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We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices
using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based
on local collisional interactions. The gates between arbitrary qubits require the transport of atoms to neighboring
sites. We numerically optimize the nonadiabatic transport of the atoms through the lattice and the intensity ramps
of the optical tweezer in order to maximize the gate fidelities. We find overall gate times of a few 100 μs,
while keeping the error probability due to vibrational excitations and spontaneous scattering below 10−3. The
requirements on the positioning error and intensity noise of the optical tweezer and the magnetic field stability
are analyzed and we show that atoms in optical lattices could meet the requirements for fault-tolerant scalable
quantum computing.
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I. INTRODUCTION

Neutral atoms in periodic optical potentials have long
been considered promising candidates for scalable quantum
computation due to long coherence times of internal-state
qubits and their excellent controllability. However, a great
challenge in these systems remains to tailor interactions for
the two-qubit gates. One approach is to use dipole-dipole
interactions [1], most prominently among Rydberg atoms [2],
realized recently with individual atoms in separate dipole
traps [3,4]. A different approach uses ground-state collisions
either within the same trapping potential [5–10] or mediated
by tunneling [11,12]. In optical lattices, two-qubit gates have
been implemented on many pairs of atoms in parallel [13,14]
but they have, so far, not been realized on a single pair of
atoms. The main challenge is to attain sufficient resolution to
manipulate single lattice sites. Several proposals to overcome
the diffraction limit have been made to achieve this goal
[15–18], and recently single-site manipulation by an optical
tweezer in a short-period optical lattice has been realized [19]
and could now be exploited for the implementation of single-
and two-qubit gates.

In this work, we propose and investigate an architecture
for scalable quantum computation in optical lattices. Using
tightly focused optical tweezers, atomic qubits are transported
around in the lattice and merged into single lattice sites in
order to implement collisional quantum gates. We adapt the√

swap gate, proposed in Ref. [20] and realized in Ref. [14],
to our tweezer-based optical-lattice architecture. By moving
the atoms nonadiabatically, our transport and two-bit gate
times become much faster than, for example, the tunneling
gate proposed in Ref. [11]. Similar to work in Ref. [21], we
numerically optimize the ramp up of the tweezer intensity and
the transport, but due to the difference in the available control
parameters, we obtain smaller errors and arrive at total gate
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times of a few hundred microseconds with error probability
10−3 arising from nonadiabatic excitations and spontaneous
scattering. This scheme can, in principle, allow for thousands
of operations within the coherence time of the qubit. We also
investigate the requirements for the stability of the position
and intensity of the tweezer as well as the effect of magnetic
field noise.

The paper is organized as follows. Section II introduces
the scalable architecture, including the quantum register ini-
tialization, the single-qubit gates, and the readout. Section III
investigates the nonadiabatic transport of atoms through the
lattice, which is required for the collisional two-qubit gates.
In Sec. IV, we present three different gates and discuss
their respective advantages including the role of coherence
times of the qubit states used. In Sec. V, the different errors
introduced by spontaneous scattering and by fluctuations of
tweezer position and intensity are discussed and compared to
the threshold for fault-tolerant quantum computing.

II. SCALABLE ARCHITECTURE

In this section, we present our scalable architecture for
quantum computing using optical tweezers for addressing and
transport in optical lattices. The differential light shift of a
tweezer on selected atoms can be exploited for single-qubit
gates (Sec. II C), while moving tweezers can bring arbitrary
pairs of atoms together for collisional two-qubit gates. Single-
qubit rotations form a universal set of gates in combination
with either the two-qubit phase gate [13] or the

√
swap

gate [22]. Together with the initialization (Sec. II B) and the
readout capability (Sec. II D), the system therefore fulfills the
requirements for scalable quantum computation [23].

A. General setup

Throughout this paper we assume a three-dimensional
(3D) optical lattice of 87Rb atoms formed by three pairs
of counterpropagating near-infrared laser beams (wavelength
λlat = 1064 nm), realizing a lattice with spacing alat = λlat/2.
We assume the ability to prepare a single 2D system and the
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availability of an imaging system with a resolution such that
all individual sites can be detected [24,25] and individually
addressed [19,26]. We will assume a lattice depth in all
directions of Vlat = 50Er, where Er = h2/(2mλlat) is the recoil
energy and m is the mass of a 87Rb atom. This yields
a trapping frequency ωtrap ≈ 2π × 30 kHz, a two-particle
interaction energy Uint/h ≈ 2 kHz, and a tunnel coupling
J/h ≈ 0.06 Hz.

The qubit is composed of two ground-state hyperfine levels
of 87Rb, but, unlike in Ref. [19], we assume the atoms to
be addressed by a tweezer close to the 5S-6P transition
at λ1/2 = 421.555 nm and λ3/2 = 420.1733 nm. Tuning the
wavelength between these two transitions yields a differential
light shift which we will exploit for spin-dependent transport.
We describe the optical tweezer by a Gaussian beam profile
with a 1/e2 waist radius of wo = alat/2, which can be reached
with an imaging system of numerical aperture 0.68. Unless
otherwise stated the maximum light shift of the optical tweezer
is Vt = 500Er. For the gate in Sec. IV C, two tweezers are
needed, and many tweezers are required for the parallelization
of gates. These can be created and quickly controlled using
acousto-optic deflectors [27].

B. Quantum register initialization

A major advantage of ultracold atoms in optical lattices
over other systems lies in the possibility of creating large-scale
quantum registers. This can be done by preparing the system in
a Mott insulating state [24,25,28], which pins the occupation
of the lattice sites to integer values due to the on-site interaction
between atoms and can thus realize unity occupation. When the
lattice is sufficiently deep, deviations from unity filling are only
thermally activated and depend on the position in the external
confinement. In the center of the Mott insulating domain,
the deviations can be very small and current experiments
reach Pn�=1 ≈ 3 × 10−3 [25]. Different purification schemes
have been proposed to circumvent residual thermal defects.
They involve either illumination and subsequent recooling of
all atoms [29], many-body dynamics [30–33], or algorithmic
cooling schemes [34]. Recent experiments have demonstrated
a number-selective removal of atoms with an efficiency of
86% [35].

Starting from the Mott insulator with unity filling, we
remove every second column and additionally one row so
that they can be used as a channel for shuttling atoms between
different sites [Fig. 1(c)]. The removal can be performed by
transferring selected atoms to a different hyperfine ground
state and subsequently removing them with a resonant laser
illuminating the entire sample [19].

C. Single-qubit gates

A single-qubit gate can be realized using either microwave
radiation or optical two-photon Raman transitions between
two selected ground-state hyperfine levels. In the former case,
the differential light shift of a tightly focused tweezer or a
magnetic-field gradient shifts selected atoms into resonance
with a global microwave field driving the transition. In the latter
case, the rotation is driven by two tightly focused laser beams
in a Raman configuration with zero two-photon detuning.

(a) (a) (c)

FIG. 1. (Color online) Optical-tweezer-based architecture. (a) A
tightly focused optical tweezer locally perturbs the optical lattice
potential. (b) The atoms can be shuttled around by moving the
tweezer. (c) The quantum register is initialized with an atomic pattern
with empty rows and columns to permit unhindered transport of
atoms within the lattice. The two-qubit gates utilize the collisional
interactions between atoms positioned at the same site. With multiple
tweezers in use, several gates can be performed in parallel.

Raman-based gates have been demonstrated in single
optical dipole traps and reached a π/2 gate time of 183 ns [36]
and 37 ns [37] with a next-neighbor residual rotation at the
level of 10−3 [36]. A theoretical analysis for the performance
in a large spacing optical lattice yields an achievable error of
10−4 for Rb [38] and 10−5 for Cs [39].

Microwave-based gates were realized in a 1D lattice using a
magnetic-field gradient, reaching a π/2 gate time of 8 μs [16].
In 2D, single-spin manipulation was demonstrated using the
local light shift due to a focused laser beam and Landau-Zener
microwave sweeps [19]. A theoretical analysis suggests that
gate times of 100 μs can be reached with an error probability
of ending in the wrong state below 10−4 at a lattice spacing
of 10 μm [39] and with an error <10−3 at a spacing of
425 nm [26]. Recently, an error of 1.4 × 10−4 per global
microwave-based single-qubit gate of 30 μs gate time was
demonstrated for Rb atoms in an optical lattice [40] using
randomized benchmarking [41].

Comparing the approaches, it is obvious that the Raman-
based gates are much faster. However, since even the slower
microwave-based gates are comparable with the two-qubit gate
time discussed in Sec. IV faster single-qubit rotations will not
significantly speed up the overall computation. The drawback
of the Raman-based gate is that it is extremely difficult to avoid
cross talk at the small lattice spacings envisaged here. On the
other hand, the microwave-based gate restricts the choice of
the qubit states to magnetic field-sensitive states, which have
shorter coherence times, but which are anyway required for
some two-qubit gates, such as the one discussed in Sec.IV B.

D. Readout

As the final step, the spin state of several qubits has to
be read out. For this, we can transfer one of the two-qubit
spin states into the neighboring free shuttling areas using the
spin-dependent transport discussed in Sec. IV B, followed by
spatially resolved fluorescence imaging [25,42,43]. In the case
of magnetic-field-insensitive qubit states, one can remove one
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of the spin states and detect the qubit state by the presence or
absence of an atom in the fluorescence image.

III. NONADIABATIC TRANSPORT OF ATOMS

Our proposal is based on the collisional interaction of
atoms brought to the same lattice site, and high-fidelity
transport of atoms through the lattice is therefore crucial.
The transport of a single atom to an empty lattice site is
illustrated in Fig. 1(b). The optical tweezer is first focused
on the site containing the atom and its power is ramped up.
Then its position is translated to the destination site and the
power is ramped down. Since collisional gates are sensitive
to the vibrational state, it is crucial to avoid vibrational
excitation in each step. In the following we first review the
free-space harmonic oscillator theory which is appropriate for,
for example, the tweezer transport experiment in Ref. [44]. We
subsequently extend this to numerically model the process in
the presence of the lattice potential. We show that dynamics
during the ramp up is essentially unchanged, whereas the
fidelity of nonadiabatic transport is significantly reduced by the
presence of the lattice potential. We then numerically optimize
the parameters controlling the transport and thereby regain
high-fidelity transport.

A. Optical tweezer ramp up

In the harmonic oscillator approximation, the vibrational
excitations during the ramp up of the optical tweezer power
can be treated analytically [45]. Because the matrix elements
of the corresponding Hamiltonian vanish between states with
opposite parity, the change of the trapping frequency can only
induce excitations to the second excited state. In the low-
excitation limit, the time-dependent Schrödinger equation is
then solved in the Hilbert space consisting of only the ground
state

∣∣φg

〉
and the second excited state |φe〉, separated by the

energy gap �Ege = 2h̄ω.
The adiabaticity criterion for a change in the trap frequency

is

h̄

∣∣∣∣
dω(t)

dt

∣∣∣∣ = ξ
(�Ege)2

∣∣〈φe| ∂H
∂ω

|φg〉
∣∣ , (1)

where
∣∣〈φe| ∂H

∂ω

∣∣φg

〉∣∣ = h̄/
√

2 with the Hamiltonian H of
an harmonic oscillator with varying trap frequency ω(t). If
we keep the adiabaticity factor ξ � 1 constant, the above
differential equation determines the shape of the power ramp
up. The total ramp-up time Tr from an initial trap frequency ωo

to a final trap frequency ωf is related to the adibaticity factor
via [45]

Tr =
1 − ωo

ωf

4
√

2ξωo

, (2)

and the excitation probability is given by

P harm
e (t) = P 0

e sin2

⎡
⎣

√
2ξ 2 + 1

2 log[1 − 4
√

2tξωo]

4ξ

⎤
⎦ . (3)

The excitation probability displays an oscillatory behavior
with an envelope P 0

e = 4ξ 2/(1 + 4ξ 2). The oscillatory factor
in Eq. (3) predicts that with an appropriate timing, the ramp

FIG. 2. Excitation probability versus the total ramp-up time Tr

of an optical tweezer centered on a lattice site to a depth of 500Er

according to Eq. (1). The inset shows the trapping frequency of the
potential well as a function of time.

up can be done nonadiabatically with, in principle, unity
fidelity. The existence of minima in the nonadiabatic excitation
probabilities has been demonstrated experimentally using a
cloud of atoms in a dipole trap with a longitudinally translated
focus [46].

Since realistic lattice potential wells are not fully harmonic,
we have studied the ramp up of a Gaussian-shaped optical
tweezer potential superimposed on a cosine lattice potential.
We numerically solve the time-dependent Schrödinger equa-
tion as the depth of the tweezer is increased from zero to 500Er

according to the adiabaticity condition of Eq. (1).
The resulting excitation probability P full

e (Tr) as a function
of the total ramp-up time Tr (solid line) decreases for larger
ramp-up times, illustrating the transition from nonadiabatic to
adiabatic dynamics (Fig. 2). For comparison, we also show the
envelope of the harmonic oscillator approximation P 0

e with ξ

calculated from the given total ramp time Tr via Eq. (2) (dashed
line in Fig. 2) and observe a decent but not exact agreement
with the numerical result. The small disagreement is due to
the anharmonicity of the lattice potential and we have verified
that it diminishes as the optical tweezer is made tighter. Our
calculation also shows that very small excitation errors can
be reached with carefully chosen ramp timing. For example,
errors below P full

e = 10−3 are realized at the first minimum at
a ramp-up time of Tr = 11 μs.

B. Atom transport

Atoms are transported in the lattice by shifting the position
xo of the optical tweezer. Again, we are interested in the
excitation probability during this process and we first discuss
the transport of atoms in a harmonic potential without the
presence of the lattice, which can be solved analytically.
The effects of nonadiabaticity can be calculated by replac-
ing ω with xo in Eq. (1) and using �Ege = h̄ω, as ∂H

∂xo

shifts the parity of states. In the harmonic approximation
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|〈φe| ∂H
∂xo

|φg〉| = h̄ω/(
√

2σo), where σo = √
h̄/(mω) is the har-

monic oscillator length.
Again, we start with a translation profile which keeps the

adiabaticity parameter ξ constant. This requires a displacement
with a constant velocity vo = dxo

dt = ξ
√

2σoω and yields the
excitation probability

P harm
e (t) = P 0

e sin2[
√

1 + 4ξ 2ωt/2], (4)

with P 0
e as defined above. To estimate the time for an adiabatic

transport over one lattice site, we consider the adiabaticity
parameter ξ = 0.016 for which the envelope P 0

e of the
excitation probability has dropped to 10−3. For a potential
depth of 500Er of the optical tweezer (ωtrap ≈ 2π × 90 kHz,
σo = 36 nm), this yields a velocity of vo = 0.45 μm/ms or a
transport time of Tt = v0alat = 1.2 ms over the distance of a
single lattice spacing.

We now include the lattice and the Gaussian profile of the
optical tweezer and investigate to what extent nonadiabatic
transport can be realized. Figure 3(a) shows our numerical
solution of the excitation probability P full

e for a translation of
the tweezer position over one lattice site at a constant speed
as a function of the total transport time Tt . Again, we observe
an oscillatory behavior and a good agreement of the upper
envelope curves. However, the numerical results do not reach
zero excitation probability during the oscillations. An enlarged
view of one of the minima at short transport times shows that
the excitation probability stays quite high [Fig. 3(b)].

To improve this, we parametrize the translation profile as
a linear ramp plus a number of harmonics and optimize their
weights using a standard simplex algorithm [47]. Using only
five harmonics dramatically improves the fidelity [solid curve
in Fig. 3(b)]. As can be seen in the inset, the translation profile
is only slightly modified compared to the linear profile and
the dominant component is a single harmonic with a period
corresponding to the duration of the displacement.

We have investigated how the error accumulates as the
qubit is transported for longer distances across multiple sites.
We have simply repeated the optimal single-site displacement
found above with Tt = 25 μs per lattice site up to 100 times.
We find that the error after multisite transport does not
accumulate with the number of sites. Instead, it oscillates with
a period of approximately eight lattice sites and is bound by
a maximal error of only a few times the error of a transport
over a single lattice site. Thus, fast shuttling of atoms within
the quantum register should be feasible with total excitation
probabilities well below 10−3.

For the transport tweezer we would choose a wavelength red
detuned compared to both excited state levels (D1 and D2 line)
such that both qubit states are transported simultaneously. If
the polarization is chosen to be linear, both states experience
the same light shift and do not undergo a differential phase
evolution (the residual differential light shift drops below 10−3

for a detuning of � = 4 nm). The effect of the transport beam
on the neighboring sites can be neglected [26].

IV. TWO-QUBIT GATES

In the section above we have described how we can
position two selected atoms in neighboring sites as a starting

(a)

(b)

FIG. 3. Excitation probability versus transport time. (a) Linear
displacement of the optical tweezer. Numerical result P full

e for
the excitation probability including the influence of the lattice
and the profile of the tweezer (solid line) and envelope P 0

e of
the result for the transport of an harmonic oscillator potential
without a lattice (dashed line). (b) Enlargement of the second
minimum in (a). Numerical result for the linear displacement (dashed
line) and an optimized ramp shape (solid line). The optimization
reduces the excitation probability to below 10−4. The inset shows
the displacement curve of the linear ramp (dotted line) and the
optimized ramp (solid line) including harmonics up to the fifth
order.

point for a two-qubit gate. The gate can be accomplished
by collisional interactions between atoms in the same well,
and we will analyze three distinct proposals based on
controlled atomic collisions, utilizing the spin-dependent
interaction, spin-dependent transport, or spin-exchange
interactions.

The quantum bit is encoded in a pair of atomic states,
one from each hyperfine split ground-state manifold in 87Rb.
We denote the upper and lower states |↑〉 and |↓〉, and in
the following two sections we show how a pair of atoms
can acquire a phase evolution depending on the states of the
two qubits, |jk〉 → eiUjk t/h̄ |jk〉, for j,k =↑ , ↓, and how the
interaction strengths Ujk can be suitably controlled.
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A. Merging two qubits into a single well

For the first two-qubit gate we discuss, one merges the
two atoms into the ground state of a single combined well.
The atoms have the same wave function and the interaction
energy is calculated from an integral over the fourth power of
the wave function. For cold atoms, the short-range interaction
strength is proportional to the s-wave scattering length, and
near a Feshbach resonance there can be a difference between
the scattering lengths for different and identical spin states. For
the states |F = 1,mF = +1〉 ≡ |↑〉 and |F = 2,mF = −1〉 ≡
|↓〉 of 87Rb, the interaction strengths at a magnetic field of
B = 9.12 G are given by U↑↑ ≈ U↓↓ ≈ 0.9 U↑↓ [48]. Thus,
by timing the merging and separation of the wells one can
realize a phase gate. For an optical tweezer of potential depth
500Er, as considered here, a differential phase of π between
the two hyperfine states is acquired in roughly 0.8 ms.

A major experimental limitation with this approach is
that during the merging and splitting of the atoms, the
atomic potential acquires the form of a double well with a
sizable tunneling rate. The splitting must be performed slowly
compared to the tunneling rate in order to ensure that one
atom goes to each site. Note also that, in the absence of
interaction between the atoms, one cannot map a doubly
occupied state into two singly occupied orthogonal states.
Thus, fast nonadiabatic merging and separation is not possible
within this approach.

B. Gate using spin-dependent transport

To realize a faster gate, we propose to adapt the spin-
dependent lattice transport process [13] to our architecture
by utilizing spin-dependent light shifts in such a way that
only particular spin combinations are merged. By using
|F = 2,mF = −2〉 ≡ |↑〉 and |F = 1,mF = −1〉 ≡ |↓〉 and
an appropriate laser detuning between the two excited-state
fine structure levels (420.86 nm) the light shift for the state
|↓〉 cancels when using σ− polarized light.1 We propose to
perform a quantum phase gate in five steps (Fig. 4).

We consider an atom in a superposition state of |↑〉 and
|↓〉. First, the |↑〉 part of the wave function is moved to an
empty row. Next, the |↑〉 part of a neighboring qubit is moved
to overlap with the remaining |↓〉 of the first atom. In this
way, a controlled collision between these two spin states with
an energy U↑↓ takes place, while the other combinations of
spin states undergo no interaction. The spin state thus acquires
a phase shift φ, which attains π after a certain amount of
time. Finally, the steps are reversed to restore the original
configuration. Since each spin state resides in its own trapping
potential during the collision, the two atoms can be rapidly
separated after the collisional interaction.

Unlike in the transport discussed in previous sections, the
phase shift during merging and interaction is acquired by
only one of the two-qubit spin-state combinations. Since the
phase depends deterministically on the intensity profile during
transport and on the transport time, it can be calculated and

1Also, using σ+ polarized light, one can cancel the light shift of
either of the states, but the ratio of light shift and scattering rate is
worse in this case.

(a)

(c) (d)

(b)

FIG. 4. (Color online) Phase gate using spin-dependent transport.
(a) The two atoms (blue and red) are in an arbitrary superposition
between |↓〉 and |↑〉 and are located at neighboring sites after the
red atom has been transported. Here the tweezer is still at the full
depth as used for the transport. The lattice site to the left of the pair
is empty (Fig. 1). (b) While the tweezer on the right atom is switched
to circular polarization acting only on the |↑〉 component, a second
tweezer with circular polarization is ramped up at the position of
the left atom. (c) The |↑〉 components of both atoms are moved one
lattice site to the left. (d) The polarization of the right tweezer is
switched to linear, effectively ramping up the potential for the |↓〉
component. The atoms in the central lattice site acquire a collisional
phase φ. Subsequently, the steps are reversed to restore the original
configuration.

corrected for. Choosing intensity and transport profiles where
the light shift is symmetrical with respect to the center of the
pulse sequence, a robust compensation can also be achieved
by applying a π pulse after half of the sequence to reverse the
phase evolution and another π pulse at the end to restore the
correct populations.

To optimize the speed of the collisional phase gate, we
switch the optical tweezer to linear polarization after the
merging to ramp up the tweezer for the other spin state and
enhance the interaction strength. For a tweezer depth of 500Er

the interaction energy is U = h × 6 kHz and a phase shift
of π is acquired in tπ ≈ 83 μs. In Table I we summarize
the times required for the individual steps, obtaining tgate ≈
(200 + n × 50) μs, where n is the transport distance in units
of lattice sites. In a possible implementation, the transport of
several atoms could be performed in parallel to keep the typical
values of n per gate low. Although this does not improve the
individual gate error, it does decrease the effective time per
gate and thus diminishes the effect of background decoherence
effects.

TABLE I. Time budget for the spin-dependent transport gate
involving a transport over n lattice sites.

Step Amount Time (μs)

Ramp up/down 6 11
Transport 2(n + 1) 25
Phase gate 1 83
Overall 199 + n × 50
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The figure of merit for the speed of a quantum gate is the
ratio of the gate time to the coherence time of the qubit. The
hyperfine states which allow spin-dependent potentials, such
as |F = 1,mF = −1〉 and |F = 2,mF = −2〉, are sensitive
to magnetic fields and it is therefore crucial to reduce the
magnetic field noise to obtain reasonable coherence times. The
dephasing time Tc = h/�E of the two states is given by their
relative energy shift, �E/B = 3/2μB = h × 2.1 kHz/mG. It
is the state of the art of active magnetic-field stabilization to
reach a short-term stability at sub-milligauss level [49,50].
A magnetic-field noise of 50 μG yields a coherence time of
Tc = 10 ms and thus leads to a phase error of 10−2 within
the gate time of Tg ∼ 100 μs. An improvement to 5 μG is
extremely challenging but could be realizable with existing
technology [51] and it would lead to an error of 10−3.

C. Spin-exchange gate

When using the clock states |F = 1,mF = −1〉 and
|F = 2,mF = +1〉 of 87Rb as qubit states, coherence times
of many seconds have been observed working at the “magic”
magnetic field of 3.229 G [52]. In the following we present
a gate proposal based on atoms in these clock states. Spin-
dependent potentials do not exist for the clock states, and
we thus need to merge the atoms to the same potential. In
contrast to the simple merging gate of Sec. IV A, we propose
to transfer the two qubits into different vibrational states of the
combined potential instead of merging them into the ground
state. This separation in orthogonal spatial wave functions will
allow more robust merging and separation of the two qubits.

It can be done by mapping the left-well qubit into the excited
vibrational level of the combined well and the right-well qubit
into the ground vibrational level, while preserving the qubit
state [14]. This mapping is described by

α| ↑〉L + β| ↓〉L → α| ↑〉e + β| ↓〉e,

α̃| ↑〉R + β̃| ↓〉R → α̃| ↑〉g + β̃| ↓〉g,
(5)

where |·〉L and |·〉R designate the wave function of the left and
right potential well and |·〉g and |·〉e are the ground and first
excited vibrational states in the right potential well.

In the combined system the new eigenenergy basis is now
formed by the singlet and the triplet states:

|s〉 = | ↑〉g| ↓〉e − | ↓〉g| ↑〉e,

|t0〉 = | ↑〉g| ↓〉e + | ↓〉g| ↑〉e,
(6)

|t−1〉 = | ↓〉g| ↓〉e,

|t+1〉 = | ↑〉g| ↑〉e.

For the
√

swap gate, we exploit the differential phase
evolution between the singlet and the triplet states which stems
from their different symmetry. As the singlet spin state |s〉 is
antisymmetric, the spatial wave function of bosonic particles
must also be antisymmetric, while the symmetric triplet state
|t〉 leads to a symmetric wave function. In the antisymmetric
wave function of |s〉, the two atoms have essentially zero
overlap, such that interactions play no role. In the symmetric
wave function of state |t0〉, however, the collisional interaction
energy has a finite value Ueg and a corresponding phase is
obtained. The value of Ueg is related to the interaction energy
Ugg of two atoms in the ground state via integrals of the

appropriate spatial distributions and for harmonic oscillator
states Ueg = Ugg .

The differential phase evolution between |s〉 and |t0〉 results
in spin-exchange oscillations between |↑〉g |↓〉e and |↓〉g |↑〉e:

�(t = 0) = |s〉 + |t0〉 ∼ | ↑〉g| ↓〉e,
�(t) = |s〉 + eiUegt/h̄|t0〉,

(7)
�(t = Tswap) = |s〉 − |t0〉 ∼ | ↓〉g| ↑〉e,

�(t = Tswap/2) = |s〉 + i|t0〉 ∼ | ↑〉g| ↓〉e + i| ↓〉g| ↑〉e.
After a time Tswap = πh̄/Ueg [14] the states are swapped, while
after t = Tswap/2 an entangling

√
swap gate is realized.

For the band-mapping process, the two atoms for the
two-qubit gate are transported to neighboring lattice sites [see
Figs. 5(a)–5(c)]. The transport tweezer on the left atom starts
at a depth of Vstart = 400Er and is linearly ramped down to
zero in 75 μs while it is simultaneously moved to the right
lattice site. We find that the performance of the band mapping
is improved if we apply a second auxiliary tweezer on the right
lattice site, which is kept at a constant depth of Vaux = 200Er.
This configuration leads to a mapping of the left atom to the
first band on the right lattice site [Figs. 5(a)–5(c)].

To optimize the fidelity of the band mapping, we refine
the linear ramp shapes by adding harmonics of the ramp time
to both the intensity and the position ramp of the transport
tweezer. We solve the time-dependent Schrödinger equation
and obtain the single-particle mapping fidelities as the overlap
of the calculated wave function with the target states. We
define the fidelity F of the merging process as the product
of the single-particle mapping fidelities of the two atoms.
Figures 5(d)–5(g) show the resulting ramps and wave functions
for an optimization including harmonics up to 15th order
corresponding to a spatial period of 0.13 alat, for which we
obtain an infidelity of 1 − F = 2 × 10−4.

A similar analysis for double-well lattices resulted in a
saturation of the merging error of the order of 10−2 [21],
which is significantly higher than our results. We attribute this
to the difference in available control parameters.2 We have
also included interactions into the simulations but the transfer
is so fast that the effect on the overall band-mapping fidelity
is negligible. It is important to calculate the accumulated
interaction phase during the band mapping as it contributes
to the total gate phase. In the case illustrated in Fig. 5,
the accumulated interaction phase during the mapping was
0.15 rad.

After the band mapping, we wait for a time Tswap/2 to
perform the

√
swap gate before reversing the band-mapping

process. For comparison with the gate proposal discussed in
Sec. IV B we introduce an 11-μs ramp up of the tweezer
to 500Er, which results in a reduction of the swap time to
Tswap/2 = 44 μs.

In summary, the exchange gate requires four ramps of the
tweezer power (each ∼11 μs), the transport (25 μ/site), the

2In Ref. [21] the control parameters are the overall power of the
double-well lattice, the ratio of horizontal to vertical power, and the
phase between the two, which indirectly determine the position and
relative depths of the two sides of the double well.
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FIG. 5. (Color online) Band mapping for the exchange gate.
(a)–(c) Schematics of the potential formed by the lattice and the
two tweezers at three different times. While the transport tweezer is
moved from the left to the right lattice site and simultaneously ramped
down, the atom in the left well is mapped to the first excited state in
the right site. (d),(e) Depth and position of the transport tweezer as a
function of time for the optimized ramp shapes. The auxiliary tweezer
is kept at a fixed depth and position (not shown). (f),(g) Density profile
versus time for the transported atom (f) and the stationary atom (g).
At the end of the sequence the atom starting in the left well is mapped
to the first excited state and has a wave function with a node, while
the atom starting in the right well is unchanged.

merging and splitting of the wells (150 μs), and finally the
phase gate (44 μs) (see Table II). In total this gives a gate
time tgate ≈ (216 + n × 50) μs, where n is the distance to the
interaction site. The gate time is therefore more than 104 times
shorter than the decoherence time of the clock states.

V. DISCUSSION OF ERRORS

In the following we discuss the contribution of error and
decoherence sources other than the vibrational excitations
considered so far.

TABLE II. Time budget for the exchange gate.

Step Amount Time (μs)

Ramp up/down 2 11
Transport 2n 25
Phase gate 1 44
Merge/split 2 75
Overall 216 + n × 50

A. Spontaneous scattering

A fundamental source of error is the spontaneous scattering
due to the off-resonant absorption of lattice and optical tweezer
photons. Due to the large detuning, the absorption of lattice
photons can be neglected. With a scattering rate of 
sc ≈
4 × 10−2 Hz for all three lattice axes, the probability to scatter
a photon during one gate time is <10−6.

For the optical tweezer, the spontaneous emission can be
suppressed by choosing a large detuning. A detuning of 10 nm
requires a laser power of 1 mW to reach the 500Er potential
depth. This yields a scattering rate of 
sc = 0.1 Hz and a
scattering probability during one gate time Tg ∼ 300 μs of
Psc = 
scTg = 3 × 10−5.

In the case of spin-dependent transport, the detuning is
much smaller since the wavelength of the optical tweezer has
to lie between the two fine structure lines. At the chosen waist
radius, the potential depth of 500Er is reached at a power
of 70 μW, yielding a spontaneous scattering rate of 
sc =
1.5 Hz and a scattering probability of Psc = 4 × 10−5 during
one transport time.

B. Pointing stability and intensity noise

We now discuss the influence of experimental imperfections
on the gate fidelity. For the present proposal the limitations are
the pointing error and intensity fluctuations of the tweezer.
In order to investigate these effects quantitatively, we assume
only low-frequency noise due to shot-to-shot fluctuations. We
calculated the gate infidelity in the presence of a constant offset
in the pointing position and of a reduction or increase of the
optical tweezer intensity by a constant factor. In particular, we
included these errors into the simulation of the band-mapping
process discussed in Sec. IV C. As can be seen in Fig. 6, both
parameters have to be very well controlled in order to avoid a
significant reduction of the fidelity. In order to keep the gate
infidelity below 10−3, our scheme requires a relative intensity
stability of 10−3 and pointing precision in the nm range.
This intensity stability is definitely manageable, whereas the

FIG. 6. (Color online) Band-mapping infidelity as a function
of intensity noise of position errors. For the transport tweezer we
introduce a positioning error and a scaling error in the amplitude. The
contour lines show the multiples of an error of 10−3.
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required pointing stability is beyond the current state-of-the-art
experiments, which achieve a pointing error of 50 nm [19],
where full active pointing stabilization was, however, not
implemented. It might be possible to find conditions under
which the performance is less sensitive to errors in the input
controls, as was done for the transport of harmonic traps [53].

Intensity noise causes additional dephasing in the spin-
dependent two-qubit gate of Sec. V B, since the depth of
500Er = h × 1 MHz implies a phase accumulation of several
tens of 2π rad during the interaction time. To keep the absolute
dephasing error below 2π × 10−3 rad, the relative intensity
noise has to be below 10−5. This is technically challenging but
is possible, as demonstrated in the LIGO project [54], where
the intensity noise is reduced to a fractional level of 10−8 over
the relevant spectral band.

C. Error threshold for fault-tolerance

We have argued that combined transport and gate errors at
the 10−3 level can be reached with our proposal. With errors
of this magnitude, error correcting codes may be applied to
reach scalable fault tolerance, but only with a vast overhead in
number of physical qubits and operations [55]. An alternative
approach to fault tolerance uses stabilizer codes in a scheme
where errors are not corrected, but error syndromes are
forwarded to higher algorithmic levels, and here gate errors
at the few percent level can be tolerated [56]. Fault-tolerant

quantum computing is a very active field of research, and
very recent simulations show tolerance to percent level errors
for a two-dimensional qubit structure on a lattice with only
nearest-neighbor interactions [57]. With our ability to move
atoms around with low error, a simpler scheme with the same
error threshold may well be possible.

VI. CONCLUSION

In conclusion, we have proposed a complete architecture
for scalable quantum computing based on transport of atoms
in an optical lattice by movable optical tweezers. We have
presented explicit calculations of the errors occurring in the
different processes of our proposals, and we have numerically
optimized nonadiabatic ramps of the tweezer potentials to
a vibrational excitation error below 10−3. Our analyses
show that ultracold atoms in optical lattices are indeed
a promising candidate for fault-tolerant scalable quantum
computing.
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