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Linear-optics realization of channels for single-photon multimode qudits
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We propose and theoretically study a method for the stochastic realization of arbitrary quantum channels on
multimode single-photon qudits. In order for our method to be undemanding in its implementation, we restrict our
analysis to linear-optical techniques, vacuum ancillary states, and nonadaptive schemes, but we allow for random
switching between different optical networks. With our method it is possible to deterministically implement
random-unitary channels and to stochastically implement general channels. We provide an expression for the
optimal probability of success of our scheme and calculate this quantity for specific examples such as the qubit
amplitude-damping channel. The success probability is shown to be related to the entanglement properties of the
Choi-Jamiołkowski state isomorphic to the channel.
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I. INTRODUCTION

The most general transformation a quantum state can un-
dergo is described by a quantum channel. For example, it may
correspond to a controlled manipulation of a quantum system
for some final aim—as in quantum-information-processing
protocols [1]—or it may represent an unwanted interaction
with the environment. While in the first case implementing the
respective quantum channel is of direct practical interest, in the
second case one may still be interested in the implementation
of the channel for the sake of understanding the role of
noise, and how to counteract it, in real-world implemen-
tations of quantum-information-processing protocols. It is
worth remarking that striking effects in quantum-information
processing (QIP), e.g., the superactivation of the quantum
capacity of channels [2], involve nontrivial noisy channels.

Quantum optics is one of the best established physical
architectures for QIP [3–7]. It has the advantage that the
carriers of information—photons—interact naturally weakly
with the environment, so that real noise is low. This makes sim-
ulating noise possible in a very controlled way. The workhorse
of optical experiments is the manipulation via linear-optical
elements, such as beam splitters and phase shifters. The linear-
optics realization of channels has been investigated in general
[8] as well as in specific cases; for example, random-unitary
channels are common in experiments on decoherence-free and
unitarily recoverable subspaces [9,10] and in the realization
of mixed states [11,12]. The simplest nontrivial example of a
channel that is not random unitary is perhaps given by the qubit
amplitude-damping channel [1]. The counting statistics of this
channel have been simulated using linear optics [13], and a
stochastic linear-optical implementation with a fixed success
probability of 50%, independent of the value of the damping
parameter, has been suggested in [14] and realized in [15].

He et al. [8] proposed a way to implement an arbitrary single
Kraus operator on a single-photon qudit. They proceeded to
show how it is then possible to implement a generalized
measurement, that is, a POVM. He et al. argued that their
method allows for the stochastic realization of a general
channel, but did not address the issue of the probability of
success of such a realization. Actually, the scheme proposed
in [8] would allow for the deterministic realization of an

arbitrary channel, if multimode nondemolition measurements
were allowed. Unfortunately, such measurements are exper-
imentally challenging and not amenable to a linear-optics
realization.

In this article, we propose a linear-optics scheme for the
stochastic exact realization of an arbitrary channel for single-
photon multimode qudits. In contrast to He et al., we prove that,
under constraints motivated by the ease of experimental real-
ization, our scheme achieves an optimal probability of success.
An interesting result is that such a success probability is related
to the entanglement properties of the Choi-Jamiołkowski state
isomorphic to the channel [16,17]. This connection allows us to
apply results in entanglement theory [18] to the quite different
problem of channel realization.

Our results provide an optimal strategy for the realization of
arbitrary channels, an important building block in experimental
studies of QIP. In the specific case of the qubit amplitude-
damping channel, our scheme provides a significantly higher
efficiency than alternative schemes [14] without leaving the
subspace of the encoding of the input state. In contrast to [13],
this allows us to further process the output of the channel.

The paper is structured as follows. In Sec. II, we provide
definitions, fixing both the framework and the notation. In
Sec. III, we illustrate in detail the problem we consider, that
is, the realization of a quantum channel with a fixed set
of tools. In Sec. IV, we provide a scheme to realize any
channel perfectly albeit only stochastically. In Sec. V, we
relate the optimal success probability of the method proposed
to the entanglement properties of the Choi-Jamiołkowski
state isomorphic to the channel of interest. In Sec. VI, we
use this relation to provide bounds on the probability of
success, both in the specific case of qubits, for which we
are able to give analytic bounds, and qudits. In Sec. VII, we
apply our technique to two examples, one being the qubit
amplitude-damping channel. Finally, we conclude and discuss
possible future venues to investigate.

II. DEFINITIONS AND FRAMEWORK

The state of a quantum system may change over time due to
some internal dynamics, to an interaction with its environment,
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or to a measurement performed on it by an observer. Any
physical transformation a quantum system can experience
can be modeled as a quantum channel � : ρin �→ ρout. Every
channel acting on a system S admits a dilation, which means
that it can be realized as some unitary interaction with an
ancilla E, which is subsequently discarded:

�[ρS] = TrE(USE ρS ⊗ σE U
†
SE),

with σE the initial state of the ancilla [1]. More abstractly
a quantum channel can be defined as a completely positive
trace-preserving linear map. Each channel can be represented
in the form �[ρ] = ∑

i AiρA
†
i , where {Ai} is a set of Kraus

operators fulfilling the trace-preserving condition,
∑

i A
†
i Ai =

I . The Kraus representation of a channel is not unique. For
instance, if {Ai} forms a Kraus decomposition of a channel �,
the relation Bi = ∑

j uijAj , assuming uij are the elements of a
unitary matrix, will define a new decomposition {Bi} for � [1].

We will frequently find the notion of operator norm useful
in our discussions of quantum channels. Since we will always
work in finite dimensions, the operator norm ‖A‖∞ of A

corresponds to the largest singular value of A. An operator is
an admissible Kraus operator—that is, it can be considered as
part of some valid Kraus-operator set—as long as ‖A‖∞ � 1.
Any set of linear operators that satisfy the completion relation∑k

i=1 A
†
i Ai = I will constitute a valid quantum channel.

In this paper, we will be interested in optical quantum
systems. Each mode of an optical system is associated to
a basis of Fock states |n〉, where n = 0,1,2... denotes the
number of photons in the mode. The creation and annihila-
tion operators, a† and a, respectively, provide a convenient
notational framework for describing Fock states because of
the relations a|n〉 = √

n|n − 1〉, a†|n〉 = √
n + 1|n + 1〉, so

that |n〉 = (a†)n/
√

n!|0〉. These operators have commutation
relations [ai,a

†
j ] = δij , [a†

i ,a
†
j ] = 0, and [ai,aj ] = 0, where

the indices i and j denote the optical mode and δij is the
Kronecker delta.

The most common optical elements that are used in experi-
ments for the manipulation of optical modes are beam splitters
and phase shifters. Optical networks that are composed only of
instances of these two elements are referred to as passive linear
devices. Linear (quantum) optics is the part of quantum optics
that, apart from the initial generation of entangled photon
pairs and single-photon detection, deals only with passive
linear devices [3]. Any unitary transformation U acting on
d optical modes and preserving the total photon number can
conveniently be described by the way it transforms the creation
operators of the modes:

a
out†
i =

∑
j

uij a
in†
j , (1)

where uij are the elements of a unitary matrix. A transforma-
tion can be realized by linear optics if and only if it is of this
kind [19].

A phase shifter is an optical element that acts on a single
mode as Ua†U † = eiφa†. A beam splitter acts on two optical
modes at a time and can be described by

(uij ) =
(

cos θ −eiφ sin θ

e−iφ sin θ cos θ

)
. (2)

Any unitary that acts on d modes preserves the total photon
number if and only if it can be implemented using these two
devices [19].

III. THE PROBLEM

A qudit can be encoded by using one photon in d optical
modes. An arbitrary logical state can be written as |ψ〉 =∑d

i=1 ψi |iL〉, with a logical basis {|iL〉}di=1, where |iL〉 = a
†
i |0〉.

We call this kind of encoding a d-rail encoding. This encoding
is convenient when the interactions are limited to linear optics,
because any unitary operation (1) can be performed on the
creation operators using linear optics, and under this encoding
the basis states of a single qudit and the creation operators
transform identically.

We are interested in the simulation of an arbitrary quantum
channel � that acts on a qudit, using only passive linear optics.
What we want is a realization of � on the d-rail qudit, such that
the logical subspace—the encoding—is mapped onto itself.
This allows for further processing of the output of the channel.

We will refer to the channel to be realized as the logical
channel, to distinguish it from physical channels that evolve the
state of the modes without necessarily preserving the logical
subspace.

As we noted earlier, we can always represent a channel
in the form of a dilation where the channel is realized via the
unitary interaction of the system with ancillary modes. We will
limit ourselves to linear-optics evolution. For the sake of the
ease of experimental implementation, we will assume several
other reasonable restrictions: (i) to limit the number of photons
that need to be generated, we only introduce ancillary modes
that are initially in the vacuum state; (ii) in order to prevent
the necessity of using expensive feed-forward mechanisms
(Pockels cells and high-speed high-voltage switches—see,
e.g., [7,20]), we do not allow adaptive schemes; (iii) we will
restrict ourselves to photon-number measurements, although it
will actually turn out that commonly used threshold detectors
suffice.

When we consider the dilation representation of a channel,
we can imagine that the final trace over the ancillary space
corresponds to a measurement of the ancilla, whose result is
discarded. If we assume that the ancilla starts in the (vacuum)
state |0〉E , then we have

�[ρS] = TrE(USEρS ⊗ σEU
†
SE)

=
∑

k

TrE(USEρS ⊗ σEU
†
SEMk

E)

=
∑
jk

(〈j |E
√

ME
k USE |0〉E

)
ρS

(〈j |E
√

ME
k USE|0〉E

)†

with {Mk}, Mk � 0,
∑

k Mk = I a POVM on the ancilla system
E, and {|j 〉} an orthonormal basis for E. With our constraints—
vacuum input ancillas and linear-optics evolution—measuring
the vacuum on the output ancillas is the only result that
leaves the system within the encoding. This can be seen easily
considering the action of the linear-optics unitary USE = ULO

on initial states |iL〉|0〉E , i = 1, . . . ,d. We will consider d + e
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modes, with the first d used for the encoding, and the remaining
e constituting the ancilla system E. Then we have

ULO |iL〉S |0〉E = ULOa
†
i |0〉S |0〉E =

d+e∑
j=1

uij a
†
j |0〉S |0〉E

=
⎛
⎝ d∑

j=1

uij |jL〉
⎞
⎠ |0〉E

+ |0〉S
⎛
⎝ d+e∑

j=d+1

uij a
†
j |0〉E

⎞
⎠ .

From this expression it is evident that if we perform a photon-
number measurement on the output ancillary modes and we
obtain a result different from the vacuum, then the encoding
is lost. The reason for this is that linear optics preserves the
photon number, and the initial state of the system |iL〉|0〉E has
only one photon in it. If the photon is measured in the ancilla,
then the initial state |iL〉 will be mapped out of the encoding to
the vacuum, independently of which output ancilla mode the
photon is measured in.

Therefore, under the constraints that we have imposed,
the only logical channels that can be realized deterministi-
cally must have a single Kraus operator. Such channels are
necessarily unitary transformations, as can be seen by the
trace-preservation condition A†A = I .

IV. THE SOLUTION: STOCHASTIC IMPLEMENTATION

In this section, we will first see that any single logical Kraus
operator (i.e., any Kraus operator of the logical channel) can
be realized stochastically. Later we will introduce a further
resource, randomness, and the ability to switch—according to
such randomness—among different optical networks, and we
will show that then any logical channel can be realized, albeit
only stochastically.

A. Implementation of a logical Kraus operator

For any logical Kraus operator A that we want to apply to
the input state, it is possible to construct an optical network
such that A will correspond to the transformation of the
logical state if the output ancillary modes are detected to
be in the vacuum state, given that they were in the vacuum
state before the channel. Every Kraus operator has a singular
value decomposition A = V SU , where U and V are unitaries
and the matrix S is positive and diagonal, with diagonal
elements 0 � si � 1 that correspond to the singular values
of A. As unitary rotations can be realized deterministically on
the encoding, in order to prove that A can be realized under our
constraints, it is sufficient to prove that any diagonal matrix S

can be realized (see Fig. 1).
This is proven possible by considering the action (2) of a

beam splitter on two modes. If the first mode, with creation
operator a†, belongs to the encoding and the second mode is
an ancilla—which means it starts in the vacuum—then the
transformation that results when the vacuum is measured on
the ancilla state effectively realizes the mapping a† �→ cos θa†.
Since the angle θ is arbitrary, we can simply implement any

FIG. 1. The diagram describes an optical circuit for a channel
that would realize the Kraus operator A = V SU as well as a Kraus
operator that would map the encoding to the vacuum. The boxes
represent optical arrays that perform the unitary that labels them. The
S transformation then consists of a set of beam splitters, one for each
mode, whose transmission coefficients are matched to the singular
values of the matrix S.

diagonal logical Kraus operator S by using d ancillary modes
and d beam splitters, choosing the angles θi such that si =
cos θi .

A proposal for a similar implementation of a single Kraus
operator can be found in [8] and [21].

B. Perfect but stochastic implementation of
an arbitrary logical channel

A logical channel � that we may want to apply on the
encoding will in general have a Kraus decomposition {Ai}ni=1,
with n � 1. Therefore, by using a fixed linear-optical network
in the framework defined in Sec. III it will not be possible
in general to simulate the channel, as only one logical Kraus
operator can be realized per fixed optical network.

We will circumvent this problem by realizing individually
the various Kraus operators Ai , i = 1, . . . ,n, in this way
being able to preserve the encoding for each Ai . Roughly
speaking, by randomly applying the different Kraus operators
the logical channel � will be realized. Of course, this is
possible only by allowing the linear-optical network to change.
We will introduce the possibility of switching among various
optical networks—one for each Ai—according to a probability
distribution {pi}. Each fixed optical network that we will
introduce to realize the Kraus operator Ai will itself correspond
to a quantum channel 	i (see Fig. 2). This “average realization”
of the logical channel will anyway be stochastic, because in
the implementation of any Ai that is not unitary there will
necessarily be a finite probability of ending up outside the
encoding, which corresponds to finding the input photon in
the output ancillary modes.

One important point is that, given the additional degree of
freedom due to the choice of the probability distribution {pi},
it is possible to consider the realization of a rescaled version Ãi

of Ai rather than exactly Ai . Of course each Ãi must be a valid
Kraus operator, i.e., ‖Ãi‖∞ � 1. We will use this rescaling
degree of freedom to maximize the success probability for the
realization of the channel.

If we postselect on finding the output ancillary modes in
the vacuum state, and if we choose the probability distribution
{pi} and the Ãi operators such that

√
piÃi = √

psuccAi, (3)
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FIG. 2. Pictorial representation of our scheme. Each solid rectan-
gle represents a channel. The most external box is a mixture of the
n channels 	i inside of it. Each of these inner channels corresponds
to a linear-optics setup and for our scope its action on the encoding
can be completely described without loss of generality by two Kraus
operators, Ãi and B̃i . Each Ãi preserves the d-rail encoding, while
the Kraus operators B̃i map an encoded state out of the encoding.
If the condition

√
piÃi = √

psuccAi , for all i, is met, the overall
result of randomly switching among the channels 	i according to
the probability distribution {pi} is that of realizing the target logical
channel � with probability psucc (independent of the input ρ).

for all i and for some 0 � psucc � 1, then the logical input
state ρ will be mapped into the (unnormalized) logical state∑

i

piÃiρÃ
†
i = psucc

∑
i

AiρA
†
i .

This will happen with probability

Tr

(∑
i

piÃiρÃ
†
i

)
=

∑
i

piTr(ÃiρÃ
†
i ) = psucc,

with:
(1) Ãi proportional to the logical Kraus operator Ai

through (3);
(2) pi the probability of implementing the optical network

corresponding to Ãi ;
(3) Tr(ÃiρÃ

†
i ) = Tr(ρÃ

†
i Ãi) the probability of realizing,

without leaving the encoding, the Kraus operator Ãi for each
random choice of optical network.

Thus the logical channel � will be stochastically imple-
mented with probability psucc (independent of the input ρ).

Given that we want the channel to be realized perfectly,
the figure of merit we care about is the probability of success
psucc, which we want to be maximal. One possible choice for
the distribution {pi} and the operators Ãi is trivially pi = 1/n

and Ãi = Ai ; this choice leads to a probability of success
psucc = 1/n. This strategy is independent of the properties
of the Kraus operator {Ai} for the particular channel �, and
depends only on the number of Kraus operators. As such, one
can expect it to be nonoptimal, and it certainly is in the case
of a random-unitary channel

�[ρ] =
∑

i

qiUiρU
†
i ,

with {Ui} unitaries and {qi} a probability distribution. Indeed,
in this case an obvious better choice—and actually optimal—is
pi = qi , Ãi = Ui , for all i, so that psucc = 1.

The following theorem provides the optimal choice of
the probability distribution {pi} and of the operators Ãi to
maximize psucc, for any fixed Kraus decomposition {Ai}.

Theorem 1. Given the Kraus decomposition {Ai} for
the channel �, the optimal probability of success for its
realization is

psucc({Ai}) = 1∑
i ‖Ai‖2∞

. (4)

This can be achieved by the choice pi = ‖Ai‖2
∞∑

j ‖Aj ‖2∞
and

Ãi = 1
‖Ai‖∞

Ai , for all i.

Proof. From the condition
√

piÃi = √
psuccAi , for all i,

one finds pi � pi‖Ãi‖2
∞ = psucc‖Ai‖2

∞, where we used the
fact that ‖Ãi‖∞ � 1, because each Ãi must be a proper Kraus
operator. Summing over i and using

∑
i pi = 1, one arrives

at psucc � 1/
∑

i ‖Ai‖2
∞. The probability distribution and the

Kraus operators in the statement of the theorem saturate the
inequality. �

Thus, the maximal probability of simulating the channel
adopting the Kraus decomposition {Ai} in our scheme is the
inverse of

∑
i ‖Ai‖2

∞. This quantity will in general depend
on the specific Kraus decomposition. By optimizing over all
Kraus decompositions we have the following.

Corollary 1 (optimal probability of success). In our scheme,
the optimal probability of success in the implementation of �

is

psucc(�) = max
{Ai }

1∑
i ‖Ai‖2∞

, (5)

where the maximization is over all Kraus decompositions {Ai}
of the channel �.

For convenience in the analysis to follow, we define the
stochasticity of a channel as

σ (�) = min
{Ai }

∑
i

‖Ai‖2
∞, (6)

where the minimization is over all Kraus decompositions {Ai}
of the channel �, so that

psucc(�) = 1

σ (�)
.

The name “stochasticity” is justified by the fact that the larger
σ (�), the lower the probability of a successful realization of
the channel. We remark that any specific Kraus decomposition
will give an upper (lower) bound on the stochasticity (optimal
probability of success).

As mentioned, the channel implementation we propose
requires switching between different linear-optical networks,
each corresponding to a single Kraus operator. This may appear
hard to implement, especially given that in the realization of
a single Kraus operator proposed in Sec. IV A we used beam
splitters whose transmittivity depended on the Kraus operator.
Fortunately, it follows immediately from the work of Reck
et al. [19] that the switching can always be realized by adjusting
only optical phases in a multiport linear network.

V. RELATION WITH ENTANGLEMENT MEASURES

The optimal success probability psucc(�) of implementing
a channel is clearly just a property of the channel itself.
Therefore it appears natural to look for a representation
of the channel that is independent of any specific Kraus
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decomposition. This can be done by considering the Choi-
Jamiołkowski isomorphism.

The latter is a one-to-one mapping between maps and op-
erators [16,17]. The isomorphism—explicitly in the direction
from maps to operators—is defined as

J (�) = (� ⊗ I )[ψ+
d ] = 1

d

d∑
i,j=1

�(|i〉〈j |) ⊗ |i〉〈j |, (7)

for some fixed choice of a maximally entangled state

|ψ+
d 〉 = 1√

d

d∑
i=1

|i〉|i〉. (8)

For our purpose, the interesting observation is that pure
ensemble decompositions {pi,ψi} of the Choi-Jamiołkowski
state J� isomorphic to a channel � are in one-to-one
correspondence with Kraus decompositions of �. This follows
from the the fact that for any vector |ψ̄〉 ∈ Cd ⊗ Cd there is
an operator Aψ̄ such that

|ψ̄〉 = (Aψ̄ ⊗ I )|ψ+
d 〉. (9)

Here, the bar in |ψ̄〉 denotes that the vector need not be
normalized. In general, unless it is specified to the contrary
with use of the bar notation, all states |ψ〉 are assumed to be
normalized. Thus,

J (�) =
∑

i

pi |ψi〉〈ψi | =
∑

i

|ψ̄i〉〈ψ̄i |

=
∑

i

(Aψ̄i ⊗ I )
∣∣ψ+

d

〉〈
ψ+

d

∣∣(Aψ̄i† ⊗ I ), (10)

for |ψ̄i〉 = √
pi |ψi〉 = (Aψ̄i ⊗ I )|ψ+

d 〉.
As we have seen, without the use of randomness the only

channels that can be realized deterministically are unitaries.
Using randomness and switching among optical networks we
can extend this result only to random unitaries. Thus, we have
that the only channels that can be realized deterministically
in our framework are those whose Choi-Jamiołkowski state
admits an ensemble consisting only of maximally entangled
states.

One then expects that channels whose probability of
realization is high admit Kraus decompositions that are close
to random unitary. In turn this would mean that their Choi-
Jamiołkowski states admit ensemble decompositions that are
highly entangled. We will show that this intuition is correct.

The relation (9) implies

‖Aψ̄‖2
∞ = dλmax(ψ̄), (11)

if we consider the Schmidt decomposition |ψ̄〉 =∑
i

√
λi |i〉|i〉, with λi � 0,

∑
i λi = 〈ψ̄ |ψ̄〉, and λmax =

maxi{λi}. Thus, we find for the stochasticity

σ (�) = min
{Ai }

∑
i

‖Ai‖2
∞ (12a)

= d min
{pi ,ψi }

∑
i

piλmax(ψi) (12b)

= d

(
1 − max

{pi ,ψi }

∑
i

pi[1 − λmax(ψi)]

)
(12c)

= d

(
1 − max

{pi ,ψi }

∑
i

piEG(ψi)

)
, (12d)

where we used (11) to move from the minimization over Kraus
decompositions for � to the minimization over ensemble
decompositions for J (�). The quantity

EG(ψ) = 1 − λmax(ψ) = 1 − max
α,β

|〈α,β|ψ〉|2,

where the maximum is taken with respect to factorized pure
states |α,β〉 = |α〉|β〉, is the geometric measure of entangle-
ment for a bipartite pure state [22]. More generally, for a
multipartite pure state, the geometric measure of entanglement
is defined as EG(ψ) = 1 − maxφsep |〈φsep|ψ〉|2, with φsep a
fully separable state. In the bipartite case, it coincides with
the entanglement measure E2, which was defined in [23]
as one of a whole family of entanglement measures. The
geometric measure of entanglement has received a good
deal of attention [24,25] because of its intuitive—even in
the multipartite case—geometric interpretation as maximal
overlap of the state of interest with a fully separable state, and
because of its connections to other well-known entanglement
measures, such as relative entropy of entanglement [26,27].
In the bipartite qudit case we are interested in here, one sees
immediately that

0 � EG(ψ) � 1 − 1

d
. (13)

The lower bound is achieved for a factorized pure state, while
the upper bound corresponds to a maximally entangled state
such as the one in Eq. (8).

The geometric measure of entanglement is extended to the
mixed-state case by the usual convex-roof construction [28]:

E∪
G(ρ) = min

{pi ,ψi }

∑
i

piEG(ψi), (14)

where we use ∪ to stress that the resulting quantity is convex
on the set of mixed states.

The standard convex-roof is defined in terms of the
ensemble containing, on average, the minimum amount of
entanglement as quantified, in this case, by the geometric
measure of entanglement for pure states. Equation (12)
involves instead the ensemble containing on average the
maximum amount of entanglement. This corresponds to the
concave-roof construction

E∩
G(ρ) = max

{pi ,ψi }

∑
i

piEG(ψi), (15)

where we use ∩ to stress that in this way we are defining a
concave function on the set of mixed states.

For the sake of comparison with quantities better known
in the literature, let us mention that in the same way
in which the entanglement of formation [29] EF (ρAB) =
min{pi ,ψ

AB
i }

∑
i piS(ρA

i ), with ρA = TrB(|ψAB〉〈ψAB |) and
S(σ ) = −Tr(σ log2 σ ) the von Neumann entropy of a state
σ , is the paradigmatic example of convex roof construction,
the entanglement of assistance [30]

Ea = max
{pi ,ψ

AB
i }

∑
i

piS
(
ρA

i

)
(16)

is the paradigmatic example of concave-roof construction.
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From (12) it follows that the stochasticity is given by

σ (�) = d
(
1 − E∩

G(J (�))
)
, (17)

and, as a result, the relation between the probability of success
psucc(�) for our scheme to realize a channel � and the
entanglement properties of the related Choi-Jamiołkowski
state J (�) can be expressed as

psucc(�) = 1

d
(
1 − E∩

G(J (�))
) . (18)

We remark that, because E∩
G is a concave function on states, the

probability of success psucc is a concave function on channels,
i.e.,

psucc((1 − q)�1 + q�2) � (1 − q)psucc(�1) + qpsucc(�2),

for 0 � q � 1. Of course, this could be concluded directly
from (5).

VI. BOUNDS

The evaluation of the stochasticity (6) for a given channel is
in general a nontrivial computational problem. The connection
with entanglement that was developed in Sec. V, more
precisely Eq. (17), shows that calculating the stochasticity is
equivalent to evaluating E∩

G(J (�)). In principle, this requires
one to check for all possible ensemble decompositions of
J (�), although one can use convexity arguments to restrict the
search to ensembles of r2 pure states for a Choi-Jamiołkowski
state of rank r , similarly to the case of entanglement of
formation [28]. In this section we will be able to provide
analytic upper and lower bounds that do not require any search.

Entanglement of assistance and other concave-roof con-
structions have not been studied as well as convex-roof
constructions. This is due to the fact that they are not entan-
glement measures [25,31]. Nonetheless, they are of interest
because, e.g., they capture some properties of multipartite
entanglement. For example, the entanglement of assistance
quantifies the average amount of entanglement that two
parties—Alice and Bob—can share thanks to a measurement
of a third party who holds the purification of the state. Thus,
we will be able to make use of some results already derived in
the literature, in particular in [30] and [32], to provide upper
and lower bounds for the stochasticity σ and the probability
of success psucc.

We first start by illustrating the range over which psucc can
vary, focusing on the best and worst cases. We then identify a
simple bound based uniquely on the mathematical properties
of the operator norm. As we will see, such a bound will turn out
to be pretty useful in investigating the examples of Sec. VII.
We then proceed to consider bounds based on the entanglement
properties of the Choi-Jamiołkowski state isomorphic to the
channel of interest.

A. Best and worst cases

Given that EG—and therefore E∩
G—satisfies (13), it follows

from (18) that

1

d
� psucc(�) � 1. (19)

As pointed out earlier, the upper bound in (19) can only
be achieved by random-unitary channels, whose Choi-
Jamiołkowski states can be written as convex combinations
of maximally entangled states. The lower bound corresponds
to E∩

G(J (�)) = 0, i.e., to the case where no ensemble for
J (�) contains any entangled state. Such an occurrence was
considered in the context of the study of the entanglement
of assistance in [30], where it was proved that any state
ρAB with vanishing entanglement of assistance must be of
the form ρAB = |α〉〈α| ⊗ ρB or ρAB = ρA ⊗ |β〉〈β|. Given
that we are not considering general bipartite states, but states
that are isomorphic to channels via the isomorphism (7),
for the first inequality in (19) to be saturated it must be
J (�) = |α〉〈α| ⊗ I/d. The latter condition implies that the
output of the channel is a pure state independent of the input;
i.e., �[ρ] = Tr(ρ)|α〉〈α|.

It may seem strange that the channel that is almost the
most trivial theoretically is the one that is the most difficult
to implement under our constraints. One can provide the
following intuitive explanation. The output state must be
independent of the input, but at the same time still be in the
encoding. Thus, the output state must include the photon of
the input encoding, because the ancillary modes are initially in
the vacuum state. This can be accomplished in the following
way. In the scheme proposed in Fig. 1, a random rotation
is first applied to the input. Subsequently, d − 1 of the
encoding modes are measured while the remaining one is
transmitted—that is, the transitivity of d − 1 of the d beam
splitters is set to 0, while the remaining one is set to 1. Upon
finding the vacuum in the measured modes, we know that the
photon is in the only unmeasured mode, i.e., in some known
logical basis state of the encoding. Then we can rotate such
a state to the desired output state. Given the random rotation
of the input, the probability that this procedure succeeds is
exactly 1/d, independently of the input.

B. Triangle-inequality bound

By using the triangle inequality, it is straightforward to
derive an upper limit on the success probability.

Observation 1 (triangle-inequality bound). For any quan-
tum channel �,

psucc(�) � 1

‖�(I )‖∞
. (20)

Proof. If {Ai} is any Kraus decomposition for the channel
�, then we have for the stochasticity

σ (�) = min
{Ai }

∑
i

‖Ai‖2
∞ = min

{Ai }

∑
i

∥∥AiA
†
i

∥∥
∞

� min
{Ai }

∥∥∥∥∑
i

AiA
†
i

∥∥∥∥
∞

= ‖�(I )‖∞,

where the inequality is due to the triangle inequality, and
the dependence on the choice of the Kraus decomposition
is lost because

∑
i AiA

†
i = �(I ), for any Kraus decomposition

of �. �
This bound proves that it is necessary for a channel to be

unital in order for us to implement it deterministically using
our scheme, because only for a unital channel ‖�(I )‖∞ = 1.
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This is consistent with the already argued fact that under our
scheme only random-unitary channels can be deterministically
implemented. The bound is easily evaluated, being indepen-
dent of any particular Kraus decomposition.

We remark that any choice of a specific Kraus decomposi-
tion provides a lower bound on the probability of success. If
such a lower bound matches the upper bound in (20), then the
given decomposition is proven to be optimal.

C. Bounds based on entanglement properties of the
Choi-Jamiołkowski state

Now we will move to bounds that exploit the connection we
observed between the success probability of our scheme and
the entanglement properties of the Choi-Jamiołkowski state
J (�).

1. Qubit channels

We will first focus on the qubit case. Not surprisingly, this
is the case where we can employ a large number of results
from entanglement theory. In particular, we will be concerned
with one of the most adopted entanglement measures, known
as concurrence [33,34]. The concurrence of a pure two-qubit
state can be expressed as

C(ψ) = |〈ψ̃ |ψ〉|,
where

|ψ̃〉 = (σy ⊗ σy)|ψ∗〉,
with the complex conjugation taken in the computational basis

and σy = ( 0 −i
i 0

)
. The definition extends to density matrices

via the standard convex-roof construction:

C∪(ρ) = min
{pi ,ψi }

∑
i

piC(ψi).

It is straightforward to check that for a pure state the relation

EG(ψ) = 1
2 (1 −

√
1 − C(ψ)2) (21)

holds. In [22] it was argued that C∪ and E∪
G are related

by E∪
G = 1

2 (1 −
√

1 − C∪(ρ)2). We will instead be interested
in the connection between E∩

G and the concave-roof of the
concurrence,

C∩(ρ) = max
{pi ,ψi }

∑
i

pic(ψi). (22)

The examples of Sec. VII will prove that the relation (21) does
not hold for the concave-roof version of the two quantities.
Nonetheless, in order to obtain easily computable bounds for
psucc, we will exploit the remarkable fact that there is a closed
expression for both C∪(ρ) and C∩(ρ). For the former it reads
[34]

C∪(ρ) = max{0,λ1 − λ2 − λ3 − λ4},
where the λi’s are the eigenvalues of

√√
ρρ̃

√
ρ in decreasing

order, with the state ρ̃ = σy ⊗ σyρ
∗σy ⊗ σy . For C∩(ρ) instead

it holds [32]

C∩(ρ) = F (ρ,ρ̃), (23)

with F (σ,τ ) = Tr(
√√

στ
√

σ ) the fidelity between two states
σ and τ . We start by providing the following lemma that relates
C∩(ρ) and E∩

G(ρ).
Lemma 1. Given any state ρ of two qubits, the following

inequalities hold:

1

2

(
1 −

√
1 − C∩(ρ)2

)
� E∩

G(ρ) � C∩(ρ)

2
. (24)

Proof. See Appendix A. �
By using the lemma together with the relation (18) for

d = 2, and (23), we immediately obtain the following result:
Theorem 2 (concurrence bounds). If J (�) is the Choi-

Jamiołkowski state isomorphic to the qubit channel �, then

1

2 − F (J (�),J̃ (�))
� psucc(�)

� 1

1 +
√

1 − F (J (�),J̃ (�))2
. (25)

2. Qudit channels and entanglement of assistance

In the previous section we focused on the concur-
rence because its concave-roof version C∩ can be easily
evaluated. Concurrence was generalized to higher dimen-
sional systems in a number of different ways [35–37], and
even high-dimensional “assisted” versions—i.e., concave-roof
constructions—were considered [38]. As we mentioned, the
most studied example of concave-roof construction is the
entanglement of assistance (16). For this reason, we will
provide bounds for the probability of success in terms of the
entanglement of assistance.

We will use the following generalization of the binary
entropy that depends only on the number of possible outcomes
d and one probability parameter p:

hd (p) := −p log2 p − (1 − p) log2

(
1 − p

d − 1

)
(26)

That is, hd (p) is the Shannon entropy of the probability
distribution of d symbols (p,

1−p

d−1 , . . . ,
1−p

d−1 ), with one symbol
having probability p and the remaining d − 1 symbols being
equally likely. It coincides with the binary entropy for d = 2.
We remark that hd (p) is a concave function of p and is
monotonically decreasing for p � 1/d. This means that the
inverse function h−1

d : [0, log2 d] → [1/d,1] is well defined.
We are now ready to state the theorem that links entangle-

ment of assistance and probability of success.
Theorem 3 (entanglement-of-assistance bounds). For a

given qudit channel �, the following inequalities hold:

2Ea (J�)

d
� psucc(�) � 1

dh−1
d (Ea(J�))

, (27)

where Ea is the entanglement of assistance, J (�) is the Choi-
Jamiołkowski state isomorphic to the channel, and σ (�) is the
stochasticity of the channel.

Proof. See Appendix B. �

VII. EXAMPLES

In this section, we consider two examples for the qubit case:
(i) the amplitude-damping channel and (ii) the probabilistic
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constant-output map. For these examples we are able to
find analytic results for the probability of success, and we
compare these exact results with the bounds we obtained
in Sec. VI C. The analytic results are obtained by using the
triangle-inequality bound of Observation 1 and the already
remarked fact that any specific Kraus decomposition provides
a upper (lower) bound on the stochasticity (optimal probability
of success).

A. Amplitude-damping channel

The qubit amplitude-damping channel is used to model the
decay of an excited state |1〉 into the ground state |0〉. With
probability ε the channel causes the de-excitation of the input
state. This de-excitation process is described by the Kraus
operator A1 = √

ε|0〉〈1|. A second Kraus operator guarantees
that the process preserves probability, i.e., that the channel is
trace preserving: A2 = |0〉〈0| + √

1 − ε|1〉〈1|.
Using this specific decomposition and Observation 1 we

find

‖�(I )‖∞ � σ (�) � ‖A1‖2
∞ + ‖A2‖2

∞.

For the lower bound, one finds

‖�(I )‖∞ = ‖A1A
†
1 + A2A

†
2‖∞

=
∥∥∥∥
(

1 0

0 1 − ε

)
+

(
ε 0
0 0

)∥∥∥∥
∞

= 1 + ε,

and for the upper bound we get

‖A1‖2
∞ + ‖A2‖2

∞ = 1 + ε.

Because these two bounds coincide, the Kraus decomposition
is optimal, with a stochasticity of σ (�) = 1 + ε and the opti-
mal success probability psucc(�) = 1/(1 + ε). When ε = 0 the
channel is trivially the identity channel and can be performed
deterministically. However at the other extreme, ε = 1, the
channel becomes the constant map �(ρ) = Tr(ρ)|0〉〈0|, and
it can only be realized with probability 50%. As we found in
Sec. VI A, the constant map is the map that has the lowest suc-
cess probability in our scheme. Therefore the parameter ε that
describes the probability of de-excitation lets us move from
one extreme to the other of the stochasticity (or probability
of success). For the amplitude-damping channel we find that
the concave-roof of concurrence (22) satisfies C∩(J (�)) =
F (J (�),J̃ (�)) = √

1 − ε. We can then compare the analytic
bounds from (25) with the exact result we just found (see
Fig. 3):

1

2 − √
1 − ε

� psucc(�) = 1

1 + ε
� 1

1 + √
ε
. (28)

We remark that our scheme achieves a probability of success
that depends on ε and is close to 100% for ε small. On
the contrary, the scheme of [14] has a 50% probability of
success, independently of ε. In our scheme, such a low success
probability is just the worst case (ε = 1).

B. Probabilistic constant-output channel

The second channel that we choose to analyze is a convex
combination of the constant output channel and the identity

0.2 0.4 0.6 0.8 1.0

∋

0.6

0.7

0.8

0.9

1.0
psucc

FIG. 3. (Color online) Optimal probability of success for the
amplitude-damping channel: exact (solid line) and upper and lower
bounds in Eq. (28) (dashed and fine-dashed lines, respectively).

map. Such a channel returns the input state with a probability
of 1 − p or a fixed output state τ with probability p. The map
is then

� : ρ �→ (1 − p)ρ + p Tr(ρ)τ

and its Choi-Jamiołkowski isomorphic state is simply

J (�) = (1 − p)
∣∣ψ+

2

〉〈
ψ+

2

∣∣ + p τ ⊗ I

2
.

We find the stochasticity of this channel by checking that the
upper and lower bounds for the stochasticity that are generated
from Observation 1 and a particular decomposition of the state
match. Without loss of generality we can consider τ to be
diagonal in the computational basis; i.e.,

τ = s|0〉〈0| + (1 − s)|1〉〈1|. (29)

In fact, only the degree of mixedness of τ and not the specific
basis influences the probability of success psucc. This can be
understood at the formal level by considering that a different
choice of basis for τ can be taken into account via a rotation
U , which does not influence the entanglement properties of
J (�) (see Appendix C).

Using this state, the bound stated in Observation 1 becomes

σ (�) � ‖�(I )‖∞ = ‖(1 − p)I + 2pτ‖∞ = 1 − p + 2ps,

(30)

where we have assumed, without loss of generality, that s �
1/2. From this and by using Eq. (17), we find E∩

G(J (�)) �
1/2 − p(s − 1/2). One can find an ensemble decomposition
of J (�) that saturates the latter inequality (see Appendix D);
therefore psucc = (1 − p + 2ps)−1.

This means that also for this channel we find that as the
probability parameter p varies from 0 to 1 we move from
the identity map to a constant map. However, we can see
from Fig. 4 that the success probability of the constant map
depends on how mixed the output state is. As expected from
the discussion of Sec. VI A, the lowest value for the success
probability, psucc(�) = 1/2, is only attained when the constant
output state is pure.
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0.00.51.0

p

0.6
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FIG. 4. (Color online) Optimal probability of success for the
probabilistic constant-output channel, exact result, and bounds. Upper
and lower surfaces (blue and green, respectively) are the upper
and lower concurrence bounds from Eq. (25), evaluated for the
Choi-Jamiołkowski state isomorphic to the channel; the in-between
surface (red) is the exact success probability psucc for realizing the
channel. Because psucc is symmetric about the s = 1/2 plane, we only
plot this function for s ∈ [1/2,1].

VIII. DISCUSSION

We have provided a scheme to realize an arbitrary channel
on a d-rail-encoded optical qudit, taking into account practical
restrictions. In particular: (i) we only allow for operations
that are realizable using linear optics; (ii) we only allow
ancillary modes that are initially in the vacuum state, thus
limiting the need for sources of single photons that are,
as of now, still difficult to produce on demand; (iii) we
do not allow feed forward (i.e., adaptive schemes), which
significantly reduces the cost of the necessary equipment and
the loss that is inevitably involved in such schemes due to
the need of long fibers for optical delays; and (iv) we consider
only photon-number measurements (actually, readily available
threshold detectors suffice). The conventional linear-optics
toolbox (phase shifters and beam splitters), as well as the
possibility for randomly switching between different optical
networks, are the only elements needed for the realization
of our method. These restrictions render our technique of
immediate interest to linear-optical implementations that can
be realized using state-of-the-art experimental techniques.
Within this framework, it turns out that any channel can,
in principle, be realized perfectly, albeit only stochastically.
The only channels that can be realized deterministically
are random-unitary channels. Given that postselection is
a commonly used technique in linear-optics experiments,
this restriction effectively only slightly reduces the success
probability of an experimental realization, and we are able to
provide an expression for the optimal probability of success.
This probability turns out to be related to the entanglement
properties of the Choi-Jamiołkowski state isomorphic to
the channel of interest. More precisely, we were led to
evaluate the “assisted version” of the geometric measure of
entanglement, i.e., the concave-roof extension of the measure
to mixed states, for the Choi-Jamiołkowski state. While
we are not aware of a closed formula for it, not even
for two-qubit states, we were able to provide upper and
lower bounds in terms of the concave roof of concurrence
(for qubits) and of entanglement of assistance (for general
qudits).

Besides tackling the problem of evaluating, in general, the
concave roof of the geometric measure of entanglement, i.e.,
the probability of successful realization of our scheme with the
restrictions considered in this paper, future research will focus
on the relaxation of said restrictions, that is, on the analysis of
more general schemes for the realization of channels.

For example, the use of ancillary states that are not
initially in the vacuum certainly improves the realization of
some channels. Indeed, we saw that the worst-case scenario
is that of a channel with a fixed—i.e., independent of the
input—pure output. We argued that the difficulty—that is, the
low probability of success—in the realization of such a channel
is essentially due to the necessity of using for the output the
same single photon by which the input logical state is encoded
in the d modes. This is exactly because no photons are available
in the ancillary ports. Obviously, if such a fixed pure output
is readily available as an ancillary state, the realization of
the pure-fixed-output channel becomes trivial: the ancillary
input state becomes the output. It is therefore evident that
introducing nonvacuum ancillas would strongly affect the
performance of our scheme. Another addition that we plan to
consider is feed-forward, which is becoming a powerful and
reliable tool in linear-optics quantum-information processing
[7,20].

Another possible line of research is that of focusing on
channels that are linked to interesting effects in quantum
information processing. Indeed, our results can be thought
of as a toolbox to be used in any optical experiment where
some specific channel has to be applied, be it for the sake of
simulating noise or for implementing a specific protocol.

We expect our findings to trigger further theoretical studies
on channel realization. In particular, we linked channel
realization with more abstract notions of entanglement theory,
and we hope that the study of less explored entanglement
properties of states will consequently be stimulated. From a
more practical point of view, our results provide a simple
method for realizing arbitrary quantum channels using linear
optics and standard experimental techniques. Our results are
ideal for experimental implementation relying on linear optics
in combination with postselection. While quantum channels
have been a widely discussed topic in theoretical quantum
information, we expect our work to trigger an increased interest
in the experimental study of this intriguing topic.
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APPENDIX A: PROOF OF LEMMA 1

Proof. By substituting (21) in the definition (15) of E∩
G(ρ)

we obtain E∩
G(ρ) = max{pi ,ψi }

∑
pi

1
2 (1 −

√
1 − C(ψi)2).

Then, in order to obtain the lower bound it is sufficient
to observe that

√
1 − x2 is a concave function in x that is

monotonically decreasing:

E∩
G(ρ) = max

{pi ,ψi }

∑
pi

1

2
(1 −

√
1 − C(ψi)2)
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� max
{pi ,ψi }

1

2

(
1 −

√
1 −

[∑
piC(ψi)

]2
)

= 1

2

(
1 −

√
1 −

[
max
{pi ,ψi }

∑
piC(ψi)

]2)

= 1

2
(1 −

√
1 − C∩(ρ)2). (A1)

The upper bound can be derived from the relation
√

1 − x2 �
1 − x. �

APPENDIX B: PROOF OF THEOREM 3

Proof. We will use properties of the Shannon entropy
H ({ri}) = −∑

i ri log2 ri , defined for a probability distribu-
tion {ri}. The von Neumann entropy of a quantum state ρ is
equal to the Shannon entropy of its eigenvalues ri . In particular,
for a pure bipartite state with Schmidt decomposition |ψ〉AB =∑

i

√
λi |i〉A|i〉B , the entropy of the reduced one-party states

ρA and ρB is H ({λi}). For any pure ensemble {pa,ψ
AB
a } we

will denote by {λa
i }i the set of the squares of the Schmidt

coefficients of ψAB
a , and define λa,max = maxi{λa

i }i . For the
entanglement of assistance it then holds

Ea(J�) = max
{pa,ψa}

∑
a

paS
(
ρA

a

) = max
{pa,ψa}

∑
a

paH
({

λa
i

}
i

)
� max

{pa,ψa}

∑
paH

(
λa,max,

1 − λa,max
d − 1

, . . . ,
1 − λa,max

d − 1

)

� max
{pa,ψa}

hd

( ∑
a

paλa,max

)
= hd

(
min

{pa,ψa}

∑
a

paλa,max

)
= hd

(
σ (�)

d

)
. (B1)

The first inequality is due to the fact that substituting any subset
of probabilities of some distribution with equally weighted
probabilities can only increase the total Shannon entropy.
This is easily checked by knowing that the flat probability
distribution is the one with highest Shannon entropy, and
that for any grouping of probabilities {ri} into two subsets
{r (1)

i } and {r (2)
i } of weight q and 1 − q, respectively, we

have H ({ri}) = h2(q) + qH ({r (1)
i /q}) + (1 − q)H ({r (2)

i /(1 −
q)}). The second inequality is due to the concavity of entropy.
The second-to-last equality is due to the the monotonicity of hd

in the interval [1/d,1]. Indeed,
∑

a paλa,max � 1/d because
λa,max � 1/d for all a. Finally, the last equality comes from
the relation (12b). Thus, using the fact that hd is invertible and
monotonically decreasing in the range of interest, we obtain
σ (�) � dh−1

d (Ea(J�)), i.e., psucc � 1/[dh−1
d (Ea(J�))].

For the upper bound we have

Ea(ρ�) = max
{pa,ψa}

∑
paH

({
λa

i

}
i

)
� max

{pa,ψa}

∑
a

[−pa log2(λa,max)] (B2)

� max
{pa,ψa}

[
− log2

( ∑
paλa,max

)]

= − log2

(
min

{pa,ψa}

∑
paλa,max

)

= − log2

(
σ (�)

d

)
. (B3)

The first inequality comes from the fact that the min-entropy
Hmin({ri}) = − log2 rmax of a probability distribution {ri},
with rmax = max{ri}, satisfies Hmin({ri}) � H ({ri}). The
second inequality is due to the concavity of the logarithm.
The second-to-last equality is due to the monotonicity of
the logarithm. We finally arrive at the desired relation by
exponentiation. �

APPENDIX C: BASIS INDEPENDENCE FOR THE
PROBABILISTIC CONSTANT-OUTPUT CHANNEL

Suppose τ ′ = UτU †; then

J (�) = (1 − p)|ψ+
d 〉〈ψ+

d | + p τ ′ ⊗ I

2

= (1 − p)|ψ+
d 〉〈ψ+

d | + p UτU † ⊗ I

2

= (U ⊗ U ∗)

[
(1 − p)|ψ+

d 〉〈ψ+
d |+p τ ⊗ I

2

]
(U ⊗ U ∗)†,

where we have used the invariance of the maximally entangled
state |ψ+

d 〉 = (U ⊗ U ∗)|ψ+
d 〉, valid for all unitaries U .

APPENDIX D: DECOMPOSITION SATURATING
THE BOUND (30)

One can write the Choi-Jamiołkowski state as the convex
combination

J (�) = (1 − p)|ψ+
2 〉〈ψ+

2 | + 2p(1 − s)
I

2
⊗ I

2

+p(s − (1 − s))|0〉〈0| ⊗ I

2
, (D1)

such that for the concave-roof of the geometric measure we
find

E∩
G(J (�)) � (1 − p)E∩

G(|ψ+
2 〉〈ψ+

2 |)
+ 2p(1 − s)E∩

G

(
I

2
⊗ I

2

)

+p(s − (1 − s))E∩
G

(
|0〉〈0| ⊗ I

2

)

= (1 − p)
1

2
+ 2p(1 − s)

1

2
= 1/2 − p(s − 1/2).
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Here we used the fact that E∩
G(|0〉〈0| ⊗ I/2) = 0—see the

discussion just after Eq. (19)—and that E∩
G(I/2 ⊗ I/2) = 1/2,

because the maximally mixed state of two qubits can be seen
as the convex combination of pure maximally entangled states.
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