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We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to
detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear
threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being
revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key
distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting
single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our
own measurements. The analysis shows that quantum key distribution systems using detector(s) of either type can
be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the
gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping
using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to
catch with an optical power meter at the receiver entrance.
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I. INTRODUCTION

Single-photon detectors [1] can be regarded as essential
parts of quantum information processing hardware, and are
certainly crucial components in quantum key distribution
(QKD) systems [2–7]. In QKD, the communicating parties
Alice and Bob exploit the properties of quantum mechanics
to reveal any eavesdropping attempt by the eavesdropper Eve.
The security of QKD has been proven for perfect devices [4,5].
However, when the security of QKD is to be proven for
practical systems [8–16], it is necessary to construct models
based on assumptions about the practical devices, and hence
also about the single-photon detectors.

With a few exceptions [17,18], most single-photon detec-
tors suitable for QKD systems are threshold detectors that
cannot resolve the number of photons in a pulse. They rather
have a binary response distinguishing between zero, and “one
or more” photons, where a detection event is often referred to as
a “click.” Threshold detectors are usually characterized by their
quantum efficiency η, which is the probability to detect a single
photon. For multiphoton pulses, a very common assumption is
that each photon within the pulse is detected individually with
probability η. Then, the detection probability of a n-photon
Fock state can be expressed as

pdet(n) = 1 − (1 − η)n. (1)

We refer to threshold detectors with a multiphoton detection
probability higher than the one given by Eq. (1) as superlinear
threshold detectors. A superlinear threshold detector has a
larger probability to detect multiple photons if it receives them
nearly simultaneously, than if it receives each of the photons
separately at different times. This effect is well known in
multiphoton absorption by atoms [19], where the multiphoton
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absorption rate can be much higher for chaotic light than
for laser light with the same mean intensity. Meanwhile for
threshold detectors, superlinear response may also originate
from how the entire device converts individual excitations into
the macroscopic detection event.

The photon number of a coherent state follows a Poisson
distribution with probability pn = μne−μ/n!, where μ is the
mean photon number. Therefore, if the detection probability
of a n-photon Fock state is given by Eq. (1), a coherent state
with mean photon number μ is detected with probability

pdet =
∞∑

n=0

μne−μ

n!
pdet(n) = 1 − e−μη. (2)

Note that for a coherent state with mean photon number μ,
a superlinear threshold detector with quantum efficiency η

will have a higher detection probability than the one given by
Eq. (2).

Insufficient models of single-photon detectors have caused
numerous security loopholes [15,20–30] in QKD. For in-
stance, the time-shift attack [21] based on detector efficiency
mismatch [20] has been shown to break the security of a
commercial QKD system [24]. More recently, the detector
control attack [25–30] allows the eavesdropper to capture the
full key without revealing her presence (via errors in the key).
Specifically, the attack introduces zero quantum bit error rate
(QBER). Furthermore, this attack, which is based on bright
illumination, is implementable with current technology. Two
commercial QKD systems were shown to be vulnerable to the
attack [25–27], and a full eavesdropper has been implemented
to capture the full key of an experimental QKD system under
realistic conditions [29]. However, the power level (more
than 500 μW) of the eavesdropper’s illumination has led to
discussions of whether an optical power meter at the entrance
of Bob can be used to detect these attacks [31–34].
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In this paper we propose and analyze an attack against
QKD systems with superlinear detectors (Sec. II). Note that the
previously published detector control attack [25] is based on an
extreme superlinear behavior of the detectors, and can there-
fore be considered a special case of the “imperfect” detector
control attack presented here. Then we discuss how the attack
would perform against superconducting single-photon detec-
tors [35,36], which have been reported to exhibit superlinear
behavior (Sec. III). In Sec. IV we show that avalanche photodi-
ode (APD)-based gated detectors have a substantial superlinear
response at the end of the gate. The superlinear behavior
at the end of the gate allows eavesdropping with very faint
trigger pulses [25,32]. This faint after-gate attack will be
virtually impossible to catch with an optical power meter at
the entrance of Bob. At least one security proof covers QKD
systems with superlinear detectors [16]. In Sec. V we show
how the detector control attack relates to the security proof,
and discuss possible countermeasures. Finally, we conclude in
Sec. VI.

II. THEORY OF SUPERLINEAR DETECTOR CONTROL

The core of the previously proposed detector control attacks
is the following [25]: in the Bennett-Brassard 1984 (BB84) [2]
family of protocols, Eve uses a random basis to measure the
quantum state from Alice. Then she resends her measurement
result, not as a single photon, but rather as a bright pulse,
called a trigger pulse, with a carefully selected optical power.
Then, if Eve uses Bob’s measurement basis, her trigger pulse
is always detected by Bob. On the contrary, if Eve uses a basis
not matching Bob’s to measure the quantum state from Alice,
her trigger pulse is never detected. This is possible because
Bob’s detectors are very superlinear: for less than a factor
of two (3 dB) increase in trigger pulse power, the detection
probability shoots from 0 to 100%. Since Eve uses the correct
basis only half of the time, the total loss between Alice and
Bob is 3 dB. For the differential-phase-shift protocol [37,38]
there is no basis choice, so the same factor of two (3 dB)
superlinearity allows eavesdropping without extra loss [30].
The coherent one-way protocol [39,40] is also vulnerable to
the detector control attacks [30], but requires a more strict
relationship between the superlinearities of the detectors in
the system.

The previously proposed detector control attacks allow Eve
to capture the full secret key without introducing any QBER.
However, Alice and Bob usually tolerate a nonzero QBER
(typically less than 11%). Therefore, Eve might introduce a
small QBER without getting caught. What if the superlinearity
of the detector is such that when Eve selects the right basis,
the trigger pulse is detected with a high probability, while
when Eve selects the wrong basis, the trigger pulse is detected
with a low probability? One can immediately identify two
consequences of this “imperfect” detector control attack: the
nonunity detection probability when Eve uses the right basis
will contribute extra to the loss. On the other hand, the nonzero
detection probability when Eve uses the wrong basis will
introduce a nonzero QBER.

We will here consider an active basis choice BB84 im-
plementation using two detectors. In a passive basis choice
BB84 implementation [41], Eve’s trigger pulse will strike the

detectors in both bases simultaneously for each bit. For this
case, the QBER introduced by the attack depends on how
Bob handles simultaneous clicks in both bases. Assume that
Bob assigns a random bit value to these events. Then, if the
probability for simultaneous clicks in both bases is nonzero,
the QBER introduced by an imperfect detector control attack
will be higher in a passive basis choice implementation than in
an active basis choice implementation. In any case, for passive
basis choice implementations, the theoretical QBER derived
below can be used as a lower bound.

To calculate the QBER caused by this attack, let pf,i be the
detection probability in detector i for the trigger pulse with
full power. Likewise, let ph,i be the detection probability at
detector i with half the power. We assume Eve resends the
same power regardless of her detected bit value, that double
clicks are assigned to a random bit value [42], and that Eve
selects Bob’s measurement basis with probability 1/2. When
Eve resends in the wrong basis and Bob has a detection, the
bit value will be erroneous with probability 1/2. Therefore,
the QBER caused by the imperfect detector control attack is
given by

QBER = 1

2

Bob detects and Eve used wrong basis

Bob has a detection

= ph,0 + ph,1 − ph,0ph,1

pf,0 + pf,1 + 2(ph,0 + ph,1 − ph,0ph,1)
, (3)

where dark counts have been omitted. Errors originating from
dark counts would add to the errors caused by the attack.
However, in a good detector design the amount of errors from
dark counts is minimized. Since we require the eavesdropper
to reproduce the detection probability from normal operating
conditions, the dark count probability would be minimized
under attack as well. A high dark count probability, and thus a
high error rate without the eavesdropper would leave the attack
less room for errors to be introduced. However, an equivalent
restriction on the attack is easier obtained by lowering the
acceptance threshold for the QBER. Therefore, our analyses is
limited to the QBER introduced by the attack, and dark counts
are omitted. Assuming that both detectors have equal detection
probabilities, pf,i = pf and ph,i = ph, Eq. (3) simplifies to

QBER = 2ph − p2
h

2pf + 2
(
2ph − p2

h

) . (4)

As discussed above, the perfect detector control attack
introduces 3 dB loss when applied against BB84 QKD systems
with active basis choice in Bob’s implementation, because Eve
only selects the correct basis half of the time. If mini pf,i < 1,
the attack will cause an even higher loss. On the other hand,
maxi ph,i > 0 will reduce the loss introduced by the attack.
Therefore, the transmittance T when an imperfect detector
control attack is applied against a BB84 QKD system with
active basis choice is given by

T = 1
4 (pf,0 + pf,1) + 1

2 (ph,0 + ph,1 − ph,0ph,1). (5)

Note that T refers to the transmittance between Eve and
Bob. If Eve uses imperfect detectors, this will add to the
total loss observedby Alice and Bob. For the remainder of
the paper, we simply consider Eve to use perfect detectors.
Since Eve can place her detectors close to Alice, and she
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can use detectors with almost unity detection efficiency [18],
this is an acceptable assumption. If both detectors have equal
probabilities, Eq. (5) simplifies to

T = 1
2pf + 1

2

(
2ph − p2

h

)
. (6)

Note that in passive implementations of Bob, such as passive
basis choice in BB84 [41], or in distributed phase reference
protocols [37–40], there is no 3 dB loss due to basis choice.
Therefore, the above expression for the transmittance T can
be considered a lower bound also for such implementations.

In most cases, the eavesdropper can introduce substantial
loss without getting noticed. With the notable exception of
transition-edge sensors [18], the quantum efficiency of Bob’s
detectors is typically about 10% at telecom wavelengths [1].
Furthermore, an optical fiber usually exhibits a loss of about
0.2 dB/km at 1550 nm wavelength. Adding the loss owing
to detector’s quantum efficiency to the loss in the line at a
typical distance of 50 km, Alice and Bob normally observe a
total loss of 20 dB, corresponding to T ∼ 0.01. In addition to
this, there is loss in the optical path inside Bob’s apparatus.
However, Eve can always adjust the power in her trigger pulses
to strike Bob’s detectors with a given optical power. Therefore,
by inserting her eavesdropping station into the line close to
Alice’s system, Eve has almost the full 20 dB at her disposal.
In one case, a QKD system operating with loss up to 40 dB has
been reported [43] (but the actual, tolerable loss might be less
because there is no satisfactory security proof for the protocol
used in Ref. [43]). Therefore, it seems that for many QKD
setups, Eve can introduce loss of more than 20 dB without
being revealed from the reduction in the transmittance.

III. SUPERLINEARITY OF SUPERCONDUCTING
SINGLE-PHOTON DETECTORS

Superconducting single-photon detectors (SSPDs) based
on superconducting nanowires [35] have been used for long-
distance QKD experiments [43–47], due to their ultralow dark
count rate and timing jitter. However, the need for cryogenic
cooling to temperatures in the 2–4 K range has prevented them
from being used in commercial QKD systems.

In SSPDs, the nanowire is cooled to the superconducting
state. Then, then the nanowire is biased with a current Ib

slightly lower than the critical current Ic. Because the wire is
superconducting at Ib, there is no voltage drop over the device.
A photon incident on the nanowire can create a normally
conducting hotspot, with the effect that the whole cross section
of the nanowire becomes normally conducting. This increases
the voltage over the device. Afterward, the cooling restores
superconductivity in the nanowire, and the current increases
back to the bias current. This dead time is usually about 10 ns.
The biasing current Ib can be adjusted for a trade-off between
high detection efficiency and low dark count rate.

Already in the first systematic investigation of the detection
efficiency of SSPDs [36], superlinear behavior due to multi-
photon absorption mechanisms was reported. The superlinear
behavior is wavelength dependent, and is substantial at
1550 nm, which is the wavelength suitable for long-distance
experiments. Figure 1 shows the detection count data for
1550 nm extracted from Fig. 1 in Ref. [36], processed as
detection probability (count rate/trigger pulse rate), and plotted
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FIG. 1. (Color online) The detection probability versus mean
photon number in the trigger pulse for the SSPD in Ref. [36], at
1550 nm and Ib = 0.8Ic. Count rates were extracted from Fig. 1 in
Ref. [36], and divided by the pulse repetition frequency of 82 MHz
to obtain the detection probability. The red circled data points were
used to calculate the QBER and the transmittance from an attack.

on a linear scale. The SSPD was biased at Ib/Ic = 0.8. The
superlinear behavior is suitable for eavesdropping in QKD:
by increasing the photon number, the detection probability
increases sharply. Using trigger pulses containing 106 photons
per pulse, Eq. (4) predicts a QBER of less than 3%, and Eq. (6)
predicts a transmittance T > 0.20 (assuming reasonable errors
in extracting the numerical data from the plot in Ref. [36]).
Therefore, a QKD system using this SSPD would clearly be
vulnerable to a detector control attack.

Judging by the low detection probability at one photon
per pulse for this SSPD, the QKD experiments would use a
higher bias current to get better sensitivity. Unfortunately, few
publications seems to report the detection probabilities for
pulses above the single-photon level, especially for 1550 nm
wavelength. The available literature shows that SSPDs are
less superlinear at shorter wavelengths [36], and also less
superlinear at higher bias currents [48]. However, note that any
superlinear detector response must be handled in the security
proof. Therefore, the reported data on SSPDs [36,48] clearly
shows that such a security proof is necessary for QKD systems
using SSPDs.

IV. SUPERLINEARITY OF GATED APD-BASED
DETECTORS

The gated APD-based detectors in the QKD system Clavis2
by ID Quantique exhibit substantial superlinear behavior far
after the gate [27], or when blinded by bright illumination
[25,26]. However, as pointed out before [25,31], the bright
trigger pulses might be revealed by an optical power meter
at the entrance of Bob. Here, we show that at the end of the
gate, when the APD is biased close to the breakdown voltage,
the superlinear response allows Eve to use very faint trigger
pulses.

The detection probability during the gate was measured
as follows: the gated InGaAs detectors in the QKD system
Clavis2 were run with factory settings, but with the gating
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FIG. 2. (Color online) The measured detection probability for a
coherent state with μ = 20, 40, 60, and 80, compared to the expected
detection probabilities predicted by Eq. (2). Data points are 25 ps
apart. Data for detector 0 is shown; detector 1 behaved very similarly.
When the mean photon number μ is increased, deviation between the
expected detection probabilities and the actual measured detection
probabilities increases, especially at the end of the gate. See also
Fig. 3.

frequency reduced from 5 MHz to 98 kHz. The reduced fre-
quency corresponds to the factory frequency with a detection
in every gate, and afterpulse blocking (forced 10 μs dead
time after detection events to reduce dark counts) enabled.
A short-pulsed laser (see the Appendix for the pulse shape)
was attenuated to the appropriate mean photon number and
connected directly to the fiber pigtail of each detector. Then,
the laser pulse was scanned through the gate in steps of 25 ps,
and the detection probability was recorded in each step. The
“quantum efficiency” η was measured by applying a coherent
state μ = 1, and solving η from Eq. (2). In fact, the detector is
slightly superlinear, but a coherent state with μ = 1 contains
only a small fraction of multiphoton pulses.1

Once the quantum efficiency η is known, Eq. (2) can
be used to calculate the expected detection probability for
a coherent state with any mean photon number, assuming
that each photon is detected individually. Figure 2 shows
the detection probability of a coherent state for various mean
photon numbers predicted by Eq. (2), compared to the actual
detection probabilities measured in our experiment.

The measurement data matches the expected detector
response fairly well until the falling edge of the gate. There,
the measured detection probability becomes superlinear. One
possible explanation for this could be the following: an
avalanche, started by a photon in a localized spot, laterally
spreads over time to encompass the entire junction area of
the APD [49]. For detection events before the falling edge
of the gate, the avalanche has sufficient time to spread and
therefore the current reaches the same amplitude regardless of

1The coherent state with μ = 1 was obtained by shining much
brighter pulses into a power meter and calculating the energy per
pulse. Then a controlled amount of optical attenuation was introduced
to decrease the energy level of each pulse to μ = 1.

the number of photons absorbed in the APD [17]. At the end
of the gate, an avalanche from a single-photon absorption does
not have sufficient time to spread to the entire junction area, and
therefore only causes a small current insufficient of crossing
the comparator threshold. However, multiple photon absorp-
tions in different spots across the junction can start multiple
small avalanches that together provide enough current to cross
the comparator threshold. This is exactly the process exploited
to make photon-number-resolving APD-based detectors [17].
Avalanche spreading assisted by secondary photons reemitted
by the APD, has already been used to explain avalanche
development [49,50]. Similarly, multiple photon absorptions
caused by the multiphoton pulse could speed up the avalanche
development.

For the gated APD-based detectors, the superlinear
response can be exploited in a faint version of the after-gate
attack [27]. From Eve’s perspective, the original after-gate
attack has some drawbacks. The attack may cause a substantial
amount of errors in the key, because the bright pulses cause
afterpulses with a random bit value. Furthermore, in principle,
an optical power meter can be used to catch Eve’s bright pulses.
Also, removing gates randomly or as a part of afterpulse
blocking (to avoid excessive dark counts) would reveal the
attack because the trigger pulses would cause clicks regardless
of the presence of a gate. Then, detection events without a
gate applied would indicate the presence of the eavesdropper.
Similarly, it has been noted that in the original after-gate attack
could be countered by ignoring detection events outside the
gate [33], while for this faint after-gate attack, the detections
happen within the gate [34].

As discussed in Sec. II, having a “high” detection proba-
bility for a given trigger pulse power, and a “low” detection
probability for a 3 dB dimmer trigger pulse is suitable for Eve’s
attack. Figure 3 shows the measured and expected detection
probability at a single point at the falling edge of the gate.
For less than 40 photons per trigger pulse, the APDs clearly
exhibit superlinear response in favor of the eavesdropper.

The detection probability curve of the detector 0 (the results
are very similar for detector 1) was used when calculating
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FIG. 3. (Color online) Detection probability at the falling edge
of the gate (at the 4 ns point in Fig. 2). For μ < 40, the shape of the
actual detection probability is clearly superlinear, in contrast to the
nearly linear expected detection probability.
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FIG. 4. (Color online) The minimum QBER (solid curve) caused
by trigger pulses with various mean photon numbers calculated from
Eq. (4) and the corresponding transmittance (dashed curve) calculated
from Eq. (6). The data contains some noise due to fluctuations in
applied power and/or fluctuations in the detection efficiency.

QBER and transmittance from Eqs. (4) and (6). Figure 4 shows
the resulting QBER and the corresponding transmittance for
various mean photon numbers in the trigger pulse, when the
trigger pulse timing was optimized to minimize the QBER.
The data indicates that a faint after-gate attack could cause
a QBER around 13% with a transmittance of about 0.005,
corresponding to 23 dB loss (for instance, for μ = 40, pf =
0.0054 and ph = 0.000 89 at the point 4.525 ns in Fig. 2).
As discussed in Sec. II, this transmittance corresponds to
Bob’s detectors having 10% quantum efficiency, a line loss
corresponding to about 50 km of fiber and another 3 dB loss
in Bob’s apparatus, which are reasonable values.

While most QKD systems do not accept QBER above
11% [5], there are postprocessing protocols which accept
QBER up to 20% [51]. Also note that the QBER introduced by
the attack may be significantly lower with yet shorter trigger
pulses, since they would better resolve the superlinear behavior
at the falling edge of the gate. Our relatively wide pulse (see
the Appendix) arrives at both linear and superlinear regions
of the gate. Therefore the superlinear response to it must be
less than that to a narrower pulse arriving only at the most
superlinear point in the gate.

The detectors in Clavis2 have been shown to exhibit detec-
tion efficiency mismatch [20,24,52]. Therefore, in general, one
would have to use different timings and/or different powers
depending on the bit value, to avoid skewing the bit value
distribution in the raw key. Also, the superlinearity could be
exploited in other attacks, such as the faked-state attack [52,53]
and conventional quantum attacks, to make them more efficient
[15]. ID Quantique has been notified about this loophole, prior
to submission of the paper.

V. COUNTERMEASURES AND PROOF OF SECURITY

The security of QKD systems with arbitrary nonlinearities
in Bob’s system, and therefore superlinear threshold detectors,
has already been proved [16]. Without source imperfections

and with symmetry in the two bases, the secret key rate is given
by [16]

R � −h(QBER) + η[1 − h(QBER)], (7)

where h(·) is the binary entropy function, and η is the smallest
detection probability of a nonvacuum state. If one further
assumes that the probability to detect a multiphoton state is
higher than a single photon, η is simply the quantum efficiency
(the probability to detect a single photon).

As for the detector control attack, let us assume the worst-
case superlinearity, namely, that a single photon is detected
with probability η, while a two-photon state is detected with
probability 1. Then, Eve can use trigger pulses with two
photons, and Eq. (4) simplifies to

QBER = 2η − η2

2 + 2(2η − η2)
. (8)

Figure 5 shows Eq. (7) for R = 0 and Eq. (8), comparing the
“imperfect” detector control attack with the bounds derived
in the security proof [16]. It shows that a sufficiently high
detection probability, and thus quantum efficiency, allows
extraction of secret key regardless of any superlinear detector
response. For instance, if the QBER is 5%, a quantum
efficiency η > 0.4 allows the extraction of secret key. Note
that a high quantum efficiency does not remove the superlinear
effect, but then the security proof makes it possible to
remove any knowledge Eve could have obtained exploiting
the superlinear response, by (a large amount of) extra privacy
amplification [54].

For gated systems, one possible countermeasure might be
bit-mapped gating [55]. Then, the basis selector is used to
randomize all detection events outside the center of the gate.
Therefore, trigger pulses timed at the falling edge of the gate
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FIG. 5. (Color online) Comparison of the detector control attack
and the bound from the security proof [16]. The region to the left of the
security bound curve (solid curve) allows extraction of a secure key.
The region to the right of the detector control attack curve (dashed
curve) is clearly insecure, because the attack presented in Sec. II
can be applied. The region between the curves should be assumed
insecure.
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would cause random detections and thus a QBER of 50%. This
would reveal Eve’s presence. However, the security analysis
for bit-mapped gating requires that each photon is detected
individually during the transition of the basis selector. In
practice, this means that the detectors must have a detection
probability given by Eq. (2) in the center of the gate. Figure 2
shows that this is nearly the case. It might be possible to detect
each photon completely individually in the middle of the gate
by expanding the gate, or by shaping the applied electrical gate
appropriately.

VI. SUMMARY AND CONCLUSION

In this paper we have analyzed the security of QKD systems
using superlinear threshold detectors. The detector control
attack previously reported [25] is based on very superlinear
detection probability: when the amplitude of the trigger pulses
is increased, the detection probability sharply increases from
0 to 100%. This allows eavesdropping the full key without
causing any errors; the only side effect is 3 dB total loss.
Here, the detector control attack is generalized to moderately
superlinear detectors by accepting a limited amount of errors
in the key and/or accepting a higher loss. Note that in practice,
a total loss of about 20 dB may be tolerable, as discussed in
Sec. II.

Nanowire SSPDs [35] have been reported to have superlin-
ear detection probability [36]. We have shown that by carefully
selecting the trigger pulse amplitude, an eavesdropper would
introduce a QBER of less than 3% when attacking the SSPD in
Ref. [36]. The total loss caused by the eavesdropping would be
less than 6 dB. Therefore, a QKD system using this detector
would clearly be insecure.

Figures 2 and 3 show that the response of the APD-based
gated detector is superlinear at the falling edge of the gate.
Therefore, it is possible to attack the gated detectors with faint
trigger pulses, with less than 120 photons per pulse. From the
measurements, the attack would cause a QBER of about 13%
and about 23 dB loss. Most QKD systems do not accept a
QBER above 11% [5], but there are postprocessing protocols
allowing a QBER up to 20% [51]. Furthermore, we suspect
that both the QBER and the loss could be reduced by using
shorter trigger pulses.2 Finally, even if the attack is not directly
applicable to some QKD systems due to the QBER and/or loss
threshold, the superlinear response of the APD-based detector
shows that ordinary security proofs no longer apply to these
systems. Therefore, these systems must use advanced security
proofs to bound and remove Eve’s partial knowledge from the
moderate superlinear response.

The faint after-gate attack does not suffer from the limita-
tions of the original after-gate attack [27]. In the faint after-gate
attack, the afterpulsing is negligible. Furthermore, with less
than 120 photons per pulse, the trigger pulses should be nearly
impossible to catch with an optical power meter at the entrance
of Bob. Also, removing gates randomly or due to after-pulse
blocking will not expose the attack [27] since such trigger
pulse will not cause a click unless there is a gate present.

2Unfortunately we did not have a laser with shorter pulse-width at
our disposal for this experiment.

Furthermore, the timing of the trigger pulse detection will be
very similar to a normal detection inside the gate, and therefore
difficult to discard based on timing [33].

If the detectors have an increasing detection probability
for increasing photon number, a sufficiently high quantum
efficiency makes it possible to remove Eve’s knowledge using
privacy amplification [54]. For gated APD-based detectors,
bit-mapped gating [55] can be used if each photon is detected
individually in the center of the gate.

Quantum key distribution has been proven secure, so
currently the challenge is to make a secure implementation.
We believe that weeding out loopholes caused by the imple-
mentation is a necessary step toward achieving practical secure
QKD, and that this work is crucial because it fully exposes the
nature of the detector control attack.
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APPENDIX: PULSE SHAPE OF ID300

Figure 6 shows the pulse shape of the id300 short-pulsed
laser [56]. This is the particular laser sample used in this
experiment; other samples of this laser model may have a
different pulse shape.
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FIG. 6. (Color online) Pulse shape of the id300 short-pulsed laser,
measured with a 45 GHz optical probe on a 12.5 GHz sampling
oscilloscope at a pulse repetition rate of 100 kHz.
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