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Knitting distributed cluster-state ladders with spin chains
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Recently there has been much study on the application of spin chains to quantum state transfer and
communication. Here we discuss the utilization of spin chains (set up for perfect quantum state transfer) for the
knitting of distributed cluster-state structures, between spin qubits repeatedly injected and extracted at the ends of
the chain. The cluster states emerge from the natural evolution of the system across different excitation number
sectors. We discuss the decohering effects of errors in the injection and extraction process as well as the effects
of fabrication and random errors.
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I. INTRODUCTION

With conventional information processing and communi-
cations, optics provides the bandwidth and robustness for long
distance communication. However, for communication over
short distances, for example, within and between adjacent
silicon chips, signals remain electrical to avoid the energy and
cost overhead of conversion of information between different
physical embodiments. Similar thinking exists in the quantum
arena. While quantum states of light are widely regarded as
the vehicle of choice for quantum communication over large
distances, there has recently been much interest in the potential
use of spin chains for quantum communication over much
shorter distances. When the task at hand is communication
within a quantum processor, or communication between
adjacent processors or registers, it may well be that a chain
of spins—the same hardware from which the processors and
registers are constructed—can play an effective and useful
role [1,2].

In its simplest guise the term “spin chain” applies to any set
of two-state quantum systems coupled to their nearest neigh-
bors. Clearly qudits or even continuous variable oscillators
could replace the qubits, but as most quantum information
studies generally focus on qubits, most spin chain studies
do likewise. A chain could literally be comprised of spins
or magnetic moments, such as with a string of fullerenes
[3], or of magnetic particles [4], or of nuclear spins in a
molecule [5]. But it could also describe a system of electrons or
excitons [6–8] in a chain of interacting quantum dots or other
devices.

If the ground or prepared state of a spin-(1/2) chain is all
spins down (|0〉), then a complete single-qubit excitation (|1〉)
is made by flipping one spin up. An arbitrary qubit state can
thus be injected into a spin chain by preparing the “injection
site” qubit in the appropriate superposition of up and down.
For quantum communication, the question is as to how well
this state transfers—in terms of the fidelity of the initial state
against that which emerges at the “extraction site” at a later
time, resulting from the dynamics of the chain. Usually the
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injection and extraction sites are the opposing ends of a chain.
Study of state transfer has been made for unmodulated chains
[9,10], systems with unequal couplings [11], systems with
controlled coupling at the ends [12], and parallel chains [13].
Of specific interest to our work here is the case of linear
chains where the nearest neighbor couplings Ji,i+1 between
spin sites i and i + 1 are engineered to effect perfect state
transfer (PST) between the injection (i = 1) and extraction
(i = N ) sites [8,14]. For a chain of N spins the PST couplings
are given by [14]

Ji,i+1 = J0

√
i(N − i), (1)

where J0 is a coupling that characterises the whole system
and sets the time scale for PST, or mirroring, as tM =
πh̄/2J0.

In our work here we utilize such PST spin chains for a
different purpose—the construction of distributed cluster-state
structures. One potential application of short range quantum
communication is to build up distributed entangled resources
that can be used or consumed to subsequently enable dis-
tributed quantum processing through the concept of one-way
computation [15]. In this approach, the cluster-state entangled
resource [16] is consumed by a sequence of measurements to
effect the computation. Here we focus on the construction of
entangled resources, which basically emerge from a suitable
qubit injection and extraction protocol and the ability of
PST spin chains to produce two-qubit entangling gates when
operated across different excitation sectors [17–19]. For such
an application, there is clearly merit in being able to generate
the entangled resource as rapidly and effectively as possible.
We shall demonstrate that an element of a cluster-state ladder
can be knit in time tM , independent of the length N of the chain
[20], by suitable injection and extraction of qubits at the ends
of the chain. The construction of cluster-state resources using
PST spin chains as an entangling bus, with assumed access
to all spins in the chain, has been discussed in [18,19]. Here
we adopt the original concept of a spin chain, where access
is restricted to the ends of the chain, and build the resource
with a suitable injection and extraction protocol. We also
consider the effects of realistic forms of decoherence acting
in the spin chain and errors in the injection and extraction
protocol.
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II. SPIN CHAIN DYNAMICS

We start with the time-independent Hamiltonian that
describes the natural dynamics of a length N nearest-neighbor-
coupled spin chain

H =
N∑

i=1

Ei |1〉〈1|i +
N−1∑
i=1

Ji,i+1[|1〉〈0|i ⊗ |0〉〈1|i+1

+ |0〉〈1|i ⊗ |1〉〈0|i+1]. (2)

We assume that the single site excitation (from down |0〉
to up |1〉) energies Ei are independent of the site i, or are
tuned to be so. The couplings Ji,i+1 are given by (1). Tuning
of the energies and couplings, such as via local fields or
manufacturing control, is required, as per the PST scenario
(1). The total number of excitations T in the chain is given by
the expectation value of the operator

T =
N∑

i=1

|1〉〈1|i . (3)

We also define the mirror operator M as that which reflects the
state of the chain about its midpoint [which is spin (N + 1)/2
for odd N and the “gap” between spins N/2 and (N/2) + 1
for even N ]. So operationally M effects the following to each
term in any arbitrary superposition state of the chain:

M|a〉1|b〉2 · · · |y〉N−1|z〉N = |z〉1|y〉2 · · · |b〉N−1|a〉N . (4)

Clearly, for parameters restricted to achieve PST, the
Hamiltonian (2) commutes with both T and M and so the
system energy eigenstates |εk〉 are also eigenstates of both T
and M . For a chain of size N there are 2N eigenstates in total,
with T ranging from zero to N and each sector T containing
N !/(N − T )!T ! eigenstates. It is also helpful to define the
total chain “spin flip” operator F by

F =
N∏

i=1

(|1〉〈0|i + |0〉〈1|i). (5)

The eigenstates for excitation number N − T then follow from
those for T by application of F . Within this framework it
is straightforward to understand how PST, or more generally
state mirroring [21,22], occurs. Any initial state of a spin chain
|�(0)〉 can be decomposed into its even and odd (under M)
parts, so

|�(0)〉 = 1√
2

[|�+(0)〉 + |�−(0)〉] (6)

with |�±(0)〉 ≡ 1√
2
[|�(0)〉 ± M|�(0)〉]. Clearly the M eigen-

states can be decomposed as superpositions of even and odd
energy eigenstates |�±(0)〉 ≡ ∑

±k c±k|ε±k〉 and then for the
evolved state at time tM to have unit fidelity against the
mirrored initial state M|�(0)〉, it must be of the form

|�(tM )〉 = exp(−iθ )√
2

(∑
+k

c+k|ε+k〉 −
∑
−k

c−k|ε−k〉
)

. (7)

It is therefore clear [21,22] that quantum state mirroring places
a requirement on the chain energy level spectrum so that the
phases in the evolved state conspire to give the form (7) at
the mirror time tM , with the coupling choices given in (1)

forming an example [14] that produces a suitable energy level
spectrum.

The overall phase θ in the evolved state (7) is potentially
a hindrance when it comes to PST. In addition to its time
dependence, this phase depends on both the chain length N

and the excitation number T . For the case of a single excitation
(T = 1) the phase factor at the mirror time is exp[−iθ (tM )] =
(−i)N−1 [14] and so it is recognized that (N − 1) needs to be
a multiple of 4 to eliminate it, although clearly in practice as
N will be known for a system where the couplings have been
engineered to, for example, satisfy (1), this phase is a known
correction, rather than unknown decoherence.

III. TWO-QUBIT GATES

When it comes to remote quantum gates, which form the
basis for construction of distributed entangled resources, this
phase is the enabling effect [17–19]. For a given spin chain of
length N , PST does not in general work for superpositions
that include states from different T sectors, due to the T

dependence of θ , although it works for arbitrary superpositions
within a fixed T sector. However, this effect can be turned to
advantage. Consider PST spin chains where qubit states are
injected onto the two extremal spins of the chain (i = 1 and
i = N ) at time t = 0. The initial state is thus in general a
superposition of the T = 0, 1, and 2 sectors. For the simplest
case of the diagonal energies in (2) equal to zero (Ei = 0) and
expressed in the basis {|0〉1|0〉N,|0〉1|1〉N,|1〉1|0〉N,|1〉1|1〉N },
at time t = tM the natural evolution of the chain effects a gate
G given by

G =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 (−i)N−1 0

0 (−i)N−1 0 0

0 0 0 (−1)N

⎞
⎟⎟⎟⎠ (8)

on the initial two-qubit state. We note that for the specific
case where (N − 1) is a multiple of 4 the T = 1 sector phase
factors are unity [14], but for all values of N the gate G is a
maximally entangling gate, producing a concurrence of unity
from an initial two-qubit product state given by an equal weight
superposition of all four basis states. Thus the natural evolution
of the PST spin chain enables a remote maximally entangling
two-qubit gate between the ends of the chain [17–19], which
cycles between four different variants with increasing N .
Underlying all these gates is an effective phase flip that ensues
in the doubly excited sector, which can be understood as arising
from the anticommutation of two noninteracting fermions as
they pass through each other [18]. This picture is helpful in the
multiple-excitation sector, where a phase factor of e−iπ results
from every fermionic crossing. Experimentally this can also
be achieved via crossing beams of Rydberg atoms meeting in
cavities [23], which therefore represent a potential alternative
medium for this procedure.

The dynamical two-qubit gate underpins the construction
of the cluster-state resource, so we first examine this basic
gate, acting upon qubits each prepared in the state |+〉 =

1√
2
(|0〉 + |1〉) and injected simultaneously at the ends of the

chain. The entangling action of the two-qubit gate is illustrated
in Fig. 1, where the time evolution of the entanglement of
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FIG. 1. EOF vs rescaled time t/tM for spin chains of length N =
9, 13, 17.

formation (EOF) [24] of the two end qubits is shown under
the action of the PST spin chain dynamics. The EOF reaches
unity at tM = πh̄/2J0 and every πh̄/J0 thereafter. We see that
with an increasing number of spins in the chain, the width of
the EOF peak decreases. However this decrease is not linear,
instead the dependence of the width of peaks in Fig. 1 with
N is well approximated by 1/

√
N within the range of chain

lengths explored, demonstrating that even for very long chains
recovery of the entangled qubits should be feasible.

A single entangling gate essentially works for any length
N of a PST chain. However, in order to utilize additional
qubit injections at the end of the chain, the length needs to be
such that subsequent injections and extractions can be made
independently. In order to understand this, it is helpful to
consider the entropy of the end two qubits as a function of
time. In order to calculate the EOF of the end two qubits,
the spins comprising the rest of the chain (i = 2 to N − 1)
are traced out, to leave the density matrix ρ1,N of the two end
spins. If this is not pure, it provides a signature of entanglement
between the two end spins and the rest of the chain. This is
illustrated in Fig. 2, which shows the evolution of the entropy
S = −Tr(ρ1,N log2 ρ1,N ) as a function of time.

Clearly the entropy is zero at the initial injection time and
all integer multiples of tM . Of interest to us here is what
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FIG. 2. Entropy S vs rescaled time t/tM for spin chains of length
N = 9, 13, 17.
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FIG. 3. EOF at t = tM vs N for three values of ε, as labeled. Data
points are averaged over 100 random on-site energy realizations.

happens in between. It can be seen from Fig. 2 that provided
N is sufficiently large, the end two qubits disentangle from
the rest of the chain, while the excitations are propagating
and localized entirely in the middle region of the chain. The
latter can be appreciated by looking at the site occupation
probabilities [see Fig. 9(a)]. This results in S → 0 for windows
(that widen for increasing N ) centered on odd half integer
multiples of tM . Similar to Fig. 1, the width of the dip at
t = tM decreases approximately as 1/

√
N within the range

of chain lengths explored. For chains of length N � 9, it
is possible to independently inject further qubits. This will
form the basis of the cluster ladder construction. Before
considering the injection and extraction protocol though,
we first consider the effects of various errors on the basic
entangling gate and the evolving two-end-qubit entropy.

IV. ERRORS AND DECOHERENCE

For nonzero but site-independent excitation energies for the
qubits in the chain [the diagonal terms in Eq. (2)], additional
phases arise in the chain dynamics, but these do not affect
the entangling capacity of the remote two-qubit gate. Of more
interest is the effect of variations or errors in the site energies.
A simple estimate of the effect of errors in the energy level
spectrum [14] suggests an overall error or loss in fidelity for
PST that scales linearly with N . Figure 3 illustrates the EOF
evolution as a function of the spin chain length N , including
a random modulation of the on-site energies Ei . The on-site
energies are now given by Ei = εri , where 0 � ri � 1 is a
random number from a uniform distribution. Each point in
Fig. 3 corresponds to the EOF at t = tM averaged over 100
random realizations. Figure 3 confirms that the loss in EOF
scales linearly with the number of spins in the chain. Moreover,
it shows that the EOF decay is not linear for increasing
ε/Jmax, with Jmax = maxi{Ji,i+1} = 1. For small and medium
perturbations of the on-site energies, EOF close to unity can
still be achieved for all chain lengths considered.

As we are dealing with multiple excitations in the chain,
we also consider the effect of interaction between excitations
in nearby sites by adding the following term to Eq. (2):

H′ =
N−1∑
i=1

γ J0|1〉〈1|i ⊗ |1〉〈1|i+1. (9)
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FIG. 4. (Color online) EOF at time t = tM for a nine-spin chain
vs γ and ε. Data points are averaged over 100 random on-site energy
realizations.

For example,H′ may correspond to a biexcitonic interaction
in quantum dot-based chains [25,26]. Figure 4 shows the
dependence of the EOF at t = tM on the magnitude of the
maximum on-site energy perturbation ε and of the site-
interaction perturbation γ for N = 9. Even with perturbations
as big as 20% of the characteristic coupling strength J0, the
EOF hardly suffers and remains above 90%, indicating that the
system is extremely robust against these sorts of errors. The
influence of γ in Fig. 4 is limited, as three quarters of the initial
input state contain no more than one excitation and are thus
not subject to the effects of interactions between excitations.

Next we explore the effect on the remote gate of unwanted
longer range interactions [27,28], which could be an issue
when considering pseudospins based on charge degrees of
freedom. We add to Eq. (2) the perturbative term

H′′ =
N−2∑
i=1

Ji,i+2[|1〉〈0|i ⊗ |0〉〈1|i+2 + |0〉〈1|i ⊗ |1〉〈0|i+2],

(10)

with Ji,i+2 = �(Ji,i+1 + Ji+1,i+2)/2 to simulate the original
coupling modulation. A discussion about the experimental
relevance of this term has been given in [29] on the example
of graphene and self-assembled quantum dots. H′′ commutes
with both T and M , so that a set of common even and odd
eigenstates still exists. The dependence of the EOF at t = tM as
a function of N is presented in Fig. 5 for three different values
of �. The EOF displays a decay linear in N . For small values
of �, relevant, for example, to graphene quantum dots [29],
the EOF is well conserved, although the effect is much more
pronounced in very long chains as the increase in number
of spins leads to more perturbation terms in Eq. (10). For
example, with a value of � as large as 0.1, a short chain
(N = 9) achieves an EOF of 0.79, with this dropping to 0.59
for a long chain (N = 30), as shown in Fig. 5. We also note
that for � = 0.1, while PST can be qualitatively measured
at t = tM , its subsequent periodicity is lost (not shown). This
implies that in this case the gate should be put into effect at
t = tM .

Another potential source of gate error for the remote two-
qubit gate is a timing error in the “extraction” of the qubits that
have undergone the gate. Clearly from the parabolic expansion
of the concurrence around its maximum at t = tM , this error
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FIG. 5. EOF at t = tM vs N for three values of �, as labeled.
Lines are best fit to numerical data.

is second order in any timing error δt , consistent with the PST
timing error [14].

V. DISTRIBUTED CLUSTER LADDER CONSTRUCTION

Having discussed the building block gate in detail, we now
turn our attention to the repeated use of this operation to
generate a cluster ladder. A cluster-state resource [16] between
multiple qubits is realised by placing all qubits in state |+〉
and then applying a controlled-phase entangling gate between
all pairs of qubits that are to be connected in the layout of the
cluster state. The following protocol of injection and extraction
for a PST spin chain generates a cluster ladder:

(1) t = 0: Inject |+〉 at each end qubit (i = 1 and i = N ) to
a ground state chain (all zeros). This could be performed by a
SWAP operation with register qubits adjacent to each end site
prepared in state |+〉. (Clearly the SWAP operation has to be
fast on the time scale set by tM .)

(2) t = tM/2: Inject |+〉 at each end qubit, which at this time
will be disentangled from the rest of the chain (see Fig. 2).

(3) t = tM : Extract the end qubits and inject |+〉 at each end
qubit.

(4) Repeat last step as many times as desired, at time
intervals of tM/2.

(5) Extract the last two qubits in the ladder when they reach
the ends of the chain.

It is assumed that each time a pair of qubits in the cluster
ladder is extracted, each qubit is shuttled along a register at
each end, with the next pair of |+〉 states moved into positions
ready to be swapped in. This is illustrated in Fig. 6.

++

++

...
+

+

+

+

+

+

...

Step 3: Extraction and new injection at t=t MMStep 2: Injection at t=t   /2

FIG. 6. Diagram of steps 2 and 3 of the cluster ladder knitting
protocol. Solid lines indicate edges of the resulting cluster state
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Step 2 of the protocol, the second injection of |+〉 states,
relies on the fact that the end qubits are initially empty. As
especially for short chains, this cannot be guaranteed, we
would then have some unwanted entanglement between the
end qubits and the auxiliary qubits which carried the |+〉 states.
If we assume that the injection is done by a SWAP operation,
we can however refocus the system by measuring the auxiliary
qubits: finding no excitations corresponds to a successful
injection and also collapses the unwanted entanglement,
whereas finding two excitations in the auxiliary qubits means
that we have extracted all the excitations which the chain
contained previously and are now back to the state of the
system as after step 1 of the protocol, allowing us to proceed
and attempt another set of injections a time tM/2 later. In the
event that we measure a single excitation in only one of the
auxiliary qubits, the system cannot easily be recovered to a
form which would allow us to continue with our protocol and
needs to be re-initialized.

The probability of successfully injecting a pair of |+〉 states
at tM/2 is however extremely high: Fig. 7 shows the probability
of a successful injection with increasing N and we see that
even for N = 9, the success probability is already next to
99%, with the failure probability (the deviation from unity)
further decreasing as 1/N . These results allow us to be very
confident about the efficiency of our proposed protocol.

It must be noted that other injection methods, such as
tunneling for example, might not allow for a refocusing
mechanism as described above. Injection methods which can
result in one or both |+〉 states remaining in the auxiliary
qubits will lead to retention of the unwanted entanglement
between the chain and the auxiliary qubits as measurement of
the auxiliary qubits (which, in the case of a failed injection,
are in a |+〉 state) does not lead to conclusive results. In this
work we will therefore only consider injection of the SWAP

type with refocusing taking place immediately after injection.
An equivalent refocusing for the potentially imperfect

extraction of |+〉 states at tM (step 3 of the protocol) is however
not possible. If the generated |+〉 states are extracted into
empty storage qubits via a SWAP operation, while there is no
unwanted entanglement between the chain and the storage
qubits, there is no measurement we can perform to check
whether the extracted states are indeed |+〉 states without
destroying them. This might lead to some inaccuracies for

1 2
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t=3t   /2
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3 1
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1 2

2
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FIG. 8. (a) Propagation of the four qubits involved in the
generation of a crossed square cluster state. (b) Schematic formation
of the crossed square cluster state.

very long cluster-state ladders but results below suggest that
this error does not limit practical use of the protocol.

In order to now demonstrate our protocol, we consider the
generation of a “crossed” square cluster state, which simply
involves injection of two pairs of qubits at t = 0 and t = tM/2
with subsequent refocusing and their extraction at t = tM and
t = 3tM/2 (see Fig. 8). First of all, we are dealing with a chain
of length N such that (N − 1) is a multiple of 4, so the gate in
action in this case is, from Eq. (8),

G′ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

⎞
⎟⎟⎟⎠ . (11)

It is worth noting that G′ is the product of a controlled-Z
(CZ) gate, which leads to the desired entanglement, and a
SWAP gate. In Fig. 8(a) this is illustrated by the labels on the
lines representing excitations swapping as they cross, whereas
Fig. 8(b) shows how the entanglement between the individual
qubits is built up. Let us now look at the generation of a crossed
square cluster state that this figure illustrates.

To construct a crossed square cluster state we inject
excitations 1 and 2 at sites i = 1 and i = N , respectively, and
then wait for tM/2 until we know that these sites are (nearly)
completely disentangled from the rest of the chain. We then
inject excitations 3 and 4 at sites i = 1 and i = N , respectively,
and refocus. The change in occupation probability of the
individual spins can be seen in Fig. 9(a) on the example of a
nine-spin chain, for which the refocusing success probability
is 0.9885.

The occupation probability is defined as follows: let us
assume that the set {|φi〉} of k basis vectors forms the basis
for our spin chain, such that any spin chain state |ψ〉 can be
written as |ψ〉 = ∑k

i=1 ci |φi〉, with
∑k

i=1 |ci |2 = 1. The basis
vectors can be represented as |φi〉 = |j1j2 · · · jN 〉, with j =
{0,1}. Those basis vectors which contribute to the occupation
of a site s are then |φi,s〉 = |j1j2 · · · 1s · · · jN 〉, where 1 � s �
N . Each |φi,s〉 is weighed by its coefficient ci,s and so the
occupation probability of a site s is given by

∑k
i=1 |ci,s |2. As

a result, it is to be expected that the total area of the histogram
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FIG. 9. Changes in occupation probability of site i for a nine-spin
chain during the generation of a crossed square cluster state.

representing the occupation probability is equal to the number
of excitations in the system, so

∑N
s=1 |ci,s |2 = T for a specific

excitation sector.
In Fig. 9(a) we see how inaccuracies in manipulation of

the spin chain lead to deviations from the ideal scenario. As
the entropy of the depicted nine-spin chain does not reach
zero at tM/2 (see Fig. 2), the extremal spins 1 and N are
not entirely decoupled from the rest of the chain. Despite
refocusing after injection, which guarantees an occupation
probability of exactly 0.5 of spins 1 and N after injection
at tM/2 [Fig. 9(a)], we see in Fig. 9(b) that the occupation
probability of spins 1 and N before extraction at t = tM is
bigger than 0.5. Consequently, in Fig. 9(c) the occupation
probability of spins 1 and N before extraction at 3tM/2 is
smaller than 0.5. As we will see below, this will lead to a small
loss in quality of the produced crossed square cluster state.

After t = tM/2, we have injected all the necessary excita-
tions and wait for another tM/2 until t = tM before using a
SWAP operation to extract excitations 3 and 4 at their injection
sites, where the swapping qubits which are not part of the
chain are presumed initially empty and now serve as storage.
At this stage, the four excitations are already entangled, as can
be seen in Fig. 8(b). Finally, at 3tM/2 we extract excitations
1 and 2 at their initial injection sites via another SWAP

operation, thus completing the cluster state. Again the auxiliary
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FIG. 10. Fidelity of the ideal state vs rescaled time t/tM for spin
chains of length N = 9, 13, 17 used to build a crossed square cluster
state.

qubits used to operate this SWAP are presumed initially
unexcited and now serve as storage. The dynamics of these
qubits is included in the simulation. Figure 9(c) illustrates
that following this operation the chain is virtually empty and
thus ready for use again. We note that the residual occupation
in the chain is related to the imperfect disentanglement for
a nine-spin chain of the end qubits at t = tM/2 + ntM , with
n = 0,1,2, . . .. The end qubits disentangle virtually perfectly
as longer chains are considered (see Fig. 2).

Monitoring the quality of even just this four-qubit cluster
state cannot be achieved via the EOF, which is only suitable as
a measure of bipartite entanglement, but we instead consider
the fidelity F against the ideal cluster state ψideal that we are
hoping to achieve:

F = |〈ψideal|e−iHt/h̄|ψini〉|2, (12)

so perfect cluster-state construction is achieved when F = 1.
As we are more interested in the true nature of the achieved
state rather than simply in the amount of entanglement
produced, this measure is very suitable for our purposes.
Figure 10 shows the evolution of this fidelity during and after
implementation of the construction protocol for a crossed
square cluster state, without the final read-out step at t =
3tM/2 so that the evolution of the achieved cluster state
continues periodically beyond this time, achieving the same
maximum fidelity at every 2tM after t = 3tM/2. Notice the step
at t = tM/2, which corresponds to the injection of the second
pair of excitations. This slight discontinuity is most clearly
visible for N = 9, where we know from Fig. 2 that the dip
in entropy is not as low as for longer chains. Nonetheless,
N = 9 achieves a fidelity of 0.9915 at t = 3tM/2 and the two
longer chains pictured both achieve unity at this time. This
confirms that a nine-spin chain is long enough to demonstrate
the effects we wish to highlight and so we will use this chain
as our default device when considering a single value of N

only. Refocusing for N = 13 and N = 17 is done with success
probabilities of 0.9993 and 1.000, respectively, showing that
modest increases in N lead to both higher fidelity and higher
refocusing success probability. As in Fig. 2, if no excitations
are read out at t = 3tM/2, the evolution in Fig. 10 continues to
be periodic over 2tM .
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FIG. 11. Entropy S vs rescaled time t/tM for spin chains of length
N = 9, 13, 17, 25 used to build a crossed square cluster state.

We can confirm this result by also monitoring the entropy
S, with the difference that instead of using the density matrix
ρ1,N of the two end spins, we use the density matrix of the four
storage qubits, that is, the two end qubits plus the auxiliary
qubits. This is illustrated in Fig. 11, which clearly shows the
entropy S dipping to zero (or virtually zero for N = 9). Again
the final read-out step at t = 3tM/2 is omitted, leading to a
continuous evolution of the constructed cluster state which
displays dips in entropy every tM after the initial dip at t =
3tM/2. Analogous to the dip width decrease observed in Fig. 2,
the variation in width of the dip at 1.5tM is approximated by
1/

√
N .

S displays an additional dip at t = 0.75tM , which is almost
unnoticeable for short chains such as N = 9 but tends to zero
for very long chains such as N = 25. This corresponds to
a temporary decoupling of the end spins (sites 1 and N ) as
the excitations pass through each other (as indicated by the
intersecting lines in Fig. 8). To illustrate this we record the
site occupation probabilities at t = 0.75tM in Fig. 12 for a
short chain [N = 9 in Fig. 12(a)] and a long chain [N = 21 in
Fig. 12(b)]. We see that for N = 9, where we see no dip at t =
0.75tM in Fig. 11, there is a high occupation probability for the
ends spins, whereas for N = 21, where we have a significant
dip in entropy S at t = 0.75tM , the occupation probability of
the end spins is very low, leaving the spins nearly decoupled
from the rest of the chain. We also note that regardless of the
chain length, the middle of the chain is empty at this time.

VI. ERRORS IN THE CLUSTER KNITTING PROTOCOL

Just like the two-qubit gate in Sec. II, the cluster knitting
protocol we presented will be subject to various unpredictable
errors and decoherences. Due to its higher complexity, the
knitted cluster state is potentially more affected by defects
similar to the ones discussed in Sec. IV. Due to computational
restrictions, the more involved nature of the numerical simu-
lations presented in this section also puts a limit on the lengths
of spin chains we can investigate. The longest spin chain we
consider here will therefore have 25 spins and not 29 as in
Sec. IV.

First of all, we reconsider the effect of random on-site
energies Ei . Again each point in Figs. 13 and 14 corresponds
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FIG. 12. Occupation probabilities of site i = 1, . . . ,N at t =
0.75tM for a nine-spin chain (a) and a 21-spin chain (b).

to an average taken over 100 realizations. Figure 13 shows that
the loss in fidelity still scales linearly with the number of spins
in the chain, but the effect observed is much more detrimental
than it was for the simple two-qubit gate (see Fig. 3) due to the
increased number of excitations (now 4 vs 2 in the two-qubit
gate). Again, the decay in fidelity is not linear for increasing
ε/Jmax. While for very small values of ε, fidelity is very well
maintained even for very long chains, a perturbation of as
little as 5% may already be very noticeable. Short chains up
to N = 17 achieve over 80% of the fidelity, whereas longer
chains such as N = 25 suffer losses of over 30%. Similarly,
when ε = 0.1 acceptable fidelity is only achievable for very
short chains such as N = 9, while chains of 17 spins and more
become unsuitable for the proposed protocol as they achieve
less than half of the desired fidelity.
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FIG. 13. Fidelity of the ideal state at t = 3tM/2 vs N for three
values of ε, as labeled, where the chains are used to build a crossed
square cluster state. Data points are averaged over 100 random on-site
energy realizations.
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In Fig. 14 we see the combined influences of nonuniform
on-site energies Ei , weighted by ε, and H′ as given by Eq. (9)
added to the Hamiltonian (2). Compared to Fig. 4, the effect
of ε has become extremely detrimental, leading to a loss in
fidelity of over 60% for large values of ε = 0.2. Even though
a direct comparison of Figs. 4 and 14 is not possible due to
the different measures of state transfer quality, it is safe to
say that the crossed square cluster state is much more affected
by perturbations due to unwanted nonuniform on-site energies.
However, for smaller values of ε up to a few percent, the fidelity
of the knitted crossed square cluster is still very good at about
90% of the ideal value. As the knitting protocol involves up
to four excitations, the effect of H′ is slightly more visible but
remains a very minor factor in the transfer quality, affecting
the fidelity by a few percent only. The accuracy of Figs. 4 and
14 is the same, the perceived roughness of data points in Fig. 4,
which is due to the randomization of the influence of ε, also
appears to the same extent in Fig. 14 but is less visible due to
the different scale.

Finally, we also reconsider the influence of next-nearest
neighbor interaction, as given previously by Eq. (10). Figure 15
shows that even for very small values of � below 5%, there
is a noticeable loss in state fidelity. The decay scales now as
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FIG. 15. Fidelity of the ideal state at time t = 3tM/2 vs N for
three values of �, as labeled, where the chains are used to build a
crossed square cluster state. Lines are quadratic fits to guide the eye.

N2 for the shown values of � and N , resulting in fidelities
above 90% only for � = 0.01 for chains of lengths up to
25 spins. For chains of nine spins a next-nearest neighbor
coupling � of up to 5% still gives a fidelity of almost 90%
(not shown), while systems with 25 spins and � = 0.03 lose
the vast majority of their fidelity. For larger values of �, while
the first fidelity peak at t = 3tM/2 might still be of acceptable
value for short and medium length chains, it has to be noted
that the periodicity is subsequently lost. Depending on the
type of algorithm the obtained cluster state is intended for,
this might pose a serious problem. For � = 0.05, chains of
21 spins or longer do not form fidelity peaks at t = 3tM/2
anymore, so the protocol fails. This magnified detrimental
effect of next-nearest neighbor interaction is again due to the
increase in number of excitations, a phenomenon that can
also be confirmed in nonentangling spin chains subject to this
perturbation (not shown). This underlines the necessity for
strict control of longer range interactions, particularly in long
chains.

Another potential issue in the fabrication of distributed
cluster ladders is that of untimely or nonsynchronized injection
of excitations into the spin chain. The effect of the delay of a
single qubit on a two-qubit gate has been discussed in Ref. [29],
but as the knitting of a distributed cluster state will involve
four excitations most of the time, the possible delays are more
involved. We will investigate the effect on the formation of
a crossed square cluster state, the quality of which shall be
measured via the state fidelity, and consider four separate delay
scenarios. Referring to Fig. 8, the system is subjected to a delay
δt as follows:

(1) Excitations 3 and 4 are both injected at tM/2 + δt .
(2) Excitation 4 is injected at tM/2 + δt (while excitation 3

is on time).
(3) Excitation 2 is injected at δt and excitation 4 is injected

at tM/2 + δt (this corresponds to all injections on one side of
the chain being delayed by the same amount).

(4) Excitation 1 is injected at δt and excitation 4 is injected
at tM/2 + δt .

Refocusing as discussed in Sec. V is done immediately after
each individual injection by measuring the auxiliary qubits.
Despite an initial perturbation to the generation of the crossed
square cluster state, we see in Fig. 16 (describing scenario A)
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FIG. 16. Effect of delay scenario A with δt = 0.1tM on the fidelity
of a nine-spin chain.
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FIG. 17. Effect of delay scenarios A–D on the amplitude of the
first fidelity peak of a cluster state on a nine-spin chain.

that the evolution of the system continues to be essentially
periodic if no read-out at 3tM/2 is undertaken. There is a
clear kink in the plots of both entropy and state fidelity at
tM/2 + 0.1tM , where 0.1tM is the delay δt of the injection of
excitations 3 and 4. Consecutively, the fidelity peak occurs at
3tM/2 + δt and does not reach unity but a value of 0.9580,
demonstrating the robustness of the system.

Figure 17 shows the amplitude of the first fidelity peak at
3tM/2 + δt for a range of δt and all four scenarios considered.
First of all we note that none of the delay scenarios lead to
fidelity of less than 90% for a delay time of 5% of the mirroring
time tM , while delay up to 10% of tM might lead to a loss of
over 25% of fidelity. There is a clear discrepancy between
scenario A and the other three scenarios, with scenario A
performing much better and suffering just over 10% fidelity
loss for a delay of 10% of tM . Despite scenario B having fewer
delayed excitations, it performs significantly worse. As such,
it becomes clear that the system favors symmetrical input,
also shown by scenario C with two excitations on the same
end of the chain being delayed performing slightly better than
scenario D, where excitations at opposite ends of the chain are
delayed.

VII. CONCLUSIONS

In conclusion, we have presented a method to knit dis-
tributed cluster states, using only a single spin chain set up
for perfect state transfer and its natural dynamics. By closely
observing the entropy of the chain, we have shown that the
two end spins become decoupled from the rest of the chain at
regular intervals, allowing us to inject further excitations into
the chain without perturbing its existing excitation subspaces.
The following natural chain dynamics lead the ensemble of
excitations to entangle the end spins, which in turn decouple
from the rest of the chain, allowing us to extract their states.
As this routine of injections and extractions can be repeated
without theoretical restrictions, we are thus producing a
knitted cluster state consisting of an even arbitrary number of
spins.

A further outlook of our technique is the possibility to knit
other topological arrangements of cluster states by varying the
injection and extraction timings and rates. As demonstrated

in Figs. 6 and 8, each crossing of excitations leads to a new
edge in the final produced state. Provided that the chain used
to knit an arbitrary arrangement is long enough to allow
for the necessary localization of excitations, the number of
entanglement bonds produced is therefore freely controllable.
Examples of topologically useful entangled states that could
be achieved in this way are presented in Ref. [23]. We would
however expect more complicated structures which require
very long chains, in particular those involving large numbers
of excitations, to be more prone to the sources of decoherence
we discussed.

We also examined multiple potential causes of error when
knitting states, both for the fundamental building block of our
protocol, the two-qubit gate, as well as for the smallest knitted
cluster state, the crossed square cluster state. Consistent with
existing results on the influence of errors on state transfer
in spin chains, the two-qubit gate is very robust against
unwanted interactions between different excitations as well as
perturbations in the on-site energies, maintaining high levels
of over 90% of the desired entanglement even for large errors
of 10% and very long spin chains. Longer range interactions
on the other hand have potentially very detrimental effects,
with large perturbations leading to a significant decay in
entanglement as well as a loss of periodicity. Consequently,
we observed analogous phenomena for the crossed square
cluster state, amplified greatly by the increased number of
excitations. Here, only nonuniformity in the on-site energies
of up to 5% can be tolerated in order to ensure acceptable levels
of over 70% of formed entanglement in long chains. Again it
is however the next-nearest neighbor interaction that deserves
most attention in the fabrication process of a spin chain, as
even small unwanted interactions of just a few percent can
lead to significant fidelity losses, as well as loss of periodicity
of the system.

Additionally, we have considered the effect of the mistimed
injection of one or more excitations on the formation of the
desired crossed square cluster state and found that pairwise
delay at the second injection time is much less detrimental
than delay of a single excitation or delay of excitations at
different injection times, but also that nonsymmetric delay
leads to a larger fidelity loss than delay restricted to the input
on one end of the chain. Overall the effect of delayed input as
we considered is however quite limited and does not lead to a
loss of more than 10% of the perfect state fidelity for delays
up to 5% of tM .

Our studies have analyzed and demonstrated a protocol
for the fabrication of distributed cluster states which requires
no additional resources or mechanisms beyond the setup of a
spin chain for perfect state transfer and the associated SWAP

operations used to inject and extract information. In the context
of limited errors deviating less than 10% from the ideal set up,
the knitting method proves to be a sound and stable method for
generating distributed cluster states, making the utilization of
spin chains in quantum communication an ever more attractive
prospect.
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