum correlations existing among the two
atoms.

We now calculate �J 2
1x′ ,y′ and �J 2

2x′ ,y′ for the state |ψ〉.
Using the expression of |ψ〉 given in Eq. (31), we get〈

Ĵ 2
ix

〉 = 〈
Ĵ 2

iy

〉 = 〈
Ĵ 2

iz

〉 = 1
4 (71)

and 〈
Ĵix Ĵiy + Ĵiy Ĵix

〉 = 〈
Ĵix Ĵiz + Ĵiz Ĵix

〉
(72)

= 〈
Ĵiy Ĵiz + Ĵiz Ĵiy

〉 = 0,
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where i = 1,2. Therefore, using these equations and also
Eqs. (61) and (62) in Eq. (65), we get

�J 2
ix′ = �J 2

iy′ = 1
4 . (73)

Now, using the expressions of cos θ and cos φ given in
Eqs. (61) and (62), respectively, and also using Eq. (73) in
Eq. (69), we obtain

�J 2
x ′ = 1

4
+ 1

4
+ 2

〈
Ĵ1z

〉2
|〈Ĵ1〉|2

(〈
Ĵ1x

〉2 + 〈
Ĵ1y

〉2)
×[〈

Ĵ1x
Ĵ2x

〉〈
Ĵ1x

〉2 + 2
〈
Ĵ1x

Ĵ2y

〉〈
Ĵ1x

〉〈
Ĵ1y

〉
+ 〈

Ĵ1y
Ĵ2y

〉〈
Ĵ1y

〉2] + 2
〈
Ĵ1z

Ĵ2z

〉
|〈Ĵ1〉|2

[〈
Ĵ1x

〉2 + 〈
Ĵ1y

〉2]

− 4
〈
Ĵ1z

〉
|〈Ĵ1〉|2

[〈
Ĵ1x

Ĵ2z

〉〈
Ĵ1x

〉 + 〈
Ĵ1y

Ĵ2z

〉〈
Ĵ1y

〉]
(74)

= 1

2
+ Cx, (75)

whereCx is the sum of last seven terms in Eq. (74). It represents
the quantum correlation existing among the two atoms.

Similarly, using Eqs. (61), (62), and (73) in Eq. (70), we
get

�J 2
y ′ = 1

4
+ 1

4
+ 2(〈

Ĵ1x

〉2 + 〈
Ĵ1y

〉2) [〈
Ĵ1x

Ĵ2x

〉〈
Ĵ1y

〉2
+ 〈

Ĵ1y
Ĵ2y

〉〈
Ĵ1x

〉2 − 2
〈
Ĵ1x

Ĵ2y

〉〈
Ĵ1x

〉〈
Ĵ1y

〉]
(76)

= 1

2
+ Cy, (77)

where Cy represents the correlation among the two atoms.
We now see what happens to the correlation terms Cx

and Cy for an unentangled state. As mentioned in the earlier
section, an unentangled state |ψ〉 of the composite system of
two atoms can be expressed as a direct product of the individual
atomic state vectors of the two constituent atoms as

|ψ〉 = |ψ1〉 ⊗ |ψ2〉, (78)

where |ψ1〉 and |ψ2〉 are the atomic state vectors corresponding
to the two constituent atoms. Now, it is easy to see that for these
kinds of states the following conditions are satisfied.〈

Ĵ1x
Ĵ2x

〉 = 〈
Ĵ1x

〉〈
Ĵ2x

〉
,

〈
Ĵ1y

Ĵ2y

〉 = 〈
Ĵ1y

〉〈
Ĵ2y

〉
,〈

Ĵ1z
Ĵ2z

〉 = 〈
Ĵ1z

〉〈
Ĵ2z

〉
,

〈
Ĵ1x

Ĵ2y

〉 = 〈
Ĵ1x

〉〈
Ĵ2y

〉
, (79)〈

Ĵ1x
Ĵ2z

〉 = 〈
Ĵ1x

〉〈
Ĵ2z

〉
,

〈
Ĵ1y

Ĵ2z

〉 = 〈
Ĵ1y

〉〈
Ĵ2z

〉
.

Hence, using the above equations and also Eqs. (52), (53), and
(54) in the expressions of Cx and Cy as given in Eqs. (74) and
(76), respectively, we get

Cx = Cy = 0. (80)

Thus, for an unentangled state Cx and Cy are zero, and we
have

�J 2
x ′,y ′

∣∣
un−ent = �J 2

1x′ ,y′ + �J 2
2x′ ,y′ = 1

2 . (81)

That is, the quantum fluctuations of the composite state is
just the algebraic sum of the corresponding fluctuations of the
individual constituent atoms.

The terms Cx and Cy are nonzero when the atomic state
vector is entangled. We can give a physical interpretation of
Cx and Cy in the following way. If �J 2

x ′ and �J 2
y ′ are the

fluctuations of an entangled state, then using Eqs. (75), (77),
and (81), we can write

Cx = �J 2
x ′ − 1

2 (82)

= �J 2
x ′ − �J 2

x ′
∣∣
un−ent, (83)

Cy = �J 2
y ′ − 1

2 (84)

= �J 2
y ′ − �J 2

y ′
∣∣
un−ent. (85)

Thus, Cx and Cy are the measures of the deviations of the
quantum fluctuations of an entangled state from those of an
unentangled one. Whenever Cx and Cy for a quantum state
of a composite system are nonzero, we can conclude that the
corresponding quantum state is an entangled state. We can
construct a parameter out of Cx and Cy for the detection and
quantification of quantum entanglement. Since Cx and Cy may
have opposite signs, and also to treat both of them on equal
footing, we construct a parameter S as,

S = 1
2 (Cx2 + Cy2), (86)

such that the nonzero value of S implies the presence of
quantum entanglement in the corresponding system. We call
S the quantum entanglement parameter. S is the mean squared
deviation of the quantum fluctuations in the two quadratures
(x ′ and y ′) of a quantum mechanically entangled state from
those of an unentangled one.

Thus, whenever we have

S = 0, (87)

the corresponding quantum state is unentangled, and whenever
we have

S > 0, (88)

the corresponding quantum state is entangled. The condition
S > 0 is the necessary and sufficient condition for the presence
of quantum entanglement. We can prove it in this way. We
know that whenever a quantum state for a composite system of
two two-level atoms is entangled, the corresponding quantum
state vector cannot be written as a direct product of the
individual atomic state vectors. In that case, the conditions
in Eq. (79) are not satisfied and hence Cx and Cy are nonzero,
implying that S > 0. This shows that the condition S > 0
forms the necessary condition for the presence of quantum
entanglement. We now prove that the condition is sufficient
also for the presence of entanglement in this way. Whenever
S > 0, either Cx or Cy or both of them are nonzero. This means
that all the conditions in Eq. (79) are not satisfied, implying that
the corresponding quantum state vector cannot be expressed
as a direct product of the individual atomic state vectors, and,
hence, the quantum state is entangled. Thus, we have proved
that the condition S > 0 forms the necessary and sufficient
condition for the presence of quantum entanglement.

We can see from Eqs. (75) that, if Cx < 0, then

�J 2
x ′ < 1

2 , (89)
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and, hence, the quantum state |ψ〉 is a spin squeezed state
having squeezing in the x ′ quadrature. We see from Eq. (77)
that, at the same time we should have Cy > 0 (no squeezing
in the y ′ quadrature), so that

�J 2
y ′ > 1

2 , (90)

and Heisenberg’s uncertainty principle [Eq. (24)] is restored.
Similarly, when Cy < 0, there is squeezing in the y ′ quadrature
and no squeezing in the x ′ one.

Now, we see from the above discussion that when we have
spin squeezing in a quantum state, either Cx or Cy is less
than zero and hence S > 0, implying the presence of quantum
entanglement. Thus, whenever there is spin squeezing there
is quantum entanglement. But the reverse is not true. It may
happen that some quantum state does not show spin squeezing
at all, that is, Cx and Cy are never less than zero and instead
they are always greater than zero. In that case, we have S > 0,
implying the presence of quantum entanglement. This shows
that a quantum state that is not spin squeezed may show
quantum entanglement.

For the purpose of quantification of entanglement, we notice
that since S is the mean squared deviation of the quantum
fluctuations in the two quadratures (x ′ and y ′) of an entangled
state from the corresponding fluctuations of an unentangled
one, we can take S itself to be proportional to the amount
of quantum entanglement in a system. As S for a system
increases, the entanglement of the system also increases.
As S decreases, the entanglement also decreases. Thus, the
value of S itself can be a measure of entanglement in a
system. The question now arises about how to measure S.
In the next section, we establish a connection between S and
experimentally measurable quantities.

III. RELATIONSHIP BETWEEN THE QUANTUM
ENTANGLEMENT PARAMETER S AND THE

EXPERIMENTALLY MEASURABLE QUANTITIES

In this section, we show how we can measure the qunatum
entanglement parameter S. We rewrite Eqs. (75) and (77) as

Cx = �J 2
x ′ − 1

2 , (91)

Cy = �J 2
y ′ − 1

2 . (92)

Therefore,

Cx2 = �J 4
x ′ − �J 2

x ′ + 1
4 , (93)

Cy2 = �J 4
y ′ − �J 2

y ′ + 1
4 . (94)

Hence,

S = 1
2

[
�J 2

x ′
(
�J 2

x ′ − 1
) + �J 2

y ′
(
�J 2

y ′ − 1
) + 1

2

]
. (95)

Multiplying and dividing �J 2
x ′ and �J 2

y ′ in the above expres-

sion by 2/j (j = N
2 = 1), we get

S = 1

2

[
2�J 2

x ′j

2j

(
2�J 2

x ′j

2j
− 1

)

+ 2�J 2
y ′j

2j

(
2�J 2

y ′j

2j
− 1

)
+ 1

2

]
(96)

= 1

2

[
Qx

2j

2

(
Qx

2j

2
− 1

)

+ Qy
2j

2

(
Qy

2j

2
− 1

)
+ 1

2

]
, (97)

where Qx and Qy are the spin squeezing parameters introduced
in Sec. I. Since Qx and Qy are experimentally measurable
quantities, the parameter S gets connected directly with the
experiment. We can obtain numerical values of S by measuring
Qx and Qy by experiment and using the above formula. Thus,
we can measure S for a system experimentally.

If we now multiply and divide Q2
x and Q2

y in Eq. (97) by

j/|〈Ĵ〉|2, we get

S = 1

2

[
Qx

2j 2|〈Ĵ〉|2
2j |〈Ĵ〉|2

(
Qx

2j 2|〈Ĵ〉|2
2j |〈Ĵ〉|2 − 1

)

+Qy
2j 2|〈Ĵ〉|2

2j |〈Ĵ〉|2
(

Qy
2j 2|〈Ĵ〉|2

2j |〈Ĵ〉|2 − 1

)
+ 1

2

]

= 1

2

[
ξ 2
Rx

|〈Ĵ〉|2
2j

(
ξ 2
Rx

|〈Ĵ〉|2
2j

− 1

)

+
ξ 2
Ry

|〈Ĵ〉|2
2j

(
ξ 2
Ry

|〈Ĵ〉|2
2j

− 1

)
+ 1

2

]
, (98)

where

ξRx
= j

|〈Ĵ〉|Qx, (99)

ξRy
= j

|〈Ĵ〉|Qy (100)

are called the spectroscopic squeezing parameters used in the
context of Ramsey spectroscopy [15]. Thus, the quantum en-
tanglement parameter S gets connected with the spectroscopic
squeezing parameters, which are experimentally measurable.

In the next section, we extend these ideas to systems
containing N number of two-level atoms.

IV. QUANTUM ENTANGLEMENT IN A SYSTEM OF N
TWO-LEVEL ATOMS

An arbitrary symmetric pure state for a system of N two-
level atoms in the {m1,m2,m3,...,mN } representation is given
as

|�〉 = G1

∣∣∣∣1

2
,
1

2
,....

1

2

〉
+ G2√

NC1

[∣∣∣∣−1

2
,
1

2
,
1

2
,....

1

2

〉

+
∣∣∣∣1

2
,−1

2
,
1

2
,....

1

2

〉
+ .... +

∣∣∣∣1

2
,
1

2
,
1

2
,....−1

2

〉]

+ G3√
NC2

[∣∣∣∣−1

2
,−1

2
,
1

2
,....

1

2

〉

+
∣∣∣∣−1

2
,
1

2
,−1

2
,....

1

2

〉
+ .... +

∣∣∣∣1

2
,
1

2
,....−1

2
,−1

2

〉]

+ ............ + GN+1

∣∣∣∣−1

2
,−1

2
,−1

2
,....−1

2

〉
, (101)

032327-6



QUANTUM ENTANGLEMENT IN MULTIPARTICLE SYSTEMS . . . PHYSICAL REVIEW A 84, 032327 (2011)

where G1, G2,..., GN+1 are constants and NCr is given as

NCr = N !

r!(N − r)!
. (102)

The quantum fluctuations �J 2
x ′ and �J 2

y ′ for this system
can be written in analogy to Eqs. (66) and (68) as

�J 2
x ′ =

N∑
i=1

�J 2
ix′ +

N∑
i=1

N∑
l=1
l �=i

[〈
Ĵix Ĵlx

〉
cos2 θ cos2 φ

+ 〈
Ĵiy Ĵly

〉
cos2 θ sin2 φ + 〈

Ĵiz Ĵlz

〉
sin2 θ

+ 〈
Ĵix Ĵly

〉
cos2 θ sin 2φ − 〈

Ĵix Ĵlz

〉
sin 2θ cos φ

− 〈
Ĵiy Ĵlz

〉
sin 2θ sin φ

]
(103)

and

�J 2
y ′ =

N∑
i=1

�J 2
iy′ +

N∑
i=1

N∑
l=1
l �=i

[〈
Ĵix Ĵlx

〉
sin2 φ

+ 〈
Ĵiy Ĵly

〉
cos2 φ − 〈

Ĵix Ĵly

〉
sin 2φ

]
, (104)

where the upper index 2 in the summations in Eqs. (66) and
(68) has been replaced by N .

Now, since the state |�〉 is symmetric under the exchange
of any two atoms and all the atoms have been treated on equal
footing, we have for the state |�〉,〈

Ĵ1x

〉 = 〈
Ĵ2x

〉 = ...... = 〈
ĴNx

〉
, (105)〈

Ĵ1y

〉 = 〈
Ĵ2y

〉 = ...... = 〈
ĴNy

〉
, (106)〈

Ĵ1z

〉 = 〈
Ĵ2z

〉 = ...... = 〈
ĴNz

〉
, (107)〈

Ĵ1x
Ĵ2x

〉 = 〈
Ĵ1x

Ĵ3x

〉 = ...... = 〈
ĴN−1x

ĴNx

〉
, (108)〈

Ĵ1y
Ĵ2y

〉 = 〈
Ĵ1y

Ĵ3y

〉 = ...... = 〈
ĴN−1y

ĴNy

〉
, (109)〈

Ĵ1z
Ĵ2z

〉 = 〈
Ĵ1z

Ĵ3z

〉 = ...... = 〈
ĴN−1z

ĴNz

〉
, (110)〈

Ĵ1x
Ĵ2z

〉 = 〈
Ĵ1x

Ĵ3z

〉 = ...... = 〈
ĴN−1x

ĴNz

〉
, (111)〈

Ĵ1x
Ĵ2y

〉 = 〈
Ĵ1x

Ĵ3y

〉 = ...... = 〈
ĴN−1x

ĴNy

〉
, (112)〈

Ĵ1y
Ĵ2z

〉 = 〈
Ĵ1y

Ĵ3z

〉 = ...... = 〈
ĴN−1y

ĴNz

〉
, (113)

and, also,

�J 2
1x′ = �J 2

2x′ = ........ = �J 2
Nx′ = 1

4 , (114)

�J 2
1y′ = �J 2

2y′ = ........ = �J 2
Ny′ = 1

4 . (115)

Therefore, using the above equations we can reduce Eqs. (103)
and (104) as

�J 2
x ′ = N�J 2

1x′ + 2
(
NC2

)[〈
Ĵ1x

Ĵ2x

〉
cos2 θ cos2 φ

+ 〈
Ĵ1y

Ĵ2y

〉
cos2 θ sin2 φ + 〈

Ĵ1z
Ĵ2z

〉
sin2 θ

+ 〈
Ĵ1x

Ĵ2y

〉
cos2 θ sin 2φ − 〈

Ĵ1x
Ĵ2z

〉
sin 2θ cos φ

− 〈
Ĵ1y

Ĵ2z

〉
sin 2θ sin φ

]
(116)

and

�J 2
y ′ = N�J 2

1y′ + 2
(
NC2

)[〈
Ĵ1x

Ĵ2x

〉
sin2 φ

+ 〈
Ĵ1y

Ĵ2y

〉
cos2 φ − 〈

Ĵ1x
Ĵ2y

〉
sin 2φ

]
, (117)

respectively. Now, according to Eqs. (5), (105), (106), and
(107), we have

〈Ĵx〉 = N〈Ĵ1x
〉, (118)

〈Ĵy〉 = N〈Ĵ1y
〉, (119)

〈Ĵz〉 = N〈Ĵ1z
〉. (120)

Therefore, using the above three equations and Eqs. (35) and
(36), we observe that the expressions of cos θ and cos φ, in
this case, have the same forms as given in Eqs. (61) and (62),
respectively. Hence, using the expressions of cos θ , cos φ,
sin θ , and sin φ obtained from Eqs. (61) and (62), and also
the expressions of �J 2

1x′ ,y′ given in Eq. (114) and (115), in
Eqs. (116) and (117), we get

�J 2
x ′ = N

4
+ 2

(
NC2

)〈
Ĵ1z

〉2
|〈Ĵ1〉|2

(〈
Ĵ1x

〉2 + 〈
Ĵ1y

〉2)
× [〈

Ĵ1x
Ĵ2x

〉〈
Ĵ1x

〉2 + 2
〈
Ĵ1x

Ĵ2y

〉〈
Ĵ1x

〉〈
Ĵ1y

〉
+ 〈

Ĵ1y
Ĵ2y

〉〈
Ĵ1y

〉2] + 2
(
NC2

)〈
Ĵ1z

Ĵ2z

〉
|〈Ĵ1

〉|2
[〈
Ĵ1x

〉2 + 〈
Ĵ1y

〉2]

− 4
(
NC2

)〈
Ĵ1z

〉
|〈Ĵ1〉|2

[〈
Ĵ1x

Ĵ2z

〉〈
Ĵ1x

〉 + 〈
Ĵ1y

Ĵ2z

〉〈
Ĵ1y

〉]
(121)

= N

4
+ Cx (122)

and

�J 2
y ′ = N

4
+ 2

(
NC2

)
(〈
Ĵ1x

〉2 + 〈
Ĵ1y

〉2) [〈
Ĵ1x

Ĵ2x

〉〈
Ĵ1y

〉2
+ 〈

Ĵ1y
Ĵ2y

〉〈
Ĵ1x

〉2 − 2
〈
Ĵ1x

Ĵ2y

〉〈
Ĵ1x

〉〈
Ĵ1y

〉]
(123)

= N

4
+ Cy, (124)

respectively.
Here Cx is the sum of last seven terms on the right-hand

side of Eq. (121) and Cy is the sum of last three terms on the
right-hand side of Eq. (123), respectively. Thus, we observe
from Eqs. (121) and (123) that the quantum fluctuations �J 2

x ′
and �J 2

y ′ of a system of N two-level atoms in an arbitrary
symmetric pure state can be obtained by finding out the
quatum fluctuations �J 2

1x′ and �J 2
1y′ of any single atom and

the correlations among any two atoms only in the assembly. If
the quantum state |�〉 of the composite system is unentangled,
then |�〉 can be written as a direct product of the N individual
atomic state vectors. In this case, the conditions like those
expressed in Eq. (79) are satisfied and it can be shown that Cx

and Cy are zero. Therefore, we have,

�J 2
x ′
∣∣
un−ent = N�J 2

1x′ = N

4
, (125)

�J 2
y ′
∣∣
un−ent = N�J 2

1y′ = N

4
. (126)

Thus, �J 2
x ′ and �J 2

y ′ are just the algebraic sum of the quantum
fluctuations �J 2

ix′ and �J 2
iy′ (i = 1,2,3,....,N ), respectively,

of all the N individual constituent atoms. If the quantum
state of the composite system is entangled, the conditions
like those given in Eq. (79) are not satisfied and, hence, Cx
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and Cy are nonzero. We see that here also Cx and Cy are the
measures of the deviations of the quantum fluctuations �J 2

x ′
and �J 2

y ′ of an entangled state from those of an unentangled
one. As mentioned in Sec. II, we also construct the quantum
entanglement parameter S as the mean squared deviation of
the quantum fluctuations in the two quadratures (x ′ and y ′) of
an entangled state from the corresponding fluctuations of an
unentangled one. According to Eqs. (86), (122), and (124), we
have

S = 1

2
[(Cx)2 + (Cy)2]

= 1

2

[
�Jx ′ 4 − N

2
�Jx ′ 2

+�Jy ′ 4 − N

2
�Jy ′ 2 + N2

8

]

= 1

2

[
�Jx ′ 2

(
�Jx ′ 2 − N

2

)

+�Jy ′ 2
(

�Jy ′ 2 − N

2

)
+ N2

8

]
. (127)

The necessary and sufficient condition for the presence of
quantum entanglement in this system of N two-level atoms is
S > 0. The proof is as follows. If the composite state vector
|�〉 is entangled, it cannot be expressed as a direct product
of the N individual atomic state vectors. Then the conditions
like those given in Eqs. (79) are not satisfied and, hence, either
Cx or Cy or both of them are nonzero, implying that S > 0.
Thus, S > 0 forms the necessary condition for the presence
of entanglement. We now show that the condition is sufficient
also. If S > 0, either Cx or Cy or both of them are nonzero,
implying that the conditions like those expressed in Eq. (79) are
not all satisfied and, hence, the corresponding quantum state is
not expressible as a direct product of the N individual atomic
state vectors, implying that the composite state is entangled.
Thus, the condition S > 0 forms the sufficient condition for
the presence of entanglement.

As in Sec. III, we now relate S with experimentally
measurable quantities. Multiplying and dividing �J 2

x ′ and
�J 2

y ′ in Eq. (127) by 2/j , we get

S = 1

2

[
2�J 2

x ′j

2j

(
2�J 2

x ′j

2j
− N

2

)

+2�J 2
y ′j

2j

(
2�J 2

y ′j

2j
− N

2

)
+ N2

8

]
(128)

= 1

2

[
Qx

2j

2

(
Qx

2j

2
− N

2

)

+Qy
2j

2

(
Qy

2j

2
− N

2

)
+ N2

8

]
, (129)

where Qx and Qy are the spin squeezing parameters introduced
in Eqs. (20) and (21), respectively, in Sec. I. Thus, for a
system of N two-level atoms, we can measure the quantum
entanglement parameter by measuring the spin squeezing
parameters Qx and Qy of the system.

If we now multiply and divide Q2
x and Q2

y in Eq. (129) by

j/|〈Ĵ〉|2, we get

S = 1

2

[
Qx

2j 2|〈Ĵ〉|2
2j |〈Ĵ〉|2

(
Qx

2j 2|〈Ĵ〉|2
2j |〈Ĵ〉|2 − N

2

)

+Qy
2j 2|〈Ĵ〉|2

2j |〈Ĵ〉|2
(

Qy
2j 2|〈Ĵ〉|2

2j |〈Ĵ〉|2 − N

2

)
+ N2

8

]

= 1

2

[
ξ 2
Rx

|〈Ĵ〉|2
2j

(
ξ 2
Rx

|〈Ĵ〉|2
2j

− N

2

)

+
ξ 2
Ry

|〈Ĵ〉|2
2j

(
ξ 2
Ry

|〈Ĵ〉|2
2j

− N

2

)
+ N2

8

]
, (130)

where ξRx
and ξRy

are the spectroscopic squeezing parameters
[15] introduced in Sec. III. Thus, we relate the quantum
entanglement parameter S of a system of N two-level atoms
with the experimentally measurable squeezing parameters
used in the Ramsey spectroscopy.

V. SUMMARY AND CONCLUSION

We proposed the necessary and sufficient condition for the
presence of quantum entanglement in arbitrary symmetric pure
states of two-level atoms. We took the quantum fluctuations
of the system in terms of the components of the pseudo-spin
vector operator Ĵ in two mutually orthogonal directions in
a plane perpendicular to the mean pseudo-spin vector 〈Ĵ〉.
We then expressed these fluctuations as an algebraic sum of
the fluctuations of the individual constituent atoms and their
correlation terms. We took these correlation terms in the two
mutually orthogonal directions and in a plane perpendicular to
〈Ĵ〉 to construct a parameter S called the quantum entanglement
parameter. We showed that this parameter can be used to
detect and quantify quantum entanglement. The necessary and
sufficient condition for the presence of quantum entanglement
in such systems is S > 0. If a quantum state of the system
is unentangled, we have S = 0. We also said that since S is
the mean squared deviation of the quantum fluctuations of
an entangled state from the corresponding fluctuations of an
unentangled one, the numerical value of S can be taken as
a measure of quantum entanglement in the system. We first
made all these studies in case of two two-level atoms and then
extended these ideas in case of systems containing N number
of such atoms. We also established the relationship between
the quantum entanglement parameter S and spin squeezing
and spectroscopic squeezing parameters. This shows how we
can measure S experimentally. We hope that our study may
produce deeper insight into the subject.
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