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Entanglement requirements for implementing bipartite unitary operations
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We prove, using a method based on map-state duality, lower bounds on entanglement resources needed to
deterministically implement a bipartite unitary using separable (SEP) operations, which include LOCC (local
operations and classical communication) as a particular case. It is known that the Schmidt rank of an entangled
pure state resource cannot be less than the Schmidt rank of the unitary. We prove that if these ranks are equal the
resource must be uniformly (maximally) entangled: equal nonzero Schmidt coefficients. Higher rank resources
can have less entanglement: we have found numerical examples of Schmidt rank 2 unitaries, which can be
deterministically implemented, by either SEP or LOCC, using an entangled resource of two qutrits with less than
one ebit of entanglement.
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I. INTRODUCTION

It is possible to carry out nonlocal quantum operations on
multipartite systems using only local quantum operations and
classical communications (LOCC) provided that the parties
involved have access to a suitable entangled state, referred
to as a resource. Given a large enough resource it is always
possible to use teleportation to send all inputs to one party, who
performs the operation and then distributes the results to the
other parties using teleportation. In some cases it is possible
to perform a nonlocal operation with less entanglement than
is required by teleportation [1–6]. The question then arises
as to how much entanglement is really necessary in order to
implement a given nonlocal operation.

Our first result, that the Schmidt rank of the resource must
be at least as great as that of the unitary [Theorem 1(a)], follows
rather immediately from the fact that it is a separable (SEP)
operation. This is analogous to the result given in [7] in which
probabilistic [i.e., stochastic local operations and classical
communication (SLOCC)] implementations are considered.
Since SEP is contained in SLOCC, our Theorem 1(a) can be
seen as a consequence of the result in [7], however, we provide
an independent proof along the way to our main result.

In contrast to the probabilistic case, the deterministic imple-
mentation of a unitary is only possible if the state meets certain
entanglement requirements. For one thing, the entanglement of
the resource must be at least as great as the entangling power of
the unitary since entanglement cannot increase under SEP [8].
It has been shown that any deterministic controlled-unitary
operator on two qubits implemented with bipartite LOCC
using a resource of two entangled qubits necessarily requires a
maximally entangled resource [9]. Our paper takes a different
approach to the problem, using SEP, and provides a proof
applicable to general unitaries of arbitrary dimension. We
show that if the resource has Schmidt rank equal to that of
the unitary, the resource must be uniformly entangled in the
sense that all its nonzero Schmidt coefficients are the same
[Theorem 1(b)]. These same restrictions apply to LOCC, as it
is a particular case of SEP.
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It is not hard to see that if the Schmidt rank of the resource is
greater than the Schmidt rank of the unitary, then the resource
need not be uniformly entangled (e.g., a larger rank resource
that is majorized by a smaller rank maximally entangled
state). We have found that it is in fact possible for such a
larger rank resource to have less entanglement than would be
required for a resource of Schmidt rank equal to that of the
unitary. We have found examples of protocols in both SEP and
LOCC which deterministically implement a controlled phase
operation using less than one ebit of entanglement. In this
case the unitary has Schmidt rank two and the resource has
Schmidt rank three. Although the nonlocal unitary protocol
given in [10] can with certain probability consume less than
one ebit of entanglement,1 ours is an example of carrying out
such a protocol deterministically using less than one ebit of
entanglement.

The remainder of this paper is organized as follows.
Section II sets up the problem of bipartite deterministic
implementations of unitary operators using SEP. Section III
provides the requisite background regarding map-state duality
[11,12] and atemporal diagrams [13–15]. Our main result
is proved in Sec. IV using a method based on the use of
map-state duality. In Sec. V we consider the case of a resource
of larger Schmidt rank. There is a brief conclusion in Sec. VI.
The Appendix details the implementation of a controlled
unitary using a qutrit resource state of less than one ebit of
entanglement.

II. NONLOCAL UNITARIES VIA SEPARABLE
OPERATIONS

We are interested in carrying out a bipartite unitary map
U : HA ⊗ HB → HĀ ⊗ HB̄ , using as a resource an entangled
state |ψ〉 on two ancillary systems Ha and Hb, by means

1Although the protocol given in [10] is deterministic in the sense
that it always succeeds in a finite number of steps, it is probabilistic in
the amount of entanglement required. For any nontrivial unitary there
is a chance that the protocol requires usage of the |ψα2 〉 state, which
has one ebit of entanglement. Thus, if the protocol only has access
to a state with less than one ebit of entanglement, there is a nonzero
probability that the protocol cannot be carried out successfully.
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FIG. 1. Atemporal diagrams, explained in Sec. III. (a) Closure
condition, Eq. (1). (b) Apply 〈ψ | and simplify using the adjoint of
Fig. 2(a) to get Eq. (9). (c) Multiply on the right by U to get Eq. (10).
(d) Apply map-state duality to get Eq. (11). (e) Restrict spaces to
supports and ranges of operators to get Eq. (12). (f) Multiply by Û−1.
(g) Trace over HB̂ to get Eq. (13).

of a separable operation {Ek ⊗ Fk}, k = 1,2, . . .. Here Ek :
HA ⊗ Ha → HĀ and Fk : HB ⊗ Hb → HB̄ together form a
product Kraus operator. For U to be unitary it is necessary that
the dimensions of the Hilbert spaces satisfy dAdB = dĀdB̄ ,
but we do not require that dA = dĀ or dA = dB . The separable
operation must satisfy the usual closure condition [16]

∑
k

(Ek ⊗ Fk)†(Ek ⊗ Fk) = IA ⊗ Ia ⊗ Ib ⊗ IB, (1)

which is depicted in Fig. 1(a).
In addition, for |�〉 any pure input state on HA ⊗ HB , the

outcome of the operation will be a pure state

U (|�〉〈�|)U † =
∑

k

(Ek ⊗ Fk)(|�〉〈�| ⊗ |ψ〉〈ψ |)(Ek ⊗ Fk)†

(2)
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FIG. 2. (a) Deterministic unitary operation, Eq. (3). (b) Apply
map-state duality to get Eq. (8). (c) Restrict spaces to supports and
ranges of operators to get Eq. (14).

on HĀ ⊗ HB̄ . Since the protocol is assumed to be determin-
istic, every term on the right side is proportional to the same
pure state and it must be the case that

(Ek ⊗ Fk)|ψ〉 = αkU, (3)

with αk some complex number. Note that both sides of Eq. (3)
are operators acting on HA ⊗ HB ; Fig. 2(a) will help interpret
it correctly.

The resource |ψ〉 is assumed to have a Schmidt rank of Dψ ,
which means it can be written in the form

|ψ〉 =
Dψ∑
i=1

λi |ai〉 ⊗ |bi〉 (4)

for suitable orthonormal bases {|ai〉} and {|bi〉} of Ha and Hb,
with Schmidt coefficients λi > 0 for i � Dψ .

Similarly, the bipartite operator U is assumed to have a
Schmidt rank of DU , meaning that it can be written in the
form [17]

U =
DU∑
i=1

μiAi ⊗ Bi , (5)

where {Ai} and {Bi} are bases of the operator spaces
L(HA,HĀ) and L(HB,HB̄), orthonormal under the Frobenius
(Hilbert-Schmidt) inner product, and μi > 0 for i � DU .
Equivalently, DU is the minimum number of terms needed
in order to write U in the form

∑
Ci ⊗ Di , without requiring

Ci or Di to be from an orthonormal basis.

III. MAP-STATE DUALITY AND DIAGRAMS

Map-state duality [11,12] plays a central role in the proof
that will follow. This is a general concept that is sometimes
referred to as reshaping or a partial transpose [11] and in
a specific manifestation is known as the Jamiołkowski or
sometimes the Choi-Jamiołkowski isomorphism. States and
maps are considered to both be tensors, and when a choice

032316-2



ENTANGLEMENT REQUIREMENTS FOR IMPLEMENTING . . . PHYSICAL REVIEW A 84, 032316 (2011)

of orthonormal basis is fixed there is a natural linear relation
between bras and kets (i.e., |i〉 ↔ 〈i| for all basis vectors |i〉).2

With this identification between bras and kets in place,
the bipartite state |ψ〉 on the Hilbert space Ha ⊗ Hb can
be identified with the linear map ψ ′ : Hb → Ha obtained by
turning kets into bras on the Hb space:

|ψ〉 =
∑
ij

ψij |ai〉 ⊗ |bj 〉 → ψ ′ =
∑
ij

ψij |ai〉〈bj |. (6)

Similarly, the operators U , Ek , and Fk give rise to U ′ : HB ⊗
HB̄ → HA ⊗ HĀ (by turning bras into kets on HA and kets
into bras on HB̄), E′

k : Ha → HA ⊗ HĀ (by turning bras into
kets on HA), and F ′T

k : HB ⊗ HB̄ → Hb (by turning bras into
kets on Hb and kets into bras on HB̄),

U ′ =
∑
ijmn

〈Āj ,B̄n|U |Ai,Bm〉|Ai,Āj 〉〈Bm,B̄n|,

E′
k =

∑
ijm

〈Āj |Ek|Ai,am〉|Ai,Āj 〉〈am|, (7)

F ′T
k =

∑
ijm

〈B̄j |Fk|Bi,bm〉|bm〉〈Bi,B̄j |.

In the case of these three operators, map-map duality may be
a more precise term, however, we will use map-state duality
to refer to any such partial transpose. The primed operator for
Fk is denoted as F ′T

k in order to draw attention to the fact that
its domain and range are swapped in comparison to E′

k .
The equations introduced so far make use of six distinct

Hilbert spaces and tensors of various rank. In such situations
the underlying structure of equations can be somewhat hidden
when expressed using Dirac notation. Abstract index notation
is more transparent but can become unwieldy. For this reason
we provide atemporal diagrams, similar to those found in [13],
which should aid the reader in following the arguments in the
text.

Operators are designated by squares or rectangular boxes.
As a matter of style, the state |ψ〉 and its corresponding
operator ψ ′ will be represented as a circle instead of a square.
Lines between these boxes represent tensor contraction, and
these lines are labeled by the Hilbert spaces which they
correspond to. Open lines on the left of a diagram represent the
input to the total linear operator defined by the diagram, and
open lines on the right represent outputs. Putting the inputs on
the left means that operators are to be applied in a left-to-right
manner, opposite to how algebraic equations are interpreted.
As has been so far described, our diagrams are to be interpreted
in exactly the same way as traditional quantum circuits as
used, for example, in Nielsen and Chuang [18]. The primary
difference between our diagrams and traditional circuits is that
in the latter the horizontal direction is understood to represent
the passage of time, whereas our diagrams make no reference
to time. The presence of a summation symbol has the obvious
meaning: the linear operator depicted in the diagram denotes
the terms of a series. The trace or partial trace operation is

2It is also possible to formulate map-state duality in a basis-
independent manner [17], however, this is not necessary for the
present work.

just a special case of tensor contraction and is denoted by
joining the relevant spaces with a line. The identity operator is
represented by a line. With minor changes in style our diagrams
are equivalent to the atemporal diagrams of [13], and resemble
other such schemes [14,15].

IV. ENTANGLEMENT REQUIREMENTS

Our main result is the following:
Theorem 1. Suppose that a unitary operator U is imple-

mented deterministically by a separable operation that makes
use of the pure state entanglement resource |ψ〉 [i.e., suppose
that Eqs. (1) and (3) hold]. Then

(a) The Schmidt rank Dψ of |ψ〉 is greater than or equal to
the Schmidt rank DU of U .

(b) If the Schmidt ranks are equal, DU = Dψ , then |ψ〉 must
be a uniformly (maximally) entangled state: all the nonzero
Schmidt coefficients are the same.

Proof of (a). Making use of map-state duality and the
operators defined in Eqs. (6) and (7), Eq. (3) [Fig. 2(a)] can be
rewritten as [Fig. 2(b)]

E′
kψ

′F ′T
k = αkU

′. (8)

Since the rank of a product of linear operators is at most the
smallest of the ranks of the individual operators, it follows
that rank(ψ ′) � rank(U ′). The rank of an operator is equal to
the number of its nonzero singular values. Since the Schmidt
decompositions (4) and (5) are essentially singular value
decompositions of ψ ′ and U ′, it is apparent that rank(ψ ′) =
Dψ and rank(U ′) = DU , and the inequality becomes Dψ �
DU . Part (a) is proved. �

Proof of (b). Apply the closure condition (1) to 〈ψ | and use
the adjoint of Eq. (3) to obtain∑

k

α∗
kU

†(Ek ⊗ Fk) = 〈ψ | ⊗ IAB, (9)

as shown in Fig. 1(b). Next, multiply both sides on the left by
U to arrive at ∑

k

α∗
k (Ek ⊗ Fk) = 〈ψ | ⊗ U, (10)

as shown in Fig. 1(c). Making use of map-state duality gives
[Fig. 1(d)] ∑

k

α∗
k

(
E′

k ⊗ F ′T
k

) = ψ ′† ⊗ U ′. (11)

The map U ′ may in general have rank less than the
dimension ofHB ⊗ HB̄ orHA ⊗ HĀ (which need not be equal
to each other). In this case it will be useful to denote by HB̂ the
subspace of HB ⊗ HB̄ which forms the support (or coimage
or row space) of U ′, the orthogonal complement of its kernel
(null space), and by HÂ the subspace of HA ⊗ HĀ that forms
the range (or image) of U ′. Each of these subspaces has a
dimension equal to DU , and U ′ is a nonsingular (invertible)
linear map ofHB̂ ontoHÂ, which we hereafter denote by Û . In
the same way one can introduce subspaces Hb̂ and Hâ of Hb

and Ha which form the support and range of ψ ′, and define ψ̂

to be the corresponding nonsingular map of rank Dψ from Hb̂

to Hâ . Next, Êk is E′
k with its domain restricted to Hâ , which

can be strictly smaller than the support of E′
k , and with its
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range restricted to HÂ, which could be smaller than the image
of E′

k . Finally, F̂ T
k is F ′T

k regarded as a map from HB ⊗ HB̄

to Hb, but with domain and range restricted to HB̂ and Hb̂,
respectively.3

The result of restricting Eq. (11) to the subspaces just
defined is ∑

k

α∗
k

(
Êk ⊗ F̂ T

k

) = ψ̂† ⊗ Û , (12)

corresponding to Fig. 1(e). Multiplying on the left by Û−1 and
tracing over HB̂ gives∑

k

α∗
k F̂

T
k Û−1Êk = DUψ̂† (13)

[see Figs. 1(f) and 1(g)]. Restricting Eq. (8) to subspaces results
in

Êkψ̂F̂ T
k = αkÛ (14)

[see Fig. 2(c)]. Here we have restricted the spaces over which
matrix multiplications are being performed (Hb̂ andHâ instead
of Hb and Ha), however equality is still maintained because
the dimensions which have been eliminated correspond to the
zero Schmidt coefficients of |ψ〉, which is to say the zero
singular values of ψ ′.

To complete the proof, make use of the assumption Dψ =
DU . Then Dψ is also the rank of Êk and F̂ T

k : all four operators
in Eq. (14) are full rank. Taking the inverse of both sides and
inserting the result for Û−1 in Eq. (13) leads to the result∑

k

|αk|2ψ̂−1 = ψ̂−1 = Dψψ̂†, (15)

where
∑

k |αk|2 = 1 follows from Eqs. (1) and (3) and the
normalization of |ψ〉. With |ψ〉 in Schmidt form, ψ̂ is
diagonal, so ψ̂ = I/

√
Dψ . Therefore all the nonzero Schmidt

coefficients of |ψ〉 are equal to 1/
√

Dψ . �

V. LARGER RANK RESOURCE

We have proved that a resource that is of the smallest
viable Schmidt rank must be maximally entangled, but it
is also possible to use a resource that is of higher Schmidt
rank that is not maximally entangled. For one thing, if such
a state meets an appropriate majorization criterion it can be
deterministically transformed into a maximally entangled state
[19]. In this case the larger rank initial resource would have
greater entanglement than would be required if the smaller
maximally entangled state had been used in the first place.
There is, however, the possibility that some protocol could be
devised to use a resource of larger Schmidt rank that has less
entanglement than the maximally entangled state of smaller
rank.

In fact, we have numerically found examples of such
constructions in both SEP and LOCC. One solution in SEP
uses a resource state |ψ〉 = √

0.81|00〉 + √
0.095(|11〉 + |22〉)

on two qutrits to implement the two-qubit controlled-unitary

3It is significant that we define F̂ T
k as F ′T

k restricted to subspaces. In
general it is not the case that F̂k is equal to F ′

k restricted to subspaces.

operator U = diag{1,1,1,eiφ} with φ = 2 cos−1(35/36). We
have verified this to be an exact solution using a computer
algebra system. This resource constitutes less than one ebit
of entanglement: the Von Neumann entropy is approximately
0.89 ebits. Since entropy cannot increase under SEP [8] it is
necessary for the resource that is consumed to have greater
entanglement than the entangling capacity of the unitary being
implemented. The entangling capacity of this unitary is shown
in [20] to be approximately 0.23 ebits. Since this is much less
than the 0.89 ebits that we use, there remains the possibility
that a different construction or an even larger rank resource
could potentially lower the entanglement cost further.

We also found an LOCC protocol which, though less
efficient than the SEP construction just described, allows one to
carry out a bipartite unitary deterministically using a resource
with less than one ebit of entanglement. The resource in this
case is |ψ〉 = √

0.8|00〉 + √
0.1(|11〉 + |22〉) and the unitary

implemented is U = diag{1,1,1,eiφ} with φ = 0.08π . The
Von Neumann entropy of this resource is approximately 0.92
ebits, and this is a four round protocol (Alice, Bob, Alice,
Bob).

The constructions described above are instances of a more
general continuous family of solutions that we have found,
covering a range of controlled phase operations. As should
be expected, a larger phase φ requires a larger entanglement
resource. In both the SEP and the LOCC case only certain
classes of solutions were searched for, so it is possible that a
more thorough search would provide more efficient protocols.
The details of our SEP construction are presented in Appendix.
Our LOCC construction consists of a long list of Kraus
operators in numerical form, which is available upon request.

VI. CONCLUSION

We have shown that a unitary operator of Schmidt rank
D implemented as a bipartite separable operation requires
an entanglement resource of Schmidt rank at least D. If the
Schmidt rank of the resource is exactly equal to D, the resource
must be uniformly (maximally) entangled with equal nonzero
Schmidt coefficients. These restrictions apply also to LOCC,
which is a subset of SEP. The proof uses map-state duality
in a way which has not (so far as we know) been previously
applied to problems of this type, so might have other interesting
applications.

Numerical results show that the amount of entanglement
required for the resource can be lowered by using a resource
of Schmidt rank larger than D. A four round LOCC protocol
has been found which uses a two-qutrit resource state with
less than one ebit of entanglement to implement a bipartite
controlled phase gate (albeit with a small phase).

Although some large classes of unitaries are known to have
implementations in LOCC using resources having the minimal
Schmidt rank required by Theorem 1(a) [1–4,6], it is not known
whether such minimal-rank implementations are possible for
all unitaries. Given a unitary of Schmidt rank DU it is always
possible to find a collection of operators {Ek ⊗ Fk} such that
Eqs. (9) and (3) are satisfied with a resource of Schmidt rank
Dψ = DU . But it is not known if there is a separable operation
satisfying both Eqs. (1) and (3). Consequently, it is possible
that some unitaries may require a resource of greater rank
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than the lower bound given in Theorem 1(a). Even if such
a minimal rank solution is always possible in SEP, it still
might not be possible in LOCC. This stands in contrast to the
case of SLOCC where it is known that any unitary can be
implemented using a state of Schmidt rank equal to that of the
unitary [7].
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APPENDIX: LESS THAN ONE EBIT IN SEP

We performed a numerical search for solutions to Eqs. (1)
and (3) with the resource and unitary taking the forms

|ψ〉 = √
c0|00〉 +

√
(1 − c0)/2(|11〉 + |22〉), (A1)

U = diag{1,1,1,eiθ }. (A2)

In this case the unitary U is Schmidt rank 2 and the resource
is Schmidt rank 3, so the spaces Ha and Hb are each three
dimensional. In order to reduce the search space we looked for
operators {Ek} and {Fk} of the form

Ek = E∗Sk and Fk = F∗Tk, (A3)

where Sk : Ha → Hc, Tk : Hb → Hc with Hc being a two-
dimensional space, and

E∗ =
(

1 0

0 0

)
ĀA

⊗ 〈0|c +
(

0 0

0 1

)
ĀA

⊗ 〈1|c, (A4)

F∗ =
(

1 0

0 1

)
B̄B

⊗ 〈0|c +
(

1 0

0 eiθ

)
B̄B

⊗ 〈1|c. (A5)

It is possible to take advantage of the symmetry of the resource
|ψ〉 by searching for operator sets of the form

{SkL
lMmNn} and {TkL

lMmNn}, (A6)

where l,m,n ∈ {0,1} and L, M , and N are defined by

L =

⎛
⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎠ , (A7)

M = diag{1,1, −1}, and N = diag{1, −1,1}. There is no
loss of generality in this assumption, since if ({Sk},{Tk})

gives a solution to Eqs. (1) and (3) then so does
({ 1√

8
SkL

lMmNn},{TkL
lMmNn}). This decreases the number

of independent operators (indexed by k) that need to be solved
for, and in fact it turns out to be sufficient to consider only two
values of k.

Initially we searched for solutions with θ = π/4 and
c0 = 0.6 which, although representing more than one ebit of
entanglement, is not majorized by a fully entangled resource
of Schmidt rank 2. Once a solution was found, the parameters
were variated until a value of c0 was reached which represented
a resource of less than one ebit of entanglement. Further
constraints were added and variations made to simplify the
solution and identify relations between the parameters. A
family of solutions was found of the form (A6) with

S0 =
(

p 1 −p

eiθ/2 −p −1

)
, (A8)

S1 =
( −1 1 −p

−peiθ/2 p 1

)
, (A9)

T0 =
( −x − y ∗ ∗

(x − y)e−iθ/2 ∗ ∗
)

, (A10)

T1 =
( −x + y ∗ ∗

(x + y)e−iθ/2 ∗ ∗
)

, (A11)

p =
√

1 − s

s
, (A12)

s = x2[1 − cos(θ/2)] + y2[1 + cos(θ/2)], (A13)

where the parameters x, y, c0, and θ must be solved for
numerically. The asterisks in T0 and T1 represent parameters
that can be found using the relation Skψ

′T T
k = I/4.

A sequence of solutions for x, y, c0, and θ were fed into
an inverse symbolic calculator of our own design which uses
a lookup table to convert floating point numbers into algebraic
expressions. One of these solutions produced particularly
simple algebraic expressions:

x = 9/5, (A14)

y = −3/5, (A15)

c0 = 0.81, (A16)

θ = 2 arccos (35/36). (A17)

With this algebraic solution in hand, we used the computer
algebra package SAGE [21] to verify that this indeed repre-
sented an exact (not just approximate to within floating point
precision) solution to Eqs. (1) and (3).
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