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We study the speed at which information propagates through systems of interacting quantum particles moving
on a regular lattice and show that for a certain class of initial conditions there exists a maximum speed of sound
at which information can propagate. Our argument applies equally to quantum spins, bosons such as in the
Bose-Hubbard model, fermions, anyons, and general mixtures thereof, on arbitrary lattices of any dimension. It
also pertains to dissipative dynamics on the lattice, and generalizes to the continuum for quantum fields. Our
result can be seen as an analog of the Lieb-Robinson bound for strongly correlated models.
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I. INTRODUCTION

How fast can information propagate through a system of
interacting particles? The obvious answer—no faster than
the speed of light—is certainly correct; however, it is not
the answer one is usually looking for. For instance, in a
classical solid, liquid, or gas, perturbations propagate at the
speed of sound, which is determined by the way the particles
in the system locally interact with each other, without any
reference to relativistic effects. We would like to understand
whether a similar “speed of sound” exists for quantum
interacting-particle systems, limiting the propagation speed
of localized excitations, i.e., quasiparticles. For interacting
quantum spin systems such a maximal velocity, known as the
Lieb-Robinson bound [1–4], has indeed been shown. While it
seems reasonable that there should always be such a bound,
systems of interacting bosons can exhibit counterintuitive
effects, in particular since the interpretation of excitations
in terms of particles is no longer fully justified; in fact, an
example of a nonrelativistic system where bosons condense
into a dynamical state that steadily accelerates has recently
been constructed [5]. This example suggests the possibility
that our intuition is wrong, and only relativistic quantum theory
can provide a rigorous speed limit for bosonic systems.

There are many important reasons to investigate bounds on
the speed of information propagation in interacting-particle
systems. For instance, such bounds lead directly to important,
general results concerning the clustering of correlations in
equilibrium states [2], and the mere existence of a Lieb-
Robinson bound for a quantum system can be used to develop
efficient numerical procedures to simulate the dynamics of
lattice models [6]. From a more practical perspective, new
experiments allow one to explore the nonequilibrium dynamics
of ultracold strongly correlated quantum particles—bosonic,
fermionic, or mixtures thereof—in optical lattices with un-
precedented control [7,8]. In such experiments, it is important
to understand how the particles move. For example, when
studying instances of anomalous expansion, it is far from clear
a priori whether it is possible to identify a meaningful speed
of sound at all.

The original Lieb-Robinson bound applies in a very general
setting, namely, to any lattice system with bounded local
Hilbert space dimension, such as low-dimensional quantum
spin systems, fermionic lattice systems, or hard-core bosons.
Equally, Lieb-Robinson bounds can be derived for bosonic sys-
tems with quadratic interactions, such as coupled harmonic os-
cillators, and they remain valid for certain small nonquadratic
perturbation bounds, such as small nonharmonic potentials [9].
Yet, this does not cover systems of (strongly) interacting
bosons such as the Bose-Hubbard model, which are of great
practical interest. Unfortunately, previous attempts to extend
the original Lieb-Robinson argument to bosonic systems have
run into insuperable difficulties, which are fundamentally
connected to the unboundedness of the creation operator for
bosons: the Lieb-Robinson velocity depends on the norm of the
interaction, which is unbounded for, e.g., bosons hopping on
a lattice, and examples without a speed limit have indeed been
constructed [5].

In this paper, we show how to prove bounds on the speed of
information propagation for a wide class of systems, including
the Bose-Hubbard model, under certain conditions on the
initial state. In particular, we focus on the scenario where
most of the particles are initially confined to a certain region,
and study how they propagate into the initially unoccupied
region once the confining potential is removed. For instance,
this covers the scenario of bosons in a trap, when the trapping
potential is turned off, and the bosons expand into the initially
unoccupied region.

Our argument applies not only to systems of interacting
bosons, but also to fermions, spins, anyons, or mixtures
thereof, both on lattices and in the continuum. Moreover, it
can also be applied beyond Hamiltonian evolution, such as to
systems evolving under some local dissipative dynamics. It
should be noted, however, that this does not cover scenarios
such as the propagation of perturbations of the equilibrium
state of the Bose-Hubbard model inside an optical lattice,
which has a macroscopic occupation number in the whole
region of interest.
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II. SETUP

The type of system we have in mind is exemplified by
the Bose-Hubbard model, a model of bosons hopping on an
arbitrary lattice G of any finite dimension and interacting via
an on-site repulsion,

ĤBH = −τ
∑
〈j,k〉

(b̂†j b̂k + H.c.)

+ U

2

∑
j

n̂j (n̂j − 1) − μ
∑

j

n̂j , (1)

where the first summation is over neighboring sites on the
lattice, b̂j is the boson annihilation operator for site j , and
n̂j = b̂

†
j b̂j is the number operator. The natural distance in

the lattice will be denoted by d(·,·), e.g., d(j,k) = |j − k|
for a one-dimensional chain. While we, for clarity, focus our
discussion on the Bose-Hubbard model, our arguments directly
generalize to models of the form

Ĥ = −τ

S∑
s=1

∑
〈j,k〉

(b̂†s,j b̂s,k + H.c.) + f ({n̂1,j , . . . ,n̂S,j }j∈G) ,

(2)

where the b̂s,j are annihilation operators for bosons, fermions,
or even anyons of species s = 1, . . . ,S at site j , and n̂s,j =
b̂
†
s,j b̂s,j ; the species could for instance refer to an internal

spin degree of freedom. The interaction between the particles
is characterized by f , which can be an arbitrary function of
the local densities, and may involve higher moments of the
particle number, or even nonlocal interactions. Moreover, our
argument also applies to time-dependent Hamiltonians of this
form, as long as the tunneling amplitude τ (·) is bounded.

The scenario we consider (see Fig. 1) is described by the
Bose-Hubbard model on a lattice G, where in the initial state
all sites are empty (i.e., 〈n̂j 〉 = 0) except for the sites in a
region R, which can be in an arbitrary initial state with finite
average particle number (in fact, an almost empty region, i.e.,
〈n̂j 〉 sufficiently small, will also suffice). Note that the region
R may very well encompass the major part of the lattice. What
we are interested in is how fast these bosons will travel into
the empty part G\R of the lattice, as a function of the distance

t

FIG. 1. (Color online) Schematic representation of the “light
cone” of particles initially placed into a region R of a lattice (large
yellow circles) and then propagating in time t in a way governed by
an interacting quantum model, outside of which the influence of these
particles is exponentially suppressed.

d(·,·) on the underlying graph. In particular, we would like
to find a “speed of sound” for the bosons, that is, a velocity
v such that for any region S in G\R with d(S,R) � l [i.e.,
d(s,r) � l ∀ s ∈ S, r ∈ R], and for all times t for which vt < l,
the expectation value of any observable ÔS on S is equal to
the expectation value of the vacuum, up to a correction that
decays exponentially away from the light cone, eγ (vt−l).

III. SPEED LIMIT FOR PARTICLES

To start, we consider the Bose-Hubbard model ĤBH and
focus on measurements of the local particle number operators
n̂j . This corresponds to looking for bosons at the initially
empty sites, and thus captures the most natural notion of
particles propagating into a region. Let us denote the initial
state by ρ(0), which evolves according to

ρ̇(t) = −i[ĤBH,ρ(t)]

for t � 0. Since we are interested in the speed at which
particles in the Bose-Hubbard model propagate, let us try to
understand how the local particle densities

αj (t) = tr[n̂j ρ(t)], j ∈ G ,

evolve under ĤBH. To this end, we derive a bound on the rate
at which αj (·) changes, which in turn leads to a bound on the
velocity at which particles can propagate through the system.
It holds that

α̇j (t) = −i tr{n̂j [ĤBH,ρ(t)]} = −i tr{[n̂j ,ĤBH] ρ(t)}
= 2τ

∑
〈j,k〉

Im{tr[b̂†kb̂j ρ(t)]}, (3)

where the summation runs over all sites k neighboring j ,
d(j,k) = 1. Since we are only interested in an upper bound
on this rate of change, we now consider |α̇j (t)| and apply the
triangle inequality to obtain

|α̇j (t)| � 2τ
∑
〈j,k〉

|tr[b̂†kb̂j ρ(t)]| . (4)

To bound this term we use the operator Cauchy-Schwarz
inequality, viewing

tr[b̂†kb̂j ρ(t)] = 〈b̂kρ
1/2(t),b̂j ρ

1/2(t)〉
as a Hilbert-Schmidt scalar product of b̂j ρ

1/2(t) and b̂kρ
1/2(t),

where ρ1/2(t) is the matrix square root of ρ(t). This gives rise
to

|tr[b̂†kb̂j ρ(t)]| � {tr[b̂†kb̂kρ(t)]tr[b̂†j b̂j ρ(t)]}1/2.

Combining this with Eq. (4), we obtain a set of coupled
differential inequalities

|α̇j (t)| � 2τ
∑
〈j,k〉

[αj (t)αk(t)]1/2 , (5)

which, using
√

xy � (x + y)/2, yields the linearized system

|α̇j (t)| � τ

[
D αj (t) +

∑
〈j,k〉

αk(t)

]
,

where D is the maximal vertex degree of the interaction graph.
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We are interested in the worst-case growth of αj (t) as t

progresses. This will occur when we have equality in the above
expression (i.e., the derivative is as large as possible), and thus
a bound γk(t) � αk(t) is given by the solution of the linear
system of differential equations

γ̇j (t) = τ

[
D γj (t) +

∑
〈j,k〉

γk(t)

]
,

which fulfills γj (0) = αj (0). This solution has the form

�γ (t) = eDτ t eτMt �γ (0),

where M is the adjacency matrix of the lattice, i.e., Mj,k = 1
if d(j,k) = 1 and 0 otherwise, and �γ := (γk)k∈L. This yields
an upper bound

�α(t) � eDτ t eτMt �α(0) (6)

for the expected particle number at time t for any site, for
�α := (αk)k∈L.

To understand how quickly particles propagate from the
initially occupied region R into a region S with d(R,S) �
l, we need to consider the off-diagonal block of eDτ t eτMt

corresponding to those two regions. Thus, to obtain a light
cone with an exponential decay exp(vt − l) outside it, we need
to understand how rapidly the off-diagonal elements of the
banded matrix M grow under exponentiation eτMt . This can
be done by applying theorem 6 from Ref. [10], which yields
for the (i,j )th element of exp(τMt) the bound

[exp(τMt)]i,j � Cev0t−d(i,j ),

with velocity v0 = χ�τ , where χ ≈ 3.59 is the solution of
χ ln χ = χ + 1, � = ‖M‖∞/2 depends on the lattice dimen-
sion, and C = 2χ2/(χ − 1) ≈ 10. Together with the prefactor
exp(Dτ t), this gives a Lieb-Robinson velocity v = v0 + Dτ .
(Note that better bounds can be obtained, cf. [11].) For the
scenario of an empty lattice with particles initially placed in a
region R, this implies that for any j with d(j,R) � l,

αj (t) � Cevt−l
∑
k∈R

αk(0) = CN0 evt−l , (7)

i.e., up to an exponentially small tail, the particles propagate
with a speed no faster than v, independent of their initial
state. Here, N0 = ∑

k∈R αk(0) = 〈N̂〉 is the total number of
particles in the system (i.e., the expectation value of the total
particle number operator N̂ = ∑

j n̂j ). Note that while this
(unsurprisingly) means that the strength of the signal observed
may depend on the number of bosons initially put into the
system, the maximum propagation speed v does not depend
on N0. In fact, for a purely harmonic one-dimensional model
for U = 0, the exact speed of sound is indeed linear in τ , so
the above bound is tight up to a small constant prefactor. Also,
note that the region G\R need not be strictly empty, as long
as its total occupancy is smaller than the propagation effect
we want to observe. What we have derived is in fact a bound
on how fast particles can propagate from any region into any
other region.

IV. SPEED LIMIT FOR GENERAL OBSERVABLES

Having understood how to obtain a bound on the prop-
agation speed of particles, we now turn to more general
observables. First, let us show how we can bound the higher
moments of the particle number operator. For p � 1,

α
(p)
j (t) = tr

[
n̂

p

j ρ(t)
]

=
∑
N

tr
[
n̂j n̂

p−1
j PNρ(t)PN

]

�
∑
N

tr[n̂jN
p−1PNρ(t)PN ]

(7)
�

∑
N

Np−1[CNevt−l]tr[ρ(t)]

= C 〈N̂p〉 evt−l , (8)

where PN projects onto the subspace with a total of
N particles, and we have used that Eq. (7) applies to
each subspace with fixed particle number independently as
the Hamiltonian commutes with PN . Here, 〈N̂p〉 denotes the
(time-independent) expectation value of the pth moment of the
total particle number operator. This proves a Lieb-Robinson
bound for the higher moments of the particle number operator.

Let us now turn our attention toward arbitrary local
observables Âj . Any such observable can be written as
Âj = ∑

p,q cp,q (b̂†j )pb̂
q

j , and we thus have that

|tr[Âjρ(t)]| �
∑
p,q

|cp,q |
∣∣tr[(b̂†j )pb̂

q

j ρ(t)]
∣∣

�
∑
p,q

|cp,q |
{
tr
[
(b̂†j )pb̂

p

j ρ(t)
]

tr
[
(b̂†j )q b̂q

j ρ(t)
]}1/2

.

(9)

In turn, for p > 0,

tr
[
(b̂†j )pb̂

p

j ρ(t)
] = tr[n̂j (n̂j − 1) · · · (n̂j − p + 1)ρ(t)]

=
p∑

r=1

dr,pα
(r)
j (t) � C̃pevt−l , (10)

by virtue of Eq. (7), for some constant C̃p . If p = 0, we trivially
have tr[ρ(t)] = 1. Together, this yields a bound

|tr[Âjρ(t)]| � C ′evt−l

if c0,q = cp,0 = 0 for all p and q, and

|tr[Âjρ(t)]| � C ′e(vt−l)/2

otherwise, where we have assumed that
∑ |cp,q | is finite, and

used that without loss of generality c0,0 = 0. In both cases, this
means that outside the light cone given by vt = l, tr[Âjρ(t)]
decays exponentially; however, the decay is on double the
length scale in the latter case.
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Finally, observables acting on more than one site can be
bounded analogously to the local case: any two-site operator
acting on sites j , k can be written as the sum of terms Âj Âk ,
and

|tr[Âj Âkρ(t)]| � {tr[Â†
j Âjρ(t)]tr[ÂkÂ

†
kρ(t)]}1/2 .

The terms on the right-hand side are local observables that
can be bounded as before by exp(vt − l), yielding the same
exponential bound for two-site—and recursively for many-
site—observables. Note that cases exist where terms that are
bounded by exp[(vt − l)/2] only appear, and in addition one of
the Â’s above could be the identity. Thus, bounds of the form
exp[(vt − l)/κ] can occur, where κ can grow exponentially in
the block size. This, however, still implies that the signal is
exponentially small outside the light cone.

V. GENERALIZATIONS

While we have illustrated our arguments for the Bose-
Hubbard model, they generalize straightforwardly to the more
general class of models described by Eq. (2). First, it is clear
that we can replace the on-site repulsion and chemical potential
in the Bose-Hubbard model by any type of interaction (even a
nonlocal one) that only depends on the particle numbers, since
any such term vanishes in the commutator [n̂j ,Ĥ ] in Eq. (3).
Second, for systems that contain several types of bosons the
same arguments apply. Such systems can be modeled using
multiple copies of the original graph, each of which supports
the hopping of one individual boson species, and one obtains
independent differential inequalities for the particle densities
αj,s(t) = tr[n̂j,sρ(t)] for each species.

Beyond general bosonic models, our arguments also apply
to fermions and mixtures of bosons and fermions [12], and in
fact even to anyonic systems. Again, in a first step one can
decouple the individual species of particles (which mutually
commute) to hop on independent graphs. Then, it is easy
to check that our arguments work independently of the
statistics of the particles, since [n̂j ,Ĥ ] in Eq. (3) evaluates
to the same expression in terms of the fermionic (anyonic)
creation and annihilation operators. Even better, fermionic and
anyonic systems yield stronger bounds for the higher moments,
and thus for the scenario of general local observables. In
Eq. (8), n̂

p−1
j can be bounded by 1 instead of N̂p−1, which

yields a bound α
(p)
j (t) � CN0 evt−l on the higher moments.

Corresponding results also follow for spin systems, since these
can be described as hard-core bosons.

Our arguments work not only for unitary theories, but also
for certain types of dissipative (Markovian) models, extending
the work of Ref. [13] to bosonic systems. For instance, in
the practically relevant case of a bosonic system with particle
losses, we have that

ρ̇(t) = −i [ĤBH,ρ] − λ
∑

j

[{b̂†j b̂j ,ρ(t)} − 2b̂j ρ(t)b̂†j ].

Therefore,

α̇j (t) = −i tr{[n̂j ,ĤBH]ρ(t)} − λ tr[n̂j ρ(t)],

which shows that the contribution from the dissipative term
to α̇j is negative; thus tighter differential inequalities and a
lower speed of sound than in the Hamiltonian case can be
obtained.

VI. SUMMARY

In summary, we have proven that there is a maximum speed
at which information in systems of interacting particles can
propagate under certain initial conditions, and in particular, to
the speed at which interacting bosons can propagate into any
initially empty region of the system, such as when released
from a trap. This is the first speed limit for the propagation
of information in systems of strongly interacting bosons, a
scenario that cannot be assessed using the established tech-
niques of Lieb-Robinson bounds due to the unboundedness of
the bosonic hopping operator. Our argument applies equally
to bosonic, fermionic, anyonic, and spin systems, as well as
mixtures thereof, even with interaction terms between different
particle types, and can be generalized to also address systems
with dissipation.

The idea of studying information propagation by re-
stricting to a specific set of observables and investigating
the resulting worst-case differential equation can also be
applied to the study of continuous systems. This can be done
either by taking an appropriate continuum limit of a lattice
model, or by directly considering a corresponding differen-
tial equation for the particle density that is continuous in
space.

One setting where our approach seems to fail is that of
systems with a constant initial density of particles, e.g., a
“Mott state” with m particles per site. This invalidates our
assumption that there is a region without particles. However,
it seems intuitively plausible that an information-propagation
bound should still apply because it should take some time for
an initial disturbance, caused, e.g., by the addition of a particle
at some site, to move through the system. Unfortunately
our proof technique does not directly apply to this case. To
illustrate why this might be a complex problem consider
the example of the Bose-Hubbard model with a negative
U . In this case it is energetically favorable for particles
to “clump together.’. With an initial state given by the
Mott state with m particles per site it seems likely the
system will be unstable to perturbations, and little towers of
clumped particles could accelerate through the system. Any
general proof technique for information-propagation bounds
will need to be able to cope with this situation, or at least
provide some nontrivial criteria for models to obey such
bounds.
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