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Scavenging quantum information: Multiple observations of quantum systems
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Given an unknown state of a qudit that has already been measured optimally, can one still extract any information
about the original unknown state? Clearly, after a maximally informative measurement, the state of the system
collapses into a postmeasurement state from which the same observer cannot obtain further information about
the original state of the system. However, the system still encodes a significant amount of information about
the original preparation for a second observer who is unaware of the actions of the first one. We study how a
series of independent observers can obtain, or can scavenge, information about the unknown state of a system
(quantified by the fidelity) when they sequentially measure it. We give closed-form expressions for the estimation
fidelity when one or several qudits are available to carry information about the single-qudit state, and we study
the classical limit when an arbitrarily large number of observers can obtain (nearly) complete information on
the system. In addition to the case where all observers perform most informative measurements, we study the
scenario where a finite number of observers estimates the state with equal fidelity, regardless of their position in
the measurement sequence and the scenario where all observers use identical measurement apparatuses (up to a

mutually unknown orientation) chosen so that a particular observer’s estimation fidelity is maximized.
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I. INTRODUCTION

One of the major questions in the interpretation of quantum
mechanics is to assert the reality of the wave function.
Despite opinions galore, which also include rejecting the
necessity of attributing reality to a quantum state [1], there
is a consensus in that all information on the state of a
system is contained in the wave function (in the sense that it
provides the right outcome probabilities for each conceivable
measurement on the system). Since all this information is
not accessible by a single measurement and, on top of that,
quantum formalism only gives outcome probabilities, the
meaning of the wave function traditionally has been associated
with an infinite ensemble of identically prepared quantum
systems (something that cannot be taken literally but only
as a conceptual notion). Ground-breaking experiments with
individual quantum systems (see, e.g., Refs. [2-5]) and the
advent of quantum information technology have brought the
focus to individual systems, away from the infinite ensemble
picture.

The inherent limitation of quantum measurements to obtain
complete information about a system is intimately linked
to the disturbance they cause on the state. Clearly, if a
given measurement extracts the maximum information on
the state of a system, then the same observer cannot obtain
additional information by performing further measurements
on the system. This almost tautological statement has the
startling consequence that quantum measurements, no matter
how cautelous they are, inevitably disturb the state of the
system (and thereby erase any information on the original state
of the system as far as the same observer is concerned). The
question remains: What happens if the second measurement
is performed by a second observer who independently aims
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at gaining information about the original state of the system?
Indeed, we will see that a second independent observer, who
does not know the precise actions nor the measurement results
of the previous observers, can still obtain some information on
the original state of the system. In this paper, we will study how
this information degrades through a sequence of independent
measurements performed by independent observers.

We extend the study to the case where several copies of the
unknown state are provided to the observers and, more gener-
ally, when several copies of the system are used to collectively
encode the unknown single-copy state in more efficient ways.'
This will allow us to provide insight on a thorny problem
in quantum mechanics, namely, the so-called quantum-to-
classical transition [7]. The microscopic world is governed
by the rules of quantum mechanics, which often seem to be in
sharp contrast with the rules of classical physics that govern
the macroscopic world. Since we both observe the classical
macroscopic world and believe the quantum description is the
correct one, the classical properties of systems have to appear
within the quantum description in a consistent fashion. How
exactly, quantitatively, do these classical properties emerge?
Before attempting to answer this question, it is important to
recognize what are the essential features that seem to be so
different in the classical and quantum worlds. The problem
at hand sheds some light on one of these differential aspects,
which is the fragility of the information encoded in quantum
states versus the enduring nature of classical information.

'A related restricted problem of multiple observations of quantum
clocks, i.e., of an evolving phase reference, has been studied in
Ref. [6].
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Indeed, the information encoded in a classical system can
be accessed by an unlimited number of (careful) observers
without degrading while quantum mechanics allows retrieving
some amount of information, but this degrades as the number
of observers increases. We show that the larger the number
of copies of a system, the larger the number of observers
who can gain a sizable amount of information encoded in
the original state. In other words, the information encoded
in large collections of quantum systems of the same type
behaves classically, in the sense that it is robust with respect
to observations.

The paper is structured as follows: In the next section, we
present the simplest case, which will illustrate the main ideas
of scavenging before going into more general scenarios. In
Sec. III, we discuss general considerations relevant for the rest
of the paper. In Sec. IV, we analyze the essential scavenging
setting in which each observer maximizes the quality of his
or her own estimate. We call this scenario the greedy strategy.
We study the cases of: (A) the optimal general encoding and
(B) a symmetric encoding of a qudit state into a signal state
consisting of N identical copies of the given state. In Sec. V,
we study the action of repeated weak measurements on a state.
Sections VI and VII are devoted to generalizations of the basic
setting in which the information about the encoded state is
redistributed among the observers by making use of weak
measurements. We first consider what we call the egalitarian
setting, where the measurement apparatuses are chosen so as
to provide estimates of the same quality for all observers.
We then study a complementary scenario, where all observers
use the very same apparatus, tailored in such a way that a
predesignated privileged observer obtains the best estimate.
We present our conclusions in Sec. VIII. Three appendices
follow with some technical details used in the main text.

II. THE SIMPLEST NONTRIVIAL EXAMPLE

Before introducing the general setting of our problem,
let us briefly discuss a simple nontrivial example. Imagine
a spin-1/2 particle in a pure state Yo = (1+ngp-0)/2,
polarized in some unknown direction ng, [ng| = 1. Suppose
an observer wishes to estimate the polarization direction.
By performing a measurement, the observer obtains an
estimate (or guess) ¥ = (1 + n; - 0)/2. We take the fidelity
fW,¥0) == Tr[Yov1] = (1 + ng - ny)/2 as a figure of merit
and quantify the success of the estimation procedure by its
average, Fy := [ f(Y1,%0)dp(¥1,¥0), where dp(yri, ) =
dp(Yr1|Yo)dp(o) is the probability of the event that the true
and the estimated pure states are ¥ and |, respectively, and
the integral is over all such events.

For a uniform prior probability distribution, corresponding
to no prior knowledge about the given pure state vy, dp(¥g) =
dyrg = dng = dpd6 sin6/(4m), an optimal estimation strat-
egy is to use a Stern-Gerlach-like apparatus oriented along any
chosen axis n [8,9], i.e., a generalized measurement that can
be represented by a positive operator-valued measure (POVM)
with two elements M4, = | & n)(xn|, corresponding to the
guesses ¥y (£n) = | = n)(£n|. Thus,

Fr= )"

ny=+xn

Tr[oyri1p(dn[¥o)d o, (D
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where the dependence of the states on the Bloch vectors is
implicit and the conditional probability is given by the Born
rule: p(Y1|¥o) = Tr[My, Yol = (1 + ng - ny)/2. The average
fidelity then reads

14+xn9-n 2
F, = Z /dﬂo <—120 l> s 2)
X[::tl

where the exponent 2 results from identical contributions of
the fidelity and the outcome probability. This integral can be
computed using [ n;n;dn = §;;/3 to obtain the well-known
result [10],

Fi=% (3)

Notice that the average fidelity of a random-guessing strategy
is1/2 <2/3.

If the measurement is von Neumann’s (an actual Stern-
Gerlach), the system collapses into the guessed state |£r) upon
measuring. Obviously, from the point of view of the observer,
any further measurement on such a collapsed system is useless,
as it will not increase the average fidelity of the estimation,
Eq. (3) (or the mutual information, for that matter), since it is
already maximal. However, from the perspective of a second
observer, unaware of the guess 1 and the orientation n of the
first observer’s Stern-Gerlach apparatus, the postmeasurement
state still contains extractable information about the initial state
Y. Regardless of the first observer’s apparatus orientation
n, of the two possible posterior states, |+n), the one closer
to the true state vy occurs with higher probability. Thus, by
measuring the state of the system after the first observation, a
second observer will indirectly obtain information about .

Since, from the second observer’s point of view, all
postmeasurement states are equiprobable, the estimation of
the state of the system, now |n;), is formally the same as
the estimation of ¥y by the first observer. Hence, the same
kind of POVM provides an optimal strategy to estimate |n;)
with a fidelity of 2/3. Then, it is clear that the second observer
obtains an estimate of v/, which is better than the estimate that
one would obtain by random guessing and, as argued above,
contains information about vy. More precisely, let us show the
average fidelity for the second observer F; is also larger than
1/2. Similar to Eq. (1), we have

F= )

ny=+n

/ Telyoval p(balvo)dvo, 4

where p(y;|¥) is now the integrated conditional probability
over all possible intermediate outcomes. For the two successive
measurements that we have described, F, reads

14 xm5 - ng
= Y [an
x2=:t1

1 cni 1 .
» Z dn, + xox1ny -y 1+ x4 "0. )
—+1

2 2

This can be simplified further to give
1 . . . 5
Py = // dndng + (ng nz)(nzz ni)(n; - no) =3, ©)

where, again, we have used the relation [ n;n;dn = §;;/3. We
note that F, > 1/2, which means that the second observer
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obtains nonzero information about the initial state. Although
we have not claimed that a von Neumann measurement is
optimal, in Sec. IV, it is proven that this is actually the case
and, hence, that the optimal value of the fidelity for the second
observer is F, = 5/9.

III. FORMALISM AND GENERAL CONSIDERATIONS

In order to make quantitative statements, first, we need to
quantify the observers’ ability to gain information about the
unknown state and, second, to make a judicious precise defi-
nition of what we mean by independent observers. Following
Refs. [8,10-12], here, we will use, as a figure of merit, the
quantum fidelity between unknown input (pure) quantum state
¥ = |¥) (¥] and the estimate, or guess ¥’ = |¢') (] that an
observer arrives at, based on his or her measurement outcome:
F@r. ) = |(¥'|¥)|>. The kth observer’s success in gaining
knowledge about the original system is given by the mean of
the fidelity over all possible input states and guesses,

Fe = / FOhv0)dpWi o). ™

where dp(V, Vo) = dod ¥k p(Yi | o) is the joint probability
of observer k obtaining the guess 1 and the original unknown
state being vy, with p(y¥|yy) being the corresponding
conditional probability density and assuming a uniform prior
distribution for ¥. The integrals run over all joint events, i.e.,
over the set of all possible pure states Vo,V € S(H).

We want to define a scenario in which, one after the other,
each observer gains access to the quantum system but lacks
information regarding the actions of the previous observers.
In principle, if no further directives are given, each observer
will choose a measurement based on the observer’s own prior
knowledge about it, i.e., the observer may describe the system
as the mixed state that results from taking the original input
state and performing an average over all the actions that the
previous observers might have conceivably performed, which
includes, e.g., the obstructive action of resetting the state of the
system to a fixed state. We want to find the limits on how well
can independent observers recover, or scavenge, information
from the very same system after successive measurements.
We, therefore, assume that each observer will be careful, i.e.,
willing to facilitate the task for following observers insofar
as this does not conflict with the observer’s own priorities.
Accordingly, we assume that the observers are free to agree,
in advance, on a protocol as long as it does not involve
exchanging any information that would allow them to establish
a common canonical basis, or reference frame, in which to
represent their states and actions—sharing such information
would allow all the observers to perform the very same
projective measurement and, hence, all of them would obtain
the same measurement outcomes and would estimate the
original state with equal precision.” Mathematically, imposing
this condition is equivalent to describing the actions of the
observers in a chosen basis and then averaging the result

20One can further relax this condition and can allow for forward
communication between measurements as long as this is invariant
under the choice of basis.
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over all possible choices. More succinctly, if a given observer
performs a quantum operation L£[/] over the system in a state
0, to the other observers, the state will effectively transform
as Li[pl = [dUULIUTpUIUT, where dU is the Haar
measure of the unitary group acting on the system’s Hilbert
space.

In order to complete the framework required to present all
the results in this paper, we still need to specify what is the
figure of merit and what type of information can the observers
share when several (N > 1) copies of the d-dimensional
system are available. One option is to consider this multipartite
system as a single system and, accordingly, to use the fidelity
between the collective input and guess states as a figure of merit
and to use the unitaries over the d" -dimensional Hilbert space
in order to compute the effective transformation L;[p].
However, here, we will follow a different, more physically
motivated, approach: Since the observers are asked to retrieve
information on the encoded single-copy state, we use the
fidelity between d-dimensional states, and we consider that
the observers agree on using the same (mutually unknown)
local basis for each of the copies, i.e., the actions of the other
observers are known up to a rigid unitary operation U(g) =
g®N , g € SU(d), i.e., the effective transformation now reads
L[pN] = [dgU()LIU(g) p"™U(g)]U(g)'. This charac-
terization of independent observers is equivalent to that
encountered in other protocols, such as aligning reference
frames [13,14] where the different parties that do not share
a reference frame try to exchange some information [15].

To allow for a further generalization of this scenario, we
will introduce the concept of a preparer. The role of the
preparer is to encode the state of a single system Yy =
8l Wet) (Ve 815 | Wret) € Hy, g € SU(d) into a collective state
of the Hilbert space of N systems by a rigid rotation W =
OV | Wieh) (Wit | g T8N |Wier) € Hp, D =dV, ie., the signal
state W need not be one consisting of N copies of the initial
state ¥, but the encoding is still covariant with respect to
SU(d) and its tensor-product representation—covariant, for
short. Considering covariant encodings only is actually not a
restriction—as we will argue in Sec. IV, this follows from the
quantum-operations averaging discussed above.

The computation of the fidelity, Eq. (7), requires the
evaluation of the kth observer’s conditional probability density
P |o) for obtaining a guess ¥ given the state to estimate
Y. Naturally, this quantity depends on the preparation
(the way v is encoded into a signal state), on the kth
observer’s measurement and the guessing strategies, and on
whatever happened in between. We may decompose each
particular conditional joint event into a sum over histories—
intermediate events, such as measurement apparatus choices,
obtained measurement outcomes, or guesses made based on
the outcomes—which may have led to the event (Y|v).
It is clear that, even though probabilistic strategies in the
encodings and measurements choices are possible, these per-
form equally well as deterministic strategies, which are given
by averaging, with their respective probabilities, over those
strategies.

Without loss of generality, we may write

PWlo) = Te{ M xu_i 0+ 0 xileo(bo)) ). (8)
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where 0o(¥g) is the state provided by the preparer, x; is
a channel induced by an averaged (over all unknowns)
measurement of the ith observer, and M® is the operator
density, with respect to the measure di; of the POVM M®
performed by the kth observer, with measurement outcomes
labeled by the guesses ¥ that the observer makes. Note that,
should several outcomes lead to the same guess v, the POVM
element corresponding to v is given by sum of all effects (i.e.,
POVM elements) of such outcomes.

Equation (8) can also be written as a decomposition over
all intermediate observers’ guesses V;,

P(Wilvo) = f dyi_y - - / Ay Te{ M) (TG
o+ o Zy)) (0o (o)}. ©9)

where Z®) is the density of the ith observer’s average (over
all unknowns) quantum instrument Z) with measurement
outcomes labeled by the guesses ;. Quantum instruments,
or instruments for short, introduced by Davies and Lewis
[16], are the standard mathematical tool used to describe
the measurement process when one is interested not only in
probabilities of measurement outcomes, but also in the post-
measurement state. An instrument—or an operation-valued
measure—assigns, to a set 3 of measurement outcomes, an
operation Zp that provides a transformation rule of the state
due to the measurement as well as the probability of the
outcome, which is given by the trace of the transformed
(postmeasurement) state.

In our case, due to the limited mutual knowledge of the
observer’s (and preparer’s) actions, the average instruments
I are covariant with respect to SU(d) and its symmetric
representation U, i.e.,V p € S(Hp), V g € SU(d),

I (0 = UL W@ pUu@)U@.  (10)

For the same reason, the (averaged) encoding g is covariant
with respect to SU(d) and its symmetric representation U, i.e.,
Ve S(Ha), ¥ g € SUW@),

00(g¥gh) = U(g)eo()U (). Y

Obviously, the channels in Eq. (8), which are induced by the
instruments in Eq. (9), are also covariant with respect to U,
ie,V peS(Hp), Vg e SU®W),

xilU(@)AU@)' = U@xi(MHU(e)'. (12)

Subsequently, the average “encoding” xj;—1 o ---o x1(00())
is also is covariant with respect to SU(d) and its symmetric
representation U. The estimation of 1y can be viewed as the
estimation of x;_; o - - - o x1(0o(¥0)) With go(¥¢) known to be
restricted to the covariant family,

{00(¥0) = U()oo(We)U(8)', g € SUd), U(g) = g®V)
(13)

distributed according to the Haar measure du(g) = dg. In
other words, we have a covariant optimal estimation problem,
which, with the fidelity as the cost function, can always be
solved by a covariant POVM [17]. Hence, without loss of
generality, we may assume the POVM M® to be covariant
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with respect to SU(d) and its symmetric representation U, i.e.,
V¢ € S(Ha), ¥V g € SU@),

MPB(gygh = U@MPy)U(g)'. (14)

Equations (8) and (9) tell us how to proceed further. We
search for pairs of covariant encodings gy and POVM(s)
MO fulfilling a desired property of the average fidelity F
(e.g., maximizing Fi, possibly given additional constraints)
for the covariant family of states, Eq. (13). Having at least
one such pair {Q(),M(l)}, one can evaluate F;. Next, for
each possible POVM M), obtained in the previous step,
consider all covariant quantum instruments Z") compatible
with the POVM, and calculate the set of covariant channels
x1 that are induced by any of those instruments. Next, search
for covariant POVM(s) M@ fulfilling a desired property of
the average fidelity F, for the average states from the co-
variant families {x1(00(¥0)) = U(g)x1(o(er)U (), g €
SU(d), U(g) = g®V}, distributed as governed by the Haar
measure du(g), given by the actions of all channels x; from
the previous step, and so on.

The task is greatly simplified by the possibility of restricting
oneself to covariant apparatuses and channels. If the optimal
covariant apparatuses turn out to be unique at each step, the
task becomes even simpler. But, even in this case, one still has
to calculate the induced channel at each step to obtain the set
of average states for the next optimization.

In the following sections, we study various scenarios, which
we separate in two groups: Those that require maximally
informative measurements, where the action for each observer
can be interpreted as a measure-and-prepare channel; and those
where the conditions of the problem require that the observers
perform weak measurements extracting less information from
the system.

IV. GREEDY STRATEGY

Let us now specialize in the case of greedy observers who
primarily want to maximize the fidelity of their own guesses.
This is precisely the main scenario that motivates this paper.’
Here, the task at hand can be reduced to the problem of a
preparer and single observer respectively encoding and esti-
mating quantum states embedded in larger systems. Solutions
to the latter problem are often known ( [8,10,17,19-21]).

In this scenario, each observer performs the best esti-
mation possible—in other words, there exists no additional
measurement that could be performed that would increase
the fidelity of the guess, which was obtained based on the
original measurement. It follows that the postmeasurement
state, after the ith measurement, can depend on the original
state ¥y only indirectly, through the obtained guess 1;, hence,
the corresponding instrument can be viewed as a measure-and-
prepare channel. Thus, we can rewrite Eq. (9) in a factorized
form

PWilvo)= [d¥i—1 P(YrlYi—1)- --/dl/flﬁ(lﬁzIIM)ﬁ(wlllﬂo),
15)

3Preliminary partial results concerning the greedy scenario have
been reported in the proceedings [18].
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with
PWilvio1) = TIIMO Wri)oi—1 (Y-, (16)

where 0;_1(¥;_1) is the postmeasurement state after the (i —
1)th measurement given that the obtained guess has been v;_;.

Using the Bloch-vector formalism, we may rewrite the
average fidelity, Eq. (7), as

1
Fi= - [1 +(d - 1)/d1/fod1/fkn(wk) . n(l/fo)ﬁ(lﬁkll/fo)] ,
A7)

where n(y) stands for the generalized Bloch vector of a pure
state ¥ € S(H,) (see Appendix A for details).

As we argued in Sec. III, the average instrument 7
and, thus, the induced POVM M® and the encoding
0i, I <k, are covariant, while the POVM M® can be
chosen to be covariant. Hence, without loss of general-
ity, we may restrict our attention to the optimal covari-
ant POVMs for the set of equiprobable states of the co-
variant family {0; 1(¥i-1) = U(2)0i 1(¥we)U (&), ¥i1 =
gVreg’, U(g) = g®", g € SU(d)}.

For such a situation, in Appendix A, we show that

/dwi—ln(lm—l)ﬁ(w”w:'—l) = A;n(y;), (18)

where A; is a number.
Plugging Eqgs. (15) and (18) into Eq. (17), we have

. k
F, = 7 (1 +d - 1)1_[ Ai/dllfk"(llfk) : n(l”k))

i=l1

1 k
=EG+M—DHAJ. (19)

i=1

Thus, successive maximizations of Fy, F,, ..., F; are achieved
via successive maximizations of Ay, ...,A. The maximiza-
tion of A; is over pairs g;—1, M; for the set of states
{oi—1(¥;—1)} with unknown, hence, equiprobable previous
observer’s guess ¥; 1 = |Y;_1){(¥i_1| € S(Hy).

If the initial encoding oy has been optimal, then one cannot
achieve a better performance than if we take V i, 0; = 0o, i.e.,
A; = max A; =: A. Hence, the maximum F; of the average
fidelity Fy if all F;, i < k are, one after another, maximal,
reads

ﬁ=$n+u—nﬂl (20)

The situation is different if the initial encoding has been
restricted by some additional requirements, e.g., encoding
into copies of the state 1/, which turns out to be a suboptimal
encoding with Agyp. Then, for i > 1, the best strategy is,
naturally, to take o; equal to the unrestricted optimal gg.
That is, for the problem of k greedy observers independently
estimating N copies of an unknown state, the fidelity will read

ﬂ=éﬂ+u—0&mﬂ”l 21
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In the following subsections, we give the explicit expres-
sions for the fidelity F; for some relevant cases, which amounts
to solving the single-observer problem (i.e., computing A).

A. The fidelity for the optimal N-qubit encoding

Here, we treat the optimization of the qubit state encoding
with full generality. The optimal U-covariant encoding of
single-qubit states (or, equivalently, of spatial directions
corresponding to spin-1/2 particles) into N-qubit states is
given by Bagan et al. in Ref. [19].

The optimal signal state (k = 0) as well as the state prepared
after the kth measurement k > 0 read

ormy) = U(my)|A) (Al U (my), &k >0, (22)

where
N/2

|A) =) A;1j.0)
j=0

(for simplicity, we assume that N is even) with the coefficients
A; such that |A) is the eigenvector corresponding to the
maximal eigenvalue of the matrix

0 Cl—1 0 e 0
Ci—1
0 . .o 0] (23)
(&) 0 C1
0 0 ¢ O
where
N
l=—+1, 24
> + 24
and
i
¢ = (25)

Vi D2i— 1)

The operator density of the corresponding optimal measure-

ment can also be found in [19]
MO @my) = U@m)|B)Y(BIU (my), &k > 1, (26)

where
N/2

1B) =) V2j+11j.0). 27)
j=0
In this case,

A = xXNj241, (28)

where xy/211 is the largest zero of the Legendre polynomial
PN/2+1(X). ThUS,

f/?p = %[1 +x1k\'/2+1]' 29)
Asymptotically, it is known that
&

n=1—==4 -, 30

x 2t (30)
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where &) = 2.4 is the first zero of the Bessel function Jy(x).
Hence, asymptotically (for N — 00),

A=]—220 31)

and

1 2e2\*
“TEPZE[H(I_N_S) ] (32)

In the case where the signal state is given as N copies of the
unknown state, i.e., %@N , the first (k = 1) delta factor needs
to be replaced by that of the well-known N-qubit pure state
estimation Agyy, = NLH (see the next subsection for general
qudit derivation). So that,

N 1 N
Fo =5 | yaven | (33)

2\ k—1
()03 e

We note that by allowing operations to act on the whole
Hilbert space of N qubits provides a significant advantage with
respect to strategies relying on the encoding into N copies

(?N , (which lies in the completely symmetric subspace):
In the latter case, the maximum fidelity is approached as
1/N, in contrast to the 1/N? behavior found in the opti-
mal case—see the end of this section for a more detailed
discussion.

12

B. The fidelity for N-parallel qudits

For d-dimensional states with d > 2, the general optimiza-
tion is a hard problem to solve. In this section, we will limit
ourselves to the situation where the measurement apparatuses
of the different observers are restricted to operate in the Hilbert
space of the initial state, which we also take to be N copies
of an arbitrary pure qudit state. That is, during the whole
measurement sequence, the system will be constrained in
the totally symmetric subspace of the state space S(Hp).
A natural way to impose this limitation could be to require
that, if in the fortunate, but extremely rare, event that an
observer guesses the input state correctly, then the output
state should be left in exactly the same collective state as the
input.

The POVM M = M®*™ optimal for the encoding into
copies, is known to be the extremal covariant POVM [17] with
the operator density on the relevant symmetric subspace given
by

M) = d3 " ) (g BN (35)

where

)N = (glyret)®Y, g € SU@),

| 1pref) € Hd .
(36)
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The maximal single-observation fidelity is
= fdw Ay | (19N 2B )
=dy" / Ay | (W [Prer) PN HD

=dy" (Ve [ / du(@U(g) (W) (W U(gﬁ}

dsym
x |t = d% (37)
N+1

where |\Il:eyfm) = |Yrer)®™ D and the dimension of the com-

pletely symmetric representation is given by

N+d-—-1
ay" = . 38
N < N ) (38)
Substituting Eq. (38) into Eq. (37), we get
N +1
F = ———. 39
: N +d 59)
Using Eq. (20), we have
1 N \f
==+ d-D——) | 40
Fe d[ +( )<N+d>} (40)
~ 1 I1+4d-D{1 AN 4D
T d N ’

where the approximation holds in the asymptotic limit of a
large number of copies.

From the above results, we can readily obtain some
conclusions on how large a system needs to be in order to
be considered classical as far as the readout of the encoded
information is concerned. The minimum size N is related to
the number of independent observations we may perform on
it and still get good estimates. For parallel spins, we see that
we need a minimum size on the order of

N ~k% o>1, 42)
if we wish to obtain the classical behavior,
F, — 1. 43)
For smaller sizes N ~ k* with o < 1, the fidelity inevitably
drops to that of the random-guessing strategy,

F - L. (a4)

For the optimal recycling of information, we see that, for
qubits,

Fr—1 if N~k% «a>1/2, (45)
hence, in this case, in order for a system of spins to be
considered classical, it’s size (number of spins) needs to scale
as the square root of the number of observations.

Note that the above is not in contradiction with the
result [22] where the authors obtain k = O(N?) for what
we call symmetric encoding into parallel spins. The quantity
considered in Ref. [22], related to longevity k, of a directional
reference carried by a quantum system, is the first moment
of the spin-projection operator for the state after k uses

(Jn)) pe(py = 2F; — 1)(N + 2)/2, which they require to stay
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above arbitrary, but fixed, threshold c. We require that the
threshold approaches (N + 2)/2 for all N, and we take the
limit N — oo.

V. WEAK MEASUREMENTS

We now aim to generalize the problem for situations where
the observers do not pursue the mere maximization of their
estimation fidelity but adopt strategies where the information
on the unknown state is redistributed in different ways among
the various independent observers. In the following sections,
we will study the case where K observers estimate the original
state with equal, but maximal, fidelity (egalitarian strategy)
and the case where all observers use the same measurement
apparatus and the goal is to optimize the estimation fidelity of
the kth observer.

In both instances, the measurements performed need to
be weak, i.e., in general, not extracting all of the extractable
information and, hence, inflicting less disturbance to the
state. As in the greedy-observers scenario, it suffices to
consider covariant measurements. All U-covariant POVMs
(with outcomes labeled by the guesses) have an operator
density of the form

M) ~ U(g)SetU(g)1, (46)
with
V= g¥erg’,  U(g) =g®",

where S,f can be a positive operator commuting with
{U(g); g € Gref}, where G C SU(d) is the set of unitaries
that leave the reference state v invariant [ 17]—the complete-
ness POVM relation can easily be imposed in this covariant
construction.

It is clear that, for optimal weak measurements, the
postmeasurement states, in general, will not be pure anymore.
They will depend not only on the measurement outcome
(guess) of the current observer, but also on particular guesses
of all preceding observers and the preparation parameter V.
The probability density of obtaining a measurement outcome
leading to a guess v, given the previous observer has obtained
the guess vy_;, is not independent of previous observers’
guesses, i.e., pr(Yil¥i—1,...,%0) = p(Yilvr—1) does not
hold, in general. Thus, we have to start with the histories
decomposition, Eq. (8), since Eq. (9) does not simplify to
Eq. (15) anymore.

To proceed further, hence, we will follow the approach
outlined in Eq. (8), where to the kth observer, the action
of all previous observers is described as covariant channels.
We, hence, need to calculate actions of the channels x;, k =
1,...,K — 1. We will do that in what follows for the single-
qudit case and for the qubit case restricted to encoding into
copies.

g € SU@d), (47)

A. Single copy: Arbitrary dimension

We start with the case of a (single copy) of an unknown
pure state ¥y = |¥o) (| of arbitrary finite dimension d. A
qudit being measured using a SU(d)-covariant instrument
undergoes, if the measurement outcome is unknown, the
dynamics given by the channel yx;, which is SU(d)-covariant,
i.e., a convex combination of the identity channel and the
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contraction to the total mixture, acting as

xk(P) =rp + (A —rl/d. (48)

On the other hand, the kth observer’s fidelity of the guess
of an original reference state Vs, for an effectively en-
coded state ﬁﬁf{l) = Xxx—1 00 X1(|Vref) (Vrer|—the result
of sending |Vrer) (Yrer| through the SU(d)-covariant channels
X1s - - - s Xk—1—18 given by

Fi= Y [ dieo Tt glne) el o) sl

X Tr[gﬁg‘f_l)gTM;k)], 49)

where the state we wish to estimate iS g|Wrer) (Wrerl gT.
For convenience, we assume the (currently) last observer’s
POVM to be one with finitely many outcomes denoted by o.
The guess associated with an outcome is denoted by v, =

8ol Yret) (Vref | gl. Using Eq. (C1) of Appendix C, we obtain
(k—1) (k) k—1
(@oy Y -10)  d-o%"

b= Ga+na-n Tarna=n O

where ngfl) is the overlap of the states,

05" = Tr[vrerplls ). (51)

and 01(5;) is the overlap between guesses and corresponding
POVM elements,

Oy = Te[y,MP]. (52)

For a general SU(d)-covariant qudit channel, Eq. (48),
induced by the kth measurement and the averaging due to
lack of knowledge about it, one trivially has

Fepi=rcy / dg Trlglvo) (Yolg' gy 1Vrer) (Yrer|8]]
q

ak— + 1- 193
o T Pt
1 1
=r| F— 7 + 7 (53)

where F is the average fidelity of the (k + 1)th observer’s guess
if the measurement would have been performed on the state
p%*~D_—je., as if the kth observer would not have measured
at all. The fidelity has the property 1/d < F < 1 (the lower
bound is provided by random guessing; smaller values can
be reached by intentionally bad estimates). It follows that, in
order to maximize the possible Fi for any fixed measurement
M*+D one has to have r; as large as possible. Naturally,
rry will ultimately be limited by the achieved F; but also
by the particular choice of the kth observer’s measurements
(instrument) attaining that value of the fidelity.

At this stage, we have to be more explicit in describing
the observers’ measurement apparatuses. In particular, we
have to specify the instrument realizing the POVM M® that
appears in Eqgs. (49) and (52). Here, we have two options:
The first option is that the quantum operation performed, upon
obtaining any outcome o, is given by a single-term Kraus
decomposition. That is, the un-normalized postmeasurement
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state for an outcome 0 is given by fpost = Ai PinA, (We omit the
index indicating the outcome in the postmeasurement states).
The second option is that there exist some outcomes for which
the operation has multiple Kraus operators in its decomposition
(Ppost = 31—y B . pnBuiy n > 1, 35 Byi # 0,V i). In the
latter case, we formally redefine the POVMs used in Eqs. (49)
and (52)—we simply use the language of the fine-grained
= B‘LBa,,- and
operations defined by fpost = B;i,@mBa,,- for all «’s where a
multiterm Kraus decomposition would otherwise take place.
Since the additional labels i are not used for anything (they
are not accessible to the observer and, thus, cannot influence
the guess), these formal apparatuses provide an equivalent
description. Thus, we can always assume a description of
the measurement process in terms of an apparatus with a
single-term Kraus decomposition for each outcome. For such
apparatuses, the averaged effective channel is of the form,
Eq. (48), with the parameter r; acquiring a particularly simple
form (see Appendix C),

measurement with POVM elements M(;J

c—1

Tp = ————————7
(d+Dd-1

where c = Y [TrA®[. (54
Recall that we wish to have ry as large as possible given the
kth observer’s achieved fidelity Fj, i.e., in the language of
the single-Kraus-term apparatuses, the value of ¢ as large as
possible.

For a given value of Fj, a measurement both reaching Fy,
i.e., the required 0$) in Eq. (50), and maximizing ¢ in Eq. (54),
is known to be given by [9]

(k
(k)

where {|a) }d | i1s an arbitrary orthonormal basis. Thus, the

d— 0%
m(ﬂ — la){al), (55)

largest ¢, given Fy, (i.e., given 0,(;)), 1S

2
c= [,/0;’;>+\/(d— (d — 0;?)] : (56)
The corresponding POVM reads
O(k) -1 d— (k)
MB — AT k) — M —]1 57
O = APAY = S ladal + S (57)

i.e., for this particular POVM, the optimal instrument, in
terms of Kraus operators, is given by the Hermitian square
root A% =,/M®. One could continue the analysis using
the (unaveraged) d-outcome measurement, Eq. (55), optimal
for any achievable value of F;. However, we will proceed
in terms of the effective averaged covariant apparatuses
with measurement outcomes given by the possible guesses.
Covariant apparatuses may easily be constructed—this is a
much harder task in the case of discrete apparatuses for
encodings into higher-dimensional Hilbert spaces (cf. Ref. [20]
for N copies of a qubit).

It follows from Eq. (46) that any SU(d)-covariant POVM
on a qudit (with outcomes corresponding to guesses) has the
operator density of the form

M(Ek)(l//k) =1 —-g)l+ Ek/\;l(lﬂk)’ (58)

PHYSICAL REVIEW A 84, 032326 (2011)

where M is the operator density of the optimal covariant
POVM of the greedy-observers scenario, Eq. (35), and &
parametrizes the strength of the measurement.

Then, Eq. (58) leads to

O(k)

O = 1+ e(d — 1), (59)

where we have used Eq. (52) in the form o®

M(F/*) -
[ AW Ty M@0 ()], Note that 1< OY).,, < d. depend-
ing on the greediness, or strength &, 0 < g < 1, of the
kth observer’s measurement. Constructing the corresponding

Hermitian-square-root Kraus operators A% defined by

A er) _ (k) d— Oj\lil)“k)
A = Olgu W1+ =2 A= )

(60)

(A is the operator density of the Kraus operator*A, i.e.,
A(Wdy) = «/W/L/,), we may verify that, for a given value
of Fy, it induces the same channel as the minimal optimal
measurement, Eq. (55). Thus, the Hermitian-square-root real-
ization of the general weak covariant POVM, Eq. (58), gives
the optimal covariant instrument.

Using Egs. (59) and (50), we have

1 (doy™" —1)e
A e 61
ST ad T oD

and from Eq. (48), with a pure initial state, Eq. (51) reads
1 d-1
(k) _
o _—+T]_[r,g. (62)
Substituting the above equation into Eq. (61), we finally obtain

1 ad—-1)'=
Fo=-4+Xx2"" , 63
¢ d+d(d+l)grﬁ ©3)

where the r4 can be expressed as a function of the parameter
£g by making use of Egs. (54), (56), and (59),

d—14+Q2—deg+2,/T+egd —1)/T—¢p
d+1 '

rg =
(64)

The above equation applies to general consecutive measure-
ments on a d-dimensional system (single copy). Naturally,
here, we recover the results of the greedy scenario, Eq. (40),
with N = 1, in the limit of most-informative measurements
(Sk = 1).

We next discuss the weak measurement case for N copies
of a qubit state.

“Here, the square root of a measure is only a formal notation.
In expressions where probabilities and postmeasurement states are
calculated, the measure always appears to the first power. A rigorous
treatment of Radon-Nikodym derivatives of quantum instruments can
be found in Refs. [23] and [24].
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B. N copies of a qubit

Here, we consider a signal that is a state of N copies
of a two-dimensional unknown pure state. Again, we will
assume that the observers measurements are restricted to the
completely symmetric Hilbert space. Hence, this situation
can be mapped to the problem of estimating the state of a
single D-dimensional system (D = dy" = N + 1), which s,
however, known to belong to the restricted set of states from the
orbit of a reference pure N-copy state generated by elements
of the range of the symmetric representation of SU(2).

It turns out to be very useful for our purposes to recall an old
result by Holevo [17]. He solved the unconstrained, or in our
terminology, greedy optimization problem for generic mixed
states (1) drawn from a covariant family of states,

o) = U@oWeNU(2)', Ulg) =g®", geSUQR),

(65)

where [g,Yiet] = 0 = [§°" ,0(Yrer)] = 0, ¥ g € SU(2).
He found that the optimal fidelity F (o) is given by

1 2(Intten) oy
F — — l O(Vref , 66
2< i ) (66)
where
(Jnw))ow) = TtlJagro(¥)], (67)

and J,y is the angular-momentum component in the direction
fixed by the Bloch vector n(y). The optimal greedy covariant
POVM is also proven to be given by M() = dy" |¥) (¥ |8V,
independent of a particular family, Eq. (65).

The most general covariant POVMs one should consider
here are ones that have a seed that commutes with J,y,.»
[17], i.e., the seed is diagonal in the {|jm)} basis [where we
have chosen n(yf) as our quantization axis]. Note that, in
principle, several weakness parameters could be included in
the optimization, in contrast to the single parameter required
in the previous subsection. Here we will make two simplifying
assumptions—the assumption of considering single-parameter
families of POVMs and the assumption of Hermitian-square-
root Kraus operators. That is, the measurement is given by a
covariant POVM that, as before, is a convex combination of
the optimal greedy POVM and the full identity, i.e.,

MOy = (1 — el + e MO, (68)

where M® is the operator density of the covariant greedy
POVM optimal for the family of states at the input of kth
observer’s apparatus, and &, parametrizes the strength of
the measurement. The corresponding Hermitian-square-root
Kraus operators densities read,

MO

Sym
dN

A©e () = b, + ax 1, (69)

where
ar =+/1— &, (70)
ka,/1+(d;3lm—l)8k—ak. 71)

In Appendix B, it is shown that such evolution leads to a
channel that leaves the postmeasurement state, after averaging
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over guesses, diagonal in the {|jm)} basis, and hence, it is
of the form, Eq. (65). It follows that for each &, MO = M,
where M is given by Eq. (35). We emphasize that, although
the above two restrictions seem to be a reasonable guess for a
generalization of the optimal apparatus from the single-copy
case, we do not have a proof that, for N > 1, such apparatuses
really are among the optimal ones. Therefore, it is only
guaranteed that we obtain a lower bound F¢, on the maximum
Feq-

qWe start by rewriting the average fidelity F,* of a single
estimation using the (gg-strong) apparatus, Eq. (68), of the
kth observer’s measuring on an arbitrary set of states in terms
of estimation fidelity Fj, obtained using the apparatus of the
greedy-observers problem,

_ (-

F* + erFi. (72)

Then, by Eq. (66), for an arbitrary family of states, Eq. (65),

g 1 2{Jn)) o)
F/* = §<1+EkN—+2). (73)

Appendix B gives us the postmeasurement states for each
step in a sequence of weak measurements given by Eq. (69)
and thus, for each k, we can evaluate the average fidelity of
the kth observer F; where € = (g, .. .,&1). Formally, this is
performed according to Eq. (73) with o(y) — p;_, = x™ ' o
—eoxe(y)), ie.,

» 1 2(Jn) gt
Fe = F(pi1) = 5 (1 + ek—N”+”‘2‘) . (74

where the following relation holds between the consecutive
output states (see Appendix B),

2 .
i) )<Jz>k.
G+ D@j+1)
(75)

205 41bi41
2 +1

(Johkr1 = (a/iq +

We are now in position to calculate two interesting scenarios
where weak measurements need to be considered.

VI. EGALITARIAN STRATEGY

We devise a protocol such that the estimation fidelity ob-
tained by each observer is the same and maximal, i.e., we want
to find the maximum fidelity Fy = F.q under the egalitarian
constraints F, = Fy, Vk € {2, ...,K}. The overall number of
observers K is fixed beforehand, and each observer knows his
or her own tally number k in the sequence. One can visualize
this scenario as different apparatuses being delivered to the
observers by an external party, or as observers sharing a single
apparatus that adjusts its measurement-strength automatically
before each measurement. We again require that each observer
orients his or her apparatus independently and we do not allow
communication between observers.

With these conditions, it is clear that the last observer will
perform an optimal greedy measurement for the ensemble of
states on the input of the apparatus, while going backward,
each of the predecessor’s measurements will be weaker and
weaker, i.e., less and less demolishing.

With these considerations in mind, we can give the results
for the two types of encodings discussed in Secs. V A and V B.
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A. System of arbitrary dimension (single copy)

Using Eq. (63), the condition F; = Fj_ translates into
Ek—1 = EkTh—1, (76)

or, more explicitly through Eq. (64),

s(d + 1)
d—14+Q—de+2JTFer(d — DJVT —¢;
77

Ek+1 =

where the initial condition ex¢ = 1 follows from the fact that,
as mentioned above, the last, Kth, observer can measure
greedily as there is no subsequent observer to care about. The
recursion relations, Eq. (77), are quadratic and, hence, can be
inverted analytically, providing all the measurement strengths
&y starting from ex = 1. However, a closed-form solution for
g1 seems to be hard to obtain for finite K. Nevertheless, for
large K, we can obtain an asymptotic analytical expression of
the fidelity and the initial &;’s.

If K> 1, we expect the first measurements to be very
weak, i.e., with gy <« 1. Performing a Taylor expansion around
& = 0 in the recursion relation, Eq. (77), we obtain an
approximated relation for small values of k,

d2
Ek+1 = Ek -+ msz, (78)
or, by defining a(j) = ex41-;,
i @ s
a(j)=a(j+ 1D+ WD 1)oz(J + 1), (79)

which holds for large values of j. In this regime, o(j) is
vanishing small, and the difference equation can be written as
an ordinary differential equation,
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which yields

2
i) = , 81
«0) \/ G jod/d+ Dt2aio2 OV

2d + 1
~ /%, (82)

where jj is a fixed (jo < K) lower boundary of integration
chosen such that the above approximations are valid. With this,
we finally arrive at

£ = a(K) ~ %,/@ (K>1).  (83)

Inserting the above into F; of Eq. (63), we have, for large K,
the maximal average fidelity of each egalitarian observer,

Fukdy~ |14 471 2 84
cql ’)_3[ T (d+1)K] (84)

Let us note that a related problem of information-
disturbance trade-off in sequential weak measurements on a
qudit signal has been studied in Ref. [25]. There, users are
not considered fully independent, in particular, they share a
reference frame, which allows them to obtain an estimation
fidelity that does not decrease with the number of users.

B. N copies of a qubit

From Eq. (74), it follows that, in order for every observer
to have the same fidelity (F{ = Ff, V [,k subject to 0 </ <
k < K), it must hold that

ex(Indpe, = &{Jndps - (85)

To proceed further, we need to evaluate how the channels
x % transform (J,) for the relevant states, which we do in
Appendix B. Comparing Eq. (85), withl = k + 1,to Eq. (B11)
of Appendix B, we get a recursion relation for the strength
parameters &,

(N 4+ 1)(N + 2)e

da(x) d? 3
& d@ds e (80)
!
Ek+1

where ¢x = 1. Again, this recursion relation gives all the
strength parameters &, starting on reverse from k = K. To
obtain the fidelity, one needs to solve the recurrence relation,
Eq. (86), for k = 1, and then, use Eq. (74) to get

Fe(N,K) = 1(1 + Acy), (87)
where
N
Aeq=81(K,N)N—_+_2- (88)

The presence of the square roots in Eq. (86) prevents
the existence of a closed expression for ;. However, in the
asymptotic regimes of large K or large N, we can find the
leading order behaviors of &1 and [Fe,.

TINF1PE N —D(1—26) + 4/ =) + Nep) — 2°

(86)

Let us first consider the situation K >> N. As above, we
expect the first measurements to be very weak, i.e., with g; <«
1, k < ko < K. Thus, we can perform a Taylor expansion in
¢ around the point ¢ = 0 in Eq. (86) and get the approximate
relation,

N+1 ,

2N 12 (89)

Ek+1 = & +

which, proceeding as in Egs. (78)—(83), leads to

~ N+2 K> N 90
& X~ m (K > N). (90)
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Inserting Eq. (90) into Eq. (88), we have

N
Aeg =
1T JINF DN +2)K

Again, we obtain a behavior for a large number of observers
as A ~1 /«/E . This result deserves some comments, since
one would naively expect that A degrades with the inverse of
the number of observers, i.e., as A ~ 1/K. The realization
of the POVM, Eq. (68), as an instrument given by Hermitian-
square-root Kraus operators, Eq. (69), is crucial to obtain
this square-root degradation. Had we used a more destructive
realization, we would indeed have obtained A ~ 1/K. For
instance, if we realize the POVM, Eq. (68), as a stochastic
measurement such that with probability (1 — &), the outcome
is just guessed, i.e., nothing is done to the state, and with
probability &, the optimal greedy covariant measurement
is performed, the (relevant part of the) channel induced by
such measurements is x; = (1 — &;)Id + & x, where Id is the
identity channel and x is the channel induced by the optimal
greedy measurements. In this case,

Ek+1
J = 1— _—
SALS ( N/2+1

(K> N). 1)

> (Jn)k- 92)

The condition, Eq. (85), then leads to the recurrence relation
that can easily be solved and gives

N/2+1 N+2
& = =& =, (93)
N/24+K—-k+1 N +2K
which yields
N
= (94)
N +2K

and, clearly, for K 3> N, A — N/(2K). Note, in addition,
that Eq. (94) is precisely the result that one obtains with a
strategy where each observer performs a greedy measurement
on a fraction N = N/K of the copies. Indeed, from Eq. (39)
withd =2, onehas A = N/(N 4+2) = N/(N + 2K).

Now, we proceed to study the case where the number
of copies is asymptotically large, i.e., N > 1. The large-N
expansion in Eq. (86) yields

262
Ek+1 = & + Wk, (95)

which, starting from ex = 1, gives at the order 1/N,

2K -1

g1 =1 N (96)
Hence, from Eq. (88), we have for N > K,
Aeg =1 — i 97
“ N +2’
~ 2K (98)
N

Naturally, for K = 1 in Eq. (97), we recover the well-known
result of the optimal measurement of N copies of a qubit
[10,26] given by Eq. (40),d = 2, k = 1. The efficiency of this
egalitarian strategy in the N > K regime coincides with the
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FIG. 1. (Color online) The observers’ measurement performance
Aq as a function of the number of observers K. The solution given by
the exact recurrence relations [Eq. (86)] (circles). The approximate
solution for K > N [Eq. (91)] (dotted) and N > K [Eq. (97)]
(dashed). Stochastic strategy [Eq. (94)] (solid). The solid line also
depicts the performance of each observer measuring only a fraction
N = N/K of copies.

stochastic strategy, Eq. (94), and the greedy one where each
observer measures only the fraction N = N /K of the copies.

In Fig. 1, we plot the observers’ performance A.q obtained
by a numerical evaluation of the exact recurrence relation,
Eq. (86), as well as the approximations of the limiting regimes
discussed above. N = 103 has been chosen to accommodate all
the regimes. The stochastic strategy performance, [Eq. (94)],
which coincides with the greedy one over N/K copies, is
also plotted for reference. Notice that it gives a very good
approximation for the true values of the fidelity even for
K 2 N. The deviation starts to be appreciable only beyond
K ~ 10*.

VII. PRIVILEGED OBSERVER STRATEGY

Here, we consider a scenario where all observers use
exactly the same measurement device (up to the unknown
relative orientation), but this is provided, or is tailored, by
a particular, say the Kth, observer who wants to optimize
his or her own estimation fidelity. That is, the right com-
promise has to be found, i.e., the optimal measurement
strength ¢, between these two extreme cases: (i) Choose a
very weak measurement that prevents the (K — 1) previous
observers to extract much information from the state and,
thus, to facilitate little disturbance, but at the same time,
prevents gaining information about it when the observer’s turn
comes; (ii) choose the most informative measurement that
will guarantee that the maximum information is extracted
from the state the privileged observer receives but, by then,
all the previous most informative measurements will have
significantly ruined the input state.

A. Single qudit

For one copy, covariant POVMs with the Hermitian-square-
root update rule are optimal. They are of the form of the
one-parameter family given by Eq. (58). Based on Eq. (63),
the fidelity Fx = [1 4+ (d — 1)Ak]/d of the last observer is
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determined by
Ag =

& k-1
r , 99
d+1 ©9)
where r is defined in Eq. (64).
We can obtain analytical results in the asymptotic regime
K > 1. Here, we again have ¢ < 1, and Taylor expanding A g
of Eq. (99) around ¢ = 0, we have

& 22\ <!
Ag = 1-— , 100
: d+l< 4(d+1)> (100)
e d’K 5 (101)

~ ——exp| ————¢&7|.

d+1°P 4d+1)
The value of ¢ that maximizes the above expression is
[2(d + 1)

e T 102
€ 7K (102)

which inserted in Eq. (101) yields

2
Agkmax =~ | ——————— K >1). 103
K, "e(d—l—l)de (K>1) (103)

Observe that it exhibits the same characteristic square-root
decay 1/+/K as in the egalitarian case.

B. N copies of a qubit

As in the egalitarian case, we restrict our attention to weak
measurements of the type of Eq. (68) and the Hermitian-
square-root update rule. From the results of previous sections,
the computation of the fidelity and measurement strength are
quite straightforward. Based on Eq. (75), the fidelity Fx =
(1 + Ag)/2 of the privileged observer K is determined by

N/2 ()
E—————Unlp_s>
N /2 +1 Prk—1

_, N (AE K=t
 N+2\N+1 ’

N
A(e) = 2ab + (N + Da® + — b,
©) ab+ (N + Da +N+2

Ag = (104)

(105)

where

with a and b, now independent of k, defined as in Eqs. (70)
and (71).

Let us obtain analytical expressions of the fidelity in the
asymptotic regimes. If K > N, we expect ¢ < 1 and Taylor
expanding Ak around ¢ = 0, and taking two lowest orders in

g, we get
N 1 2 K—1
Mg~ (oW ADe . (106)
N+2 2(N +2)

¢

12

(N + DK 2} | 107,

£
N+2eXp[_ XN+2) ¢

Proceeding as in the previous subsection, the optimal value of
Ak reads

N2
AK'maX_\/e(N—{—l)(N—}—Z)K. (108)

Again, the fidelity degrades as 1/+/K instead of the naive 1/K
behavior.
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In the other regime N > K, we expect ¢ — 1. Then, we
Taylor expand Eq. (105) in the variable (1 — ¢) around 0 and
take terms up to the first power of (1 — ¢). Maximization of
Ak gives the optimal e, which, up to the first nonvanishing
order, reads

4K —1)?
-

This value can be taken to be ¢* = 1, as the corrections will not
affect the 1/N term of the fidelity. Therefore, we should obtain
the same results for the fidelity of a greedy scenario with an
asymptotically large number of copies as discussed at the end
of Sec. IV. Indeed, the expansion of Ax for N — oo at the
first order does not include any (1 — ¢) terms, and we obtain

e =1 (109)

Ama = 1 = (110)
’ N
or, equivalently,
Fgx >~1— 5 (111)
N

Actually, we notice that, in this regime, at first orderin 1/N, a
greedy strategy of each observerin N /K copies, the egalitarian
and the privileged-man scenario yield the same accuracy.

VIII. CONCLUSIONS

We have investigated to what extent can a series of
independent observers estimate an unknown state of a
d-dimensional system by performing consecutive measure-
ments over the very same system. More generally, we have
studied the case where N copies of an unknown state are given
and when more general encodings into a signal system with
a larger Hilbert space are permitted. This has allowed us to
assess how large does the signal system need to be so that
a given number of observers can obtain reasonable estimates,
i.e., to behave classically with regard to the readout of the state
encoded in the system. We obtain that, with the optimal encod-
ing, the size has to be, at least, N ~ K. This is a quadratic
improvement over the case of a signal consisting of copies of
the encoded state for which the size must be, at least, N ~ K.

In addition, we have studied more general ways to distribute
the (limited) information on the unknown quantum state
among different observers, still under the constraint that
they measure one right after the other. We have studied
a strategy that leads to equal fidelities for all observers
(egalitarian strategy) and a second strategy where all observers
are constrained to use the same apparatus, and the goal is
to maximize the estimation fidelity of a privileged observer,
which is at the Kth position in the measurement queue. In
both scenarios, weak measurements are required. Since the
systems are measured several times with observers trying
to scavenge the information contained in them after each
measurement, the choice of the Kraus operators, i.e., the choice
of the instrument implementing a given measurement and the
trade-off between fidelity and disturbance [9,27,28] play a
crucial role. We have seen that, for instance, the update rule
given by Hermitian-square-root Kraus operators yields, in the
asymptotic regime of a large number of systems, a fidelity
that degrades as the square root of the number of observers, in
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contrast to a linear degradation given by a stochastic realization
of the same POVM.

Our results can also shed some light on how quantum
reference frames degrade with use. This problem was first
addressed in Refs. [22,29] (see also Ref. [30]). There, the
authors consider a setting where one has a quantum directional
reference and a set of reservoir spin particles that are pure
and are oriented randomly with respect to the reference. One
of the goals is to correctly identify the mutual alignment
or antialignment of the reference and the spin particle by
performing a suitable (in general, collective) measurement on
the two systems. As the number of spins measured grows, the
success probability of correct identification of the orientation
drops. The rate of decrease quantifies the degradation of
the directional reference with the number of measurements
performed. Our results can be extended to address separable
versions of this problem, that is, settings where, first, one
measures the quantum reference and then one performs
reference-dependent tasks, such as, e.g., the one just described.
These problems are under current investigation, and some
further details can be found in the dissertation [31].
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APPENDIX A: EVALUATION OF THE INTEGRAL, EQ. (18)

Choosing, for the sake of calculations, an arbitrary pure
reference state ¥y € S(H,), we can parametrize the pure states
by elements g € SU(d) and can replace the integration over the
pure states by integration over the group SU(d). The integral,
Eq. (18), becomes

/ du(g)n(g)p(gleg), (A1)
2eSU)

where n(g) is a d-dimensional Bloch vector parametrizing the

state [/(g)) (¥ (g)| and

P(&lg) = TIIM(@)p(8)], (A2)

where S(Hp) 2 p(g) = Z/l(g),ool/{(g)T. Note that, due to the
covariance of both the measurement and the states p(g), it
holds that

TrM(g8)p(8g)] = TrlU (§) MU (8) UE)p(gUE)'].

For optimal covariant encoding-decoding schemes, it holds
that the representations are the same, i.e.,U’(g) = U(g), hence,

p(8glge) = p(8lg). (A3)

A d-dimensional system in a pure state ¥ = |{)({| can be
parametrized as

1
¥ =l 4 kan"Ta},
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where
8a .
(To.Ty) = =7 +d5yTe.

with the generators defined as half the standard Gell-Mann

matrices,
Kg =+/2d(d — 1),

and n“ are the components of a (d* — 1)-dimensional unit
vector:n = (n',n?, ... ,ndz’l), which we refer to as the Bloch
vector. This follows from imposing on ¥ the conditions Tr ¢ =
land Try? = 1.

Not any unit vector n is allowed. By imposing the condition
U= W, we get further constraints,

Kq

C2d-2)

Any pure state can be obtained by applying a SU(d)
transformation to the reference state,

a

n di.n’n°. (A4)

0
0
1Yo) = | :
0
1
Note that
Yo = [Yo) (Yol = é{ﬂ —kaTp1},
since
1 0 0 0
0 1 0 0
Tp =L
o0 --- 1 0
00 --- 0 1-—-d

(the normalization ensures that Tr[szLl] = 1/2). Hence, the
reference Bloch vector is

o = (an»"'sov - 1)7
—
a2-2
i.e., its components are

nd ! =1, if a#d—1.

Note that |v) is covariant under the SU(d — 1) C SU(d)
transformation of the form

ng =0,

Ui Ui» Uiso1 O
Uz Uz» Uyg-r O
o=ve=| i z
Us—11 Ui-12 Us-1a-1 0O
0 0 0 1
Hence,

{(¥ol¥r(2)) = (YolU(g)l¥o)
= (YolOU()IYo) = (Yol¥(Z8))

= (YolU(@)U¥0) = (Yol¥(d))- (A5)
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Moreover, due to the covariance of the encoding, it also has to
hold that

Tr[pop(g)] = Tr[pop(g8)]. (A6)

We use the group parameters g to label the different states
according to

1Y () (¥ ()l = U@)|¥o) (WolUT(g).
It follows that

n(e)T, = U(g), niT,U'(g) = AL(eniT),

where Af(g) belongs to the adjoint representation and we have
used that

U(T.U'(g) = AL()Ty.
‘We see that
n‘(g) = Ag(g)ng.
In general,
n’(g) = Aj(@)AL(E Hn‘(2) = Al(gg " n‘ (@),
from which
n’(g8) = Aj (8288 " (@) = Aj(en" ().

Let us now consider the integral,

Vi@ = /M(g)n”(g)ﬁ(é’lg)-

Here, p(8[g) is the conditional-probability density, Eq. (A2).
Let U = U(g) be any SU(d) transformation. We have

Va(ze) = / du(gn(9)p(E8le)
_ / du@ o @5 9)p(321gz " e)
= AL(R) / du@ '@ 9)p@lg ' g)

= A§@DV (@),
where we have used the invariance of the Haar measure d u(g)

and the invariance of the probability density, Eq. (A3).
We see that, in particular,

V(@) = ARV,
where 0 denotes the identity parameters. That is,

Vi) = / dpu(gn(g)p(0]g).

We now wish to show that, as expected, V’(0) o n. We
proceed as follows. From

1V = [ dute T (@)p010),
we observe that

o1, VPO = / dn(@) Ty (39)5(0lg)

_ / d(3g)Tyn"(32)p(013g)

= T,V*(0),

PHYSICAL REVIEW A 84, 032326 (2011)

where we have used Eq. (A6) in the form p(0|g) = p(0|2g).
Hence, according to Schur’s lemma, T} V4(0) must be the
identity in the subspace corresponding to SU(d — 1), i.e.,
proportional to T,2_, from where the desired result follows
immediately. Note that, from this, it also follows that

V4(@) o AL(@Ing = n"(@),

or, more explicitly,

/ du(gin(g)p(glg) = An(g), (A7)

where A is a constant.

APPENDIX B: THE CHANNEL INDUCED BY THE
MEASUREMENTS, EQ. (69), ON N COPIES OF A QUBIT

First, we compute the action of the channel induced by the
SO(3)-covariant measurement of the greedy strategy over a
generic state,

p=_ suljm)(jml. (B1)

=J
==

m
m

In this case, we recall that the optimal covariant measurement
has the operator density,

M(n) = 2j + DIjjsm)(jjsnl, (B2)

where |jj;n) is the rotated state from the z direction (defined
by the diagonalization axis of p) into the n direction. The
channel action is given by

x(ﬁ):(2j+1)Zsm/dn|<jm|jj;n>|2|jj;n><jj;n|.

(B3)

It is easy to see that this operator is invariant under rotations
along the z axis and, therefore, is diagonal in the | jm) basis,

X(B) = cwljm')(jm'|. (B4)
‘We further notice that
12N
/dnljj;n)(jj;n|®Ijj;n)(jj;nlZm, (B5)

where 129 =", |2j; M)(2j; M| is the projector onto the
symmetric space of dimension 4 + 1. Hence, we have

Cw =Y A, (B6)
with
2j + 1
= el umn ) m P

_2j+1< 2j )( 2j >< 4j >“
4+ 1\G+m)\j+m )2+ m+m’)

where (j m,j m’|2j m +m’) is the Clebsch-Gordan coeffi-
cient of the composition j ® j — 2j.

As shown in the main text, to compute the fidelity, it
is sufficient to calculate the expectation value of the spin
component J,. If Eq. (B1) is the state after k uses of the channel
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and y () is the state after k + 1 uses, it is straightforward to
obtain

Fam J J
J. = ASm = m = 7 Ik
(J2)kt1 mEmm 'S Em e ]+1< Dk

(B7)

We can now proceed to compute the action of the channel
and the quantity determining the fidelities for the weak
measurements considered in the main text. In this case, the
covariant POVM elements are given by operator density,

M) = (1 =)l + e2j + D jjsm)(jjsnl,  (BS)

where the parameter ¢ quantifies the strength of the mea-
surement. The corresponding Kraus-operator densities are

A(n) = v/ M(n), which explicitly read
A(n) = al + bl jj;n){jj;nl, (B9)

where a = /1 —gand b = /1 +2je — /1 — &. The action
of the channel is fully determined from

x“(jm){jml)
= a’|jm)(jm| +ab/dn(jmljjm(ljm)(jj:nl

+|jj;n><jm|>+b2fdn|<jm|jj;n>|2|jj;n><jj;n|.
(B10)

Using the same techniques as in the previous case, we obtain

Xg(ﬁ) = Z Smi\z/sm

a?2j+ 1) +2ab . . b?
= E Sm———n 7 ljm) {jm| +
—~ 2j+1 2j+1

x(0),

where x () is the action of the greedy channel, Eq. (B3), and
Tm _ d2Q2j+1)+2ab b
Al = "’ZIT“W + mA;ﬁ

We finally compute the relation of the expectation values

of the operator J, before and after the use of the channel. The
analog of Eq. (B7) now reads

Sy = »_m'Alsy,
mm’

= (a,%_H +

where the label & in the parameters a; and by simply takes into
account that the strength &; can vary from one measurement
to another.

beiyJ >
Grhe+n) e
(B11)

2ay41brs
2+ 1

APPENDIX C: THE AVERAGE CHANNEL INDUCED BY
SINGLE-KRAUS-OPERATOR MEASUREMENTS ON A
SINGLE QUDIT

We show that the optimal weak instrument, i.e., one
maximizing the next observer’s fidelity given the current
observer’s fidelity for a qudit, induces a channel that has the
effect of adding a portion of total mixture to the encoding
state. We first collect some mathematical results concerning
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unitary group integrals that will extensively be used below.
For matrices g belonging to the fundamental representation
of SU(d) and denoting by du(g), the corresponding Haar
measure, we have

j
/ dn(yg sl = 2
i Or d ’

and, similarly,

Jolots v (8380 + 8753) (876! + 8187)
/du(g)g,- 8858 = 2dd 1)
(0:31 — 0:8) 18, —ol8))
2d(d — 1) :

The last result can most easily be seen by writing the integral

abo\/e as
H

and recalling the orthogonality relations of the irreducible
representations of unitary groups, which state that

i
/du(g)ED@H =fdu(g)H®EDT:O,

'
/d,,c(g)ED@EDT ~ 1. /du(g)H@H ~ EH.

As we argued in Sec. I, the effective apparatus, given by the
actual one and the lack of knowledge about it, is covariant [with
respect to SU(d) in this case]. In terms of the Kraus operators,
associated with measurement outcomes that do not transform
upon a unitary rotation of the apparatus (e.g., LEDs or dials
on a display), this means there is a unitary freedom in the next
observers’ possible knowledge of those Kraus operators for
any given outcome, and an average is performed over SU(d).
We restrict our attention to measurements with a single term in
the Kraus decomposition for any outcome—see the discussion
in Sec. VA.

Moreover, we assume that a given observer does not know
the measurement outcomes of the previous observers, thus,
no other object, except the ith observer’s output state, its
probability, and guess, depends on the measurement outcome.
Therefore, we can perform the sum over all outcomes to get
the channel induced by such a measurement. Hence, one way
to look at the measurement process is via the map,

b 8 =xp)= Y [ dutorgaig'oeals'

where {0} is the set of possible outcomes of the preceding ob-

server’s apparatus (or the set enriched by additional outcomes

so that a quantum operation performed given any outcome o

has a single-Kraus operator in its Kraus decomposition).
Using Eq. (C1), we get

() = c—1 54 d*>—c¢ E (2)
K= d+nd-n" T d+nd-nd
where
c=Z|TrA,,|2. (C3)
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