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Entanglement-secured single-qubit quantum secret sharing
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In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement
of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participant’s
preparation of the qubit state and the subsequent participants’ choices of state rotation or measurement basis. We
present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs
produced in type-I spontaneous parametric downconversion. We investigate the protocol’s security against
eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and
imperfect preparation of the initial qubit state. A protocol which exploits entanglement between photons,
rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based
secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by
our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success
against the entanglement-based protocol while showing the predicted rate of success against a correlation-based
protocol.
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I. INTRODUCTION

Secret sharing is the general term for a communication
task in which one participant (the sender) wants to share
a message with multiple other participants (the recipients)
in a way that forces the recipients to cooperate with one
another to reconstruct the message. The task is relevant when
recipients are considered more trustworthy as a group than
individually. In the strongest version of secret sharing, the
message can be fully reconstructed by the full set of N − 1
recipients; however, any subset of N − 2 or fewer recipients
possesses zero information regarding the message. This task
can be implemented classically by distributing between N − 1
recipients N − 2 randomly generated bit strings, or “shadows,”
and a final (N − 1)th shadow string which is the bitwise sum
or XOR of the other N − 2 strings and the original message.
All N − 1 recipients together can reconstruct the message by
taking the XOR of their shadows; however, any proper subset
of recipients possesses no information about the message.

Classical secret sharing protocols generally do not involve
the secure transmission of the shadows, leaving this task
to cryptographic protocols. The emerging field of quantum
cryptography hinges on the secure transmission of information
encoded in quantum states. Thus by using quantum states to
encode and distribute the shadows, secure communication can
be built into a secret sharing protocol; quantum-state resources
enhance the sharing of classical bit-string sequences. Such
quantum-mechanical resources can be brought to the task of
secret sharing in several distinct ways.
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The original quantum secret sharing protocol, presented
in 1999 [1], requires the use of a multipartite entangled
state. Specifically, to share a single-bit secret between a
sender and N − 1 recipients, the N -qubit entangled state

1√
2
[|0〉1|0〉2 · · · |0〉N + |1〉1|1〉2 · · · |1〉N ] must be produced,

and the individual qubits distributed between the participants.
This quantum secret sharing protocol is in principle quite
powerful. It allows participants to share secrets composed
not only of bit values (0 or 1) but of complete qubits
(quantum states of the form a|0〉 + eiϕb|1〉). The production
of multipartite entangled states is unfortunately a technical
challenge, requiring an experimental tour de force at each
realization [2–6].

Single-qubit quantum secret sharing (SQQSS), by contrast,
was first proposed and demonstrated in 2005 [7,8] using photon
pairs produced by type-II spontaneous parametric downcon-
version (SPDC). The protocol involves the transmission of
a single qubit a|0〉 + eiϕb|1〉 through the entire sequence of
participants. The sender prepares a state with a specific value
of ϕ and each recipient performs a simple operation to alter ϕ.
The final participant performs a measurement on the qubit
whose outcome depends on the final value of ϕ, and the
secret—the initial ϕ value—can be reconstructed only when all
recipients reveal their individual operations. Such a protocol
uses quantum resources to allow secure sharing of a classical
secret, but does not enable the more powerful sharing of a
full quantum-state secret. On the other hand, SQQSS relies on
physical states which can be easily produced and manipulated
in the laboratory, allowing for the straightforward realization
of the protocols and demonstration of their successes and
vulnerabilities. The original SQQSS protocol, with proposed
precautions and coding repetitions [9,10], provides security
against numerous cheating attacks by a subset of recipients.

In this work, we experimentally implement two variations
on the protocol of [7,8], adapted for use with type-I SPDC.
One version, like the original, relies only on polarization
correlation in photon pairs; the other directly exploits the
quantum entanglement between photons. We note the relative
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strengths and weaknesses of the two versions. In particular,
we develop and implement a photon-number splitting (PNS)
eavesdropping attack; in the presence of a lossy transmission
channel and imperfect state preparation, this eavesdropping
attack works against the correlation-based protocol but fails
against the entanglement-secured version.

II. SINGLE-QUBIT QUANTUM SECRET SHARING
SCHEMES USING TYPE-I SPDC

A. Correlation-based protocol

The SQQSS protocol relies on the secure transmission of
one qubit to a number of participants sequentially. In order to
prevent individual participants from cheating, however, this
signal qubit must be produced and detected in correlation
with a partner qubit, called the idler. In both the original
version [7] and our own variation, the qubits are encoded in
the polarizations of a pair of photons produced in SPDC. Thus
henceforth we will refer specifically to polarization states of
photons rather than to generic two-state quantum systems. Our
correlation-based protocol for type-I SPDC closely follows the
original treatment of [7] for the type-II case.

The sharing of a secret begins with the creation of a pair of
photons in the polarization-entangled state,

|ψ0〉 = 1√
2

(|HH 〉 + |V V 〉), (1)

where H denotes horizontal polarization and V vertical
polarization of each photon. The idler photon passes through
a polarizer oriented to transmit |H 〉, while the signal photon
passes through a chain of SQQSS participants. Taken on its
own, the polarization state of the signal photon as it enters
the SQQSS chain is undefined. However, the final step in
the protocol is the detection of the signal and idler photons
in coincidence with one another. This coincidence detection
projects the signal photon, at its entry into the SQQSS chain,
into the state |H 〉.

The SQQSS chain is shown conceptually in Fig. 1. It begins
with the sender, who uses a combination of wave plates to
transform the signal photon to one of the four states,

|+x〉 = 1√
2

(|H 〉 + |V 〉),

|+y〉 = 1√
2

(|H 〉 + i|V 〉),

|−x〉 = 1√
2

(|H 〉 − |V 〉), (2)

|−x〉 = 1√
2

(|H 〉 − i|V 〉).

This is equivalent to the preparation of |+x〉 followed by use
of a tilt-adjustable phase plate to obtain one of |±x〉,|±y〉,
as shown in Fig. 1. The signal photon then passes to N − 1
recipients in turn; each one uses a tilt-adjustable phase plate to
apply a randomly selected phase shift ϕj ∈ {0,π/2,π,3π/2}
so that after participant k, the signal photon state is

|χk〉 = 1√
2

⎡
⎣|H 〉 + exp

⎛
⎝i

k∑
j=1

ϕj

⎞
⎠ |V 〉

⎤
⎦ . (3)

( )VHx +=+
2

1

1ϕ 2ϕ 1−Nϕ

Nϕ

sender recipients

with coincident 
idler photon detection

HWP
PBS

Detectors Measurement in

( )VHx ±=±
2

1
basis

FIG. 1. A schematic of the single-qubit quantum secret sharing
protocol. The qubit is initially in the state |+x〉 = 1√

2
(|H 〉 + |V 〉),

conditioned on coincident detection of the idler photon (gating). Each
participant applies a relative phase shift ϕj ∈ {0,π/2,π,3π/2} to the
|V 〉 component. The half wave plate (HWP) and polarizing beam
splitter (PBS) allow for measurement of the final state in the |±x〉 =

1√
2
(|H 〉 ± |V 〉) basis.

Overall, j ranges from 1 to N to account for the sender (i = 1)
and N − 1 recipients. The set of four possible phase shifts can
be broken down into two classes:

class X ⇒ ϕj ∈ {0,π},
(4)

class Y ⇒ ϕj ∈ {π/2,3π/2}.
The sender’s choice of state preparation likewise falls into
either class X, for creation of |±x〉, or class Y , for creation of
|±y〉.

Thus each participant so far possesses a single “class” bit
denoting which class they have chosen, but also a second
“secret” bit consisting of their phase choice within that class.
After N participants have applied their local operations, the
initial signal photon state |H 〉 is transformed to the state

|χN 〉 = 1√
2

⎡
⎣|H 〉 + exp

⎛
⎝i

N∑
j=1

ϕj

⎞
⎠ |V 〉

⎤
⎦ . (5)

These phase changes are illustrated in Fig. 1.
At this point, the final participant measures the polarization

of the signal photon in the |±x〉 = (1/
√

2)(|H 〉 ± |V 〉) basis,
conducting the measurement in coincidence with the idler pho-
ton as specified earlier. The measurer records the measurement
outcome, and the physical aspect of the SQQSS is complete.

Notice that if the final state is of the form

|χN 〉 = 1√
2

(|H 〉 ± |V 〉), (6)

then the measurement outcome will be |+x〉 or |−x〉, each
with probability 1. However, if

|χN 〉 = 1√
2

(|H 〉 ± i|V 〉), (7)

the final measurement result will be random.
Therefore, after the measurement is performed, the N

participants publicly announce the class of the operation they
applied, and the total number of class Y operations is counted.
If the number of class Y operations was even, the run is valid;
the N − 1 recipients can expect to reconstruct the secret from
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their shadows. If the number of class Y operations was odd,
then the run is discarded; this happens half the time on average.

For valid runs, the remaining secret bit value retained by
each participant regarding their applied operation constitutes
that participant’s shadow (or the sender’s secret). The last
participant also holds the record of the measurement outcome.
Only if the N − 1 recipients share their shadows can they
determine the sender’s secret, ϕ1.

Finally, to prevent cheating, a random subset of the bits
must be checked. To do this, the first N participants announce
in random order their actual phase changes ϕj for a subset
of runs randomly selected by the sender. The expected
measurement result for each run is computed and compared to
the measurement result announced by the final participant. If
any recipient attempts to cheat by measuring the single-photon
state and sending a newly prepared version along to subsequent
participants, the bit error rate rises to at least 25%. Thus if the
protocol shows an error rate of less than 25%, cheating of this
form can be ruled out.

Restrictions on the order of the class announcements, along
with repetitions of the protocol with coding enhancements, can
be implemented to make the protocol more secure, defending
even against cheaters with their own entangled-pair resources
[10]. Alternately, the protocol can defend against cheating
by a subset of recipients (participants 2 through N ) via a
simpler modification: instead of measuring the signal photon,
participant N is required to transmit it back to the sender,
participant 1. The sender then measures the photon in either
the |±x〉 or |±y〉 basis, but all recipients announce their
class choices before the sender announces the sending and
measurement classes. Runs with even numbers of class X

operations, including the measurement class, are considered
valid. This protocol defends against cheating, even with
entangled-pair resources, by any subset of the recipients. It
privileges the trusted sender of the message, but the sender
already occupies a position of trust by knowing the original
secret, in many if not all possible applications.

B. Entanglement-based protocol

In both type-I protocols, the signal and idler photons
are first generated as the entangled pair of Eq. (1). In the
correlation-based protocol, all measurements are done in
coincidence with detection of the idler photon in the state
|H 〉. Thus the signal photon is projected into the state |H 〉 as
well, and then rotated into |±x〉 or |±y〉 state afterwards by
means of phase-shifting optics. As pointed out in Refs. [7,8],
the polarization correlation between the signal and idler
photons is crucial for the security of the protocol; a cheater or
eavesdropper, who does not have access to the idler photon,
therefore has no information on the initial polarization of
the signal photon. Because the signal photon’s initial state
is ill-defined, subsequent measurements by the cheater cannot
reveal information about the phase changes applied by sender
or recipients.

However, while the correlation-based protocol relies on the
polarization correlation between signal and idler, it does not
rely explicitly on the quantum entanglement between them.
This insensitivity to entanglement per se can be viewed as a
strength of the protocol, giving robustness against imperfect

entanglement in the form of a lack of coherence between the
two terms in the superposition of Eq. (1). However, by failing to
fully exploit the quantum entanglement in the initial resource
the correlation-based protocol passes up a chance for enhanced
security against eavesdropping attacks, as we demonstrate in
the next section.

The entanglement-based protocol which follows makes full
and explicit use of the entanglement between signal and idler
in order to prepare the signal photon in the state |+x〉 before
it enters the chain of SQQSS participants. Unlike a classical
mixture, the initial entangled state can be rewritten as

|ψ0〉 = 1√
2

(|HH 〉 + |V V 〉) = 1√
2

(|+x,+x〉
+ |−x,−x〉). (8)

Relying on this equality, we orient the idler polarizer to
transmit only |+x〉 polarization. Detection of the signal photon
in coincidence with the idler then projects the signal photon
into the |+x〉 state as it enters the SQQSS chain. The sender
and recipient roles remain the same as before, except that
the measurement of the signal photon is now conducted in
coincidence with the |+x〉-selected idler.

The success of the entanglement-based protocol depends
entirely on the presence of entanglement, rather than classical
correlation, between the signal and idler polarizations. To the
extent that the initial state is a classical mixture of |HH 〉 and
|V V 〉, projection of the idler photon onto |+x〉 will leave the
signal photon in an uncertain polarization state rather than
projecting it onto |+x〉. Thus the success rate, or fidelity,
of the secret-sharing transmission is sensitive to the purity
of entanglement in this protocol. However, the explicit use
of entanglement makes this protocol robust against certain
eavesdropping attacks and cheating strategies to which the
correlation-based protocol is vulnerable. We present one such
attack, a photon-number splitting exploitation of experimental
asymmetries, in the next section.

III. PHOTON-NUMBER SPLITTING EAVESDROPPING
ATTACK

The correlation-based SQQSS protocol, in an ideal realiza-
tion, provides security against eavesdropping. However, the
protocol remains vulnerable to attacks that may arise due to the
imperfections of implementation. In quantum communication
in general (for example, in quantum key distribution), these
forms of attack have been some of the greatest obstacles
to securely implementing protocols [11–13]. Such attacks
include the possibility of splitting off and measuring a
fraction of the photons in a pulse that is sent for each qubit
(photon-number splitting), or adding photons to the channel
and later extracting them for measurement (Trojan-Horse
attacks) [14]. Here we focus on robustness against a photon
number-splitting, or PNS, attack.

In a PNS attack, an eavesdropper takes advantage of
the fact that implementations may involve transmission of
pulses with the possibility of multiple photons per qubit. The
eavesdropper “splits” off some of the photons, and measures
the state of their polarization, while the remaining photons
pass through to the intended receiver untouched. Unless the
intended receiver can detect the decreased signal size, the
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eavesdropper gains information about the message without
alerting the participants to her presence.

There are many ways of avoiding PNS attacks in quantum
key distribution, including decoy states, strong reference
pulses, and differential phase shifts [15,16]. The correlation-
based protocol protects against PNS by referencing the signal
photon to the idler photon, which is passed through a polarizer
before being detected. A PNS eavesdropper cannot discover
whether her “picked-off” signal photons are coincident with
the correct idler photons; thus she gains no information about
the polarization state of the signal [8].

However, this protection is only completely valid in the case
for which the two photons are produced with perfect symmetry
in their polarization states, as in Eq. (1). Given common issues
in the production of this entangled state, the photons may
actually be in the state

|ψ0,asymm〉 = a|HH 〉 +
√

1 − a2|V V 〉 (9)

with a2 �= 1/2. This state may be the overall two-photon
state produced, or the emitted state may be symmetric but
with correlations between polarization and other degrees of
freedom (such as energy or spatial mode) which make it
possible for an eavesdropper to filter her detection so she is
dealing with an asymmetric state. In either case, the difference
in the probability of detecting the signal photon in its two
polarization states can give information to an eavesdropper.
An eavesdropper, Eve, can gather this information by splitting
off some photons, and using a beamsplitter to measure half of
them in the |±x〉 basis and the other half in the |±y〉 basis.

A. Attack on correlation-based protocol

To quantify this attack, let us assume that Eve is eavesdrop-
ping on the correlation-based protocol, just after the sender
has applied a phase shift to the photon. We want to find the
probability that for a given a2 �= 1/2 and n photons measured
by Eve, Eve can distinguish what state the sender has prepared.
If she can reliably determine the qubit state, she has intercepted
the secret. Eve will attempt to distinguish the qubit state by
counting the number of photons detected in each of her four
detectors (corresponding to measured photon state |+x〉, |−x〉,
|+y〉, and |−y〉). She will then guess the bit value associated
with the detector which registered the greatest number of
counts. This is not the only possible algorithm for deciding
which bit value Eve will guess; however, this algorithm
does yield better-than-random results for Eve whenever the
vulnerability a2 �= 1/2 exists.

We assume for the sake of simplicity that the sender applies
0 phase shift, and thus Eve intercepts the signal photon which
is the second member of the entangled state

|ψ1〉 = a|+x,H 〉 +
√

1 − a2|−x,V 〉. (10)

(If the sender applies a different phase shift, the polarization
states will be different, but Eve’s success in identifying the
correct bit does not change.) Given that the idler photon
remains unmeasured, we can then find the probability that
Eve measures the signal photon in either |+x〉 or |−x〉, as well

as in either |+y〉 or |−y〉. If the photon goes to the |±x〉-basis
detectors, the probability of registering |+x〉 is

p(|+x〉) = 〈ψ1|P+x,s ⊗ Ii |ψ1〉. (11)

This evaluates simply to a2, and similarly the probability of
registering |−x〉 is 1 − a2. If the photon goes to the |±y〉-basis
detectors, the probability of measuring |+y〉 is

p(|+y〉) = 〈ψ1|P+y,s ⊗ Ii |ψ1〉 = a2 + (1 − a2)

2
= 1/2,

(12)

and the probability of measuring |−y〉 is likewise 1/2. For
the eavesdropper, then, for any single intercepted photon the
probabilities of detection in |+x〉, |−x〉, |+y〉, and |−y〉 are
a2/2, (1 − a2)/2, 1/4, and 1/4, respectively.

Let us assume that n total photons can be diverted and
detected by Eve. The probability of registering i counts in the
|+x〉 detector, j counts in the |−x〉 detector, k counts in the
|+y〉 detector, and l counts in the |−y〉 detector is

ci,j,k,l = n!

i!j !k!l!

(
a2

2

)i (
1 − a2

2

)j (
1

4

)k (
1

4

)l

. (13)

Eve will successfully identify the secret if the |+x〉 detector
registers the most counts (i > j,k,l), but also if the |+y〉
detector registers the most counts (l > i,j,k), since either
+ result maps to the same secret bit value. To exactly
predict Eve’s success rate, however, we must also consider
the possibility that two or more detectors tie for the most
counts. In this case, we let Eve randomly select one of the
tying detectors and base her bit-value guess on that detector.
With this strategy in mind, we can assign to each outcome a
probability of occurring, and a likelihood for Eve to succeed
in that case.

Thus we can calculate the probability pEve,n for Eve to
successfully identify a bit by intercepting n = i + j + k + l

photons to be (pi indicates the probability that i > j,k,l, while
pi=j indicates the probability that i = j > k,l, and so forth)

pEve,n = 1
2 [1 + pi − pj + pi=k − pj=k]

+ 1
6 [pi=k=l − pj=k=l]

≈ 1
2 [1 + pi − pj ], for large n. (14)

The final approximation simply neglects ties between the
detectors, which become rare in the limit of large n [17].
Finally, we use Eq. (13) to evaluate the probabilities pi , etc.,
in Eq. (14). A plot of Eve’s predicted success rates as a function
of a2, for various numbers of “picked-off” photons per qubit,
is shown in Fig. 2.

We have focused on Eve’s success rate when a2 > 1/2;
however, if a2 < 1/2 Eve will have exactly the same success
rate if she systematically reverses her bit-guessing strategy.
Thus Eve can be successful as long as (i) some |HH 〉 vs
|V V 〉 asymmetry exists in the initially produced two-photon
state and (ii) she is able to independently gauge the success of a
small number of her guesses in order to decide whether or not to
reverse her guessing strategy (a common tactic in codebreaking
scenarios). If Eve can listen in on classical communications
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FIG. 2. Bitwise probability of successful secret identification by
Eve, using a photon-number splitting attack on the correlation-based
SQQSS protocol. Eve’s success rate is shown as a function of a2, the
probability of |HH 〉 in the emitted entangled state (as filtered by Eve’s
detection). Because the calculation is symmetric in a2 and b2 = 1 −
a2, P (1 − a2) = P (a2) can be used to give the probability of success
for a2 < 0.5. Eve’s success rates are shown for n = (10,25,50,100)
where n is the number of photons detected in Eve’s apparatus for
each qubit. An eavesdropper detecting an asymmetric two-photon
initial state with a good signal-to-noise ratio (points) achieves results
in close agreement with theory (curves).

between the secret-sharing participants, for instance, the runs
used for checking error rate should allow her to determine the
correct guessing strategy.

It is clear that photon number splitting requires access to
many photons. For a2 = 0.6, measuring 100 photons gives Eve
a theoretical 78% success rate for determining the secret bit
value. The attack is especially strong when a pulse of large,
indefinite photon number must be sent for each qubit.

B. Robustness of entanglement-based protocol

The correlation-based protocol for type-I SPDC is partic-
ularly vulnerable to our PNS attack because state asymmetry
of the type denoted by Eq. (9) with a2 �= 1/2 is particularly
common. For example, it tends to arise from unequal thick-
nesses or orientations of the two crystals used for SPDC,
or from imprecision in the input polarization of the SPDC
pump beam. The same type of asymmetric initial state arises
in type-II SPDC, for example from imperfect alignment of the
signal and idler paths with the positions of perfect overlap of
the type-II output cones. Even in systems for which the overall
state has good symmetry, more troubling is the existence of
correlations between photon polarization in the H/V basis
and other degrees of freedom, particularly for pulsed sources
[18–20], which otherwise provide an added advantage of
well-defined pulse arrival times. Correlations of this sort allow
the eavesdropper to measure an effectively asymmetric state by
filtering her detection on a second degree of freedom. A typical
defense against this issue is to strongly prefilter the entangled
state at its source, but this solution drastically reduces source
brightness and secret-sharing transmission rate. Schemes have
been proposed to eliminate unwanted correlations without loss
of brightness [21–23], and improvements via these schemes

have begun to be demonstrated experimentally [24,25]. How-
ever, it is of interest to explore an approach that improves
the security of single-qubit quantum secret sharing without
recourse to either a loss of brightness or these additional
complications.

Asymmetry between the two terms in the initial super-
position or in Eve’s detected state gives rise to a bias in
the signal photon’s polarization state—even when observed
without coincidence detection. This bias is exploited by the
PNS eavesdropper. By contrast, if a2 �= 1/2 in the (possibly
filtered) state but the entanglement-based protocol is followed,
the single-particle state of the signal photon remains randomly
distributed between |+x〉 and |−x〉 before the actions of
the SQQSS participants. This can be seen quite simply by
rewriting the state in the {|+x〉,|−x〉} basis for each photon:

|ψ0,asymm〉 = a|HH 〉 +
√

1 − a2|V V 〉
= 1

2 (a + √
1 − a2) (|+x,+x〉 + |−x,−x〉)

+ 1
2 (a − √

1 − a2) (|+x,−x〉 + |−x,+x〉) .

(15)

It can easily be seen from this expression that the signal photon
is found in |+x〉 50% of the time and |−x〉 50% of the time, if
no polarization information is gathered for the idler.

Indeed, if the initial entangled state were asymmetric in
the x basis, there would be a parallel PNS eavesdropping
attack, but asymmetries in the x basis are much less likely
simply because of the physical way in which the entangled
pair is produced via SPDC. Therefore the entanglement-based
protocol, while it makes the fidelity of the transmission
more sensitive, also provides built-in security against common
exploitations by an eavesdropper.

IV. EXPERIMENTAL IMPLEMENTATION

A. Realization of correlation-based SQQSS

We now turn to implementations of both correlation-based
and entanglement-based protocols with a secret sender and
two recipients. An experimental schematic for the correlation-
based SQQSS is shown in Fig. 3. Entangled photon pairs
are produced via type-I degenerate spontaneous parametric
downconversion [26] in a pair of 0.5-mm-thick BBO crystals
pumped with a 50-mW cw diode laser at 405 nm. A 405-nm
half wave plate and a tiltable quartz phase plate control the
input pump beam polarization; these are set to prepare the
initial entangled state of Eq. (1) for the signal and idler photons
at 810 nm. The BBO crystals are cut at 29.15◦ for noncollinear
downconversion, with the signal and idler at 3◦ from the pump
beam path.

A Glan-Thompson polarizer in the idler beam path allows
selective detection of |H 〉 for the idler photon. An 810-nm
half wave plate in the signal arm converts |H 〉 to |+x〉.
Now the sender and two recipients apply phase shifts ϕj ∈
{0,π/2,π,3π/2}. Each phase shift is accomplished using
a 200-μm-thick uniaxial YVO4 crystal. The tilt of each
crystal about a vertical axis is controlled to obtain the
desired phase shift. A compensation YVO4 crystal corrects for
time spreading between the polarizations. The final recipient
measures the signal photon polarization in the |±x〉 basis
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(a)

(b)

FIG. 3. (a) Experimental setup for the correlation-based protocol.
The sender is composed of the first 810-nm HWP along with the
first YVO4 crystal. Additional YVO4 crystals are the phase-shifting
recipients in the protocol. The idler polarizer is set to accept
horizontal polarization, which projects the signal photon into |H 〉
at its entry into the SQQSS chain. (b) In the entanglement-based
protocol, the idler polarizer is set to accept |+x〉 polarization,
projecting the signal photon into |+x〉 at its entry into the SQQSS
chain. The sender prepares the state using just the first YVO4

crystal.

using an 810-nm half wave plate and a polarizing beamsplitter,
sending signal photons into one of two detectors. Signal and
idler photons are detected by coupling into multimode fibers
en route to single-photon counting modules and coincidence
detection with a time resolution of 4 ns. The overall efficiency
of detection is approximately 2%.

B. Realization of entanglement-based SQQSS

An experimental schematic for the entanglement-based
protocol is shown in Fig. 3. The polarizer in the idler arm
is rotated to select |+x〉 idler polarization. The 810-nm half
wave plate in the idler arm is no longer necessary, so the
sender is realized entirely by the first tiltable YVO4 phase
plate. All other aspects of the setup remain unchanged from
the correlation-based experiment.

To measure the rate of success in secret sharing, many
runs with different secret and shadow bits were carried out
using automated experiment control and data acquisition. For
each run, secret and shadow bits, as well as the auxiliary class
X/Y bits, were chosen randomly. The random number choices
determined settings for the YVO4 crystals, which were tilted
using software-controlled motorized rotation platforms. All
measurements were done by counting coincidences between
the idler channel and the two signal channels over a minimum
time interval of 0.1 s, limited by data acquisition techniques.
Per-photon probabilities of detection were calculated, when
necessary, from the observed coincidence rates.
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FIG. 4. Experimentally observed fidelity, or probability of “shar-
ing” the correct qubit, using the entanglement-based protocol. Fidelity
is displayed as a function of the phase-shifting angle of each YVO4

phase plate, averaged over all settings of the other YVO4 phase plates.
The overall 13% qubit error rate is well below the 25% rate for
reliable detection of cheaters. Variation of fidelity between phase
plate settings matches predictions based on precision of phase plate
tilting. The overall fidelity matches predictions based on phase spread
in the initial two-photon entangled state.

Observed success rates for the entanglement-based protocol
are shown in Fig. 4. The overall error rate of 13% is well below
the 25% threshold for reliable detection of cheaters, so secret
sharing has been realized in this implementation. Variations in
success rate of 3–6% are observed from one set of phase plate
settings to another. This variation is predicted from the limited
precision of tilt angles for the YVO4 phase plate crystals.

The imperfect 87% fidelity of secret sharing can be
attributed to imperfect entanglement, or purity P < 1, of our
entangled state produced by SPDC. For our apparatus, the
BBO crystal thickness and pump laser bandwidth produce a
spread in phase between |HH 〉 and |V V 〉 components, so
that our two-photon state is only partially entangled. Separate
measurements of the entangled state (see Fig. 5) indicate a
purity P = 0.78, or entangled-state fidelity F = 0.87 [27],
consistent with the 87% secret-sharing fidelity we measure in
the experiment.

C. Eavesdropping

A maximal implementation of the photon number splitting
attack is shown in Fig. 6. First, some fraction of the photons
traveling through the apparatus would be picked off through the
use of a polarization-preserving beamsplitter placed immedi-
ately after the first (sender) YVO4 phase plate. The picked-off
photons would be directed into Eve’s polarization-analyzing
detection apparatus. A 50-50 beamsplitter (BS) sends half of
the intercepted photons to be measured in the |±x〉 basis
and the other half to be measured in the |±y〉 basis. The
measurement in the |±x〉 basis is done using a half wave plate,
polarizing beamsplitter, and two detectors. The measurement
in the |±y〉 basis is done using a quarter wave plate, polarizing
beamsplitter, and two detectors. Eve then counts the number
of photons that entered each detector and guesses a secret bit
based on the detector registering the most counts.
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FIG. 5. (a) Schematic for measuring purity (mixedness) of two-
photon entangled state, due to uncompensated spread in phase φ of
state 1√

2
(|HH 〉 + eiφ |V V 〉). Coincidence counts between signal and

idler photons are measured with the idler linear polarizer fixed at 0◦

or 45◦; a half wave plate in the signal arm is rotated to change the
linear polarization transmitted through the polarizing beamsplitter.
(b) Coincidence counts observed. Diminished fringe visibility with
the idler polarizer at 45◦ gives a purity of 0.78 for the two-photon
state, accounting for our observed secret-sharing error rate.

To implement a photon number splitting attack experimen-
tally, we simulated the success of the Fig. 6 eavesdropper via a
simplified experimental setup. Rather than performing SQQSS
detection as well as simultaneous detection in two bases by
Eve, we omitted the final SQQSS measurement and conducted
measurements in each of Eve’s two bases at different times in
the actual experiment.

The modified eavesdropping schematic is shown in Fig. 7.
The 405-nm half wave plate was rotated to obtain different
values of a2. The sender’s 810-nm half wave plate was present
for the correlation-based protocol only. Two of the three YVO4

FIG. 6. Ideal eavesdropping setup for photon number splitting
attack. Eve picks off a fraction of the transmitted photons and
measures half of them in the |±x〉 basis, half of them in the |±y〉
basis. If the correlation-based protocol is used, Eve can exploit an
imperfectly prepared initial state to determine the secret bit with
better than random success.

FIG. 7. Experimental setup to simulate a photon number splitting
eavesdropping attack on the correlation-based protocol. The 405-nm
HWP is rotated for different values of a2 in the initial state. The
last two YVO4 crystals are held at a constant position to give a
phase shift of ϕ = 0. For eavesdropping on the entanglement-based
protocol, the first 810-nm HWP is removed. Detection is carried out
in coincidence with the idler photon to improve signal-to-noise, but
no idler polarizer is used to simulate an eavesdropper with no access
to idler state information.

crystals, left in place for convenience, were held at a constant
position to introduce a phase shift of 0◦. The first YVO4

crystal was tilted to produce the four possible phase shifts
introduced by the sender. An 810-nm quarter wave plate at 45◦
allowed measurement in the |±y〉 vs |±x〉 basis to be decided
by rotation of the final 810-nm half wave plate.

To approximate an eavesdropper with perfect signal-
to-noise on her polarization analysis, we measured the
signal photon in coincidence with the idler, but with no
idler polarizer since the eavesdropper lacks access to the
idler’s polarization information. Thus the coincidence detec-
tion improved signal-to-noise problems due to background
light, but otherwise faithfully simulated an eavesdropper’s
action.

A single run of the eavesdropping scheme consists of
tilting the sender phase plate, setting the eavesdropper half
wave plate to collect count rates in |±x〉 for 50 s, and then
rotating the eavesdropper half wave plate to collect count
rates in |±y〉 for 50 s. The observed count rates for each
sender phase setting were then used as inputs to a Monte Carlo
simulation of Eve’s success rate for a small number of detected
photons.

Observed success rates for Eve are shown here for the
correlation-based measurement (Fig. 2) and likewise for the
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FIG. 8. A plot of the success rate of an eavesdropper detecting
n = 10, 25, 50, or 100 photons per qubit, for the entanglement-based
protocol. Note the change of vertical scale from Fig. 2. Here the
eavesdropper is no longer successful despite asymmetry in the initial
two-photon state. The very small deviations from 50% success can
be attributed to imperfect alignment of the apparatus.
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entanglement-based measurement (Fig. 8). The imperfect
entangled-state purity seen in Fig. 5 does not affect eaves-
dropping success. Hence the experimentally inferred success
rates closely follow the theoretical predictions discussed
above.

V. CONCLUSIONS

We have demonstrated two SQQSS protocols using en-
tangled photon pairs from type-I SPDC. A photon-number
splitting attack on these protocols, exploiting lossy transmis-
sion and asymmetric state preparation, is demonstrated. The
entanglement-based scheme is robust against this attack while
the correlation-based scheme is not; this contrast illustrates
the value of using quantum entanglement for security of
communication.

An imperfect entangled state (P < 1) causes lowered
fidelity of secret sharing for the entanglement-based scheme.
Specifically, in this work, P = 0.78, input state fidelity F =
0.87, leads to secret-sharing fidelity of 87%. Improved purity
at the P ≈ 0.95 level should be possible in this apparatus
with relatively minor modification, such as addition of a
compensation BBO crystal in the pump beam to remove
time/energy phase spread [28–30]. Such an improvement
should lead to a secret-sharing fidelity of ≈97%, at which point

imprecision in component positioning will limit the overall
fidelity in practice.

To further probe the strengths and weaknesses of
entanglement-secured SQQSS, other attack strategies must
be developed and implemented, or a more general security
analysis including both internal and external attacks must be
conducted. Further work can also address scaling of SQQSS
with the number of participants, and variations of SQQSS in
which information is encoded in multiple entangled degrees
of freedom of the photon pair.
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