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Global asymmetry of many-qubit correlations: A lattice-gauge-theory approach
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We introduce a bridge between the familiar gauge field theory approaches used in many areas of modern
physics such as quantum field theory and the stochastic local operations and classical communication protocols
familiar in quantum information. Although the mathematical methods are the same, the meaning of the gauge
group is different. The measure we introduce, “twist,” is constructed as a Wilson loop from a correlation-induced
holonomy. The measure can be understood as the global asymmetry of the bipartite correlations in a loop of
three or more qubits; if the holonomy is trivial (the identity matrix), the bipartite correlations can be globally
untwisted using general local qubit operations, the gauge group of our theory, which turns out to be the group
of Lorentz transformations familiar from special relativity. If it is not possible to globally untwist the bipartite
correlations in a state using local operations, the twistedness is given by a nontrivial element of the Lorentz
group, the correlation-induced holonomy. We provide several analytical examples of twisted and untwisted states
for three qubits, the most elementary nontrivial loop one can imagine.
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I. INTRODUCTION

There has been a large effort during the last decade to
study the properties of entanglement and correlations in
quantum states. Progress has been made in quantifying and
characterizing these correlations for composite states of two
and more qubits [1]. However, for states of three or more
qubits, the problem becomes hard as the possible ways a
state may be entangled becomes greater. In this paper we
introduce an approach in the spirit of a lattice gauge field
theory. Our motivation to use a gauge theory approach comes
from several lines: (i) Our most successful theories of nature
are expressed in this language and are well developed mathe-
matically. Some examples of gauge theories in physics include
classical electromagnetism, quantum field theories (such as
quantum electrodynamics and quantum chromodynamics),
string theory, and general relativity. Mapping the study of
quantum correlations to a gauge theory may allow one to
use some of the techniques previously developed. (ii) Gauge
theories have a natural geometric interpretation with which to
gain intuition about a problem; the gauge field defines a curved
surface and the Wilson loop, a gauge-invariant observable of
the theory, gives a measure of the total curvature of the gauge
field. In our work, the gauge group that emerges naturally is
the Lorentz group.

The usual scenario one considers when studying entan-
glement is the following: There are N parties in spatially
separated locations, each holding one part of a composite
quantum state comprising N subsystems. Each party is free
to make local operations on their part of the state and to
classically communicate this operation and its outcome to
the other parties in an effort to put the state in a standard

*m.s.williamson04@gmail.com

form. They can use deterministic operations given by unitary
groups, which are simple rotations of their subsystems, or
more general local operations given by Kraus operators that
may only be successful probabilistically. If two different states
can be brought to the same standard form reversibly, they are
said to belong to the same entanglement class. If the conversion
is deterministic, the two states are unitarily equivalent. If the
conversion is only probabilistic, the two states are said to
be equivalent under stochastic local operations and classical
communication (SLOCC) [2]. In this paper we concentrate on
the latter scenario for qubits. In this case the group of reversible
local qubit operations is SL(2,C) up to a positive constant
less than or equal to unity. Moreover, it is known that the
entanglement measures concurrence [3] and three-tangles [4]
are invariant under the action of SL(2,C).

There are a number of results concerning SLOCC classifi-
cation. Dür et al. [5] have shown that there exist two classes for
pure states of three qubits, the Greenberger-Horne-Zeilinger
(GHZ) class and the W class. Verstraete et al. [6] have shown
that there exist nine families for pure states of four qubits
(although there are an infinite number of classes; one of these
families depends on a continuous parameter). If one is given
a single copy of a state and allowed to use SLOCC, Lo and
Popescu [7] have shown that any pure two-qubit state can be
brought to a maximally entangled Bell state and Kent et al.
and others [8–12] have shown that the most entangled state one
can obtain from a mixed state of two qubits is a Bell diagonal.
There has also been work on creating entanglement monotones
by exploiting the SL(2,C) invariance of certain entanglement
measures [13–15].

In a lattice gauge theory the gauge field assigns a trans-
formation to every pair of neighboring lattice points [16].
This transformation is an element of the gauge group and is
sometimes known as a parallel transporter; it parallel transports
the property sitting at one lattice point to the neighboring point.
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For example, in lattice quantum chromodynamics, space-time
is discretized into lattice points and the property sitting on the
lattice points is color represented by a vector. To see how color
changes from one lattice point to another, one multiplies the
vector by the parallel transporter. The assignment of parallel
transporters to each link specifies the configuration of the
gauge field. While the parallel transporters themselves change
under gauge transformations, there is a natural gauge-invariant
observable on the lattice given by the trace of the total
transformation around a loop (or plaquette). This is known
as the Wilson loop. This total transformation is a measure of
the curvature of the gauge field around that loop (equivalently
the flux through the loop). The closer to the identity the
transformation around the loop is, the less curved the gauge
field.

In this paper our N lattice points are the N qubits of a com-
posite quantum state, the transformations between neighboring
qubits are specified by the local operations that symmetrize
the correlations in that two-qubit link, and the gauge-invariant
observable, the Wilson loop, provides a measure of the degree
of asymmetry of the bipartite correlations globally. We call this
measure “twist.” These are correlations such as entanglement
invariant under SL(2,C), the gauge group of our theory. In
an earlier paper, Wootters explored a related idea and found
evidence that a nontrivial twisting around a loop requires the
sacrifice of some entanglement. The definitions of twist that
we introduce in the present paper are different from the one
defined in the earlier paper [17], and they do not have the same
interpretation.

The interpretation of our measure is as follows: Imagine
taking a state comprising N qubits. One performs a local Kraus
operation on the second qubit to symmetrize the correlations
between the first and second qubits (symmetrize here means
that the correlations specified by the expectation values of
spin measurements on the first and second qubits, labeled
1 and 2, are the same under interchange of the two qubits;
i.e., 〈σ 1

i ⊗ σ 2
j 〉 = 〈σ 1

j ⊗ σ 2
i 〉). The indices i and j take the

values 0,1,2,3 with σ0 = I and σ1, σ2, σ3 are the Pauli
matrices. We can now imagine performing a local operation
on the third qubit to symmetrize the correlations between
qubits two and three, the link 2,3. Now the links comprising
qubits 1,2 and 2,3 have been symmetrized. We can repeat
this process along all links until the final one comprising
the last qubit, qubit N , and the first qubit. One now has a
dilemma; the local operation performed on the first qubit that
symmetrizes the link N,1 may cause the link 1,2 to become
asymmetric. The degree of mismatch between the initial and
final local operations is the total transformation (also known
as a holonomy) of an underlying correlation-induced gauge
field around the loop, and a measure of this mismatch is given
by the trace of this total transformation, the Wilson loop. If
one can simultaneously symmetrize all two-qubit links in the
loop, the overall transformation is trivial (i.e., the identity).
However, if this is not possible, the Wilson loop gives a degree
of asymmetry in the bipartite correlations.

Even though our measure is defined for states of N qubits,
in this paper we restrict study to three-qubit states, the most
elementary loop one can conceive. Explicitly, we show that all
two-qubit states have a trivial total transformation, whereas all
pure states of three qubits have a total transformation equal

to a π rotation. We then look at several examples of mixed
states of three qubits. We provide examples of untwisted states
and two examples of states with SO(1,1) holonomy and link
them with the concurrence in each link. These are examples
we have been able to work out analytically since SO(1,1)
is a simple group depending on one parameter; it appears,
however, a generic mixed state of three qubits has the full
SO+(1,3) structure depending on all six parameters. That is,
a generic state cannot be untwisted. Although some analytical
examples may be laborious to work out, one can calculate twist
easily and quickly using numerical methods.

The ideas we outline here provide a bridge between
the familiar gauge field theory approaches used in many
areas of modern physics such as quantum field theory and
the SLOCC protocols familiar in quantum information. The
mathematical methods are the same although the meaning is
very different. For example, the geometric phase [18] has the
same mathematical structure as our measure twist; however,
the holonomy is a result of the curvature of the space of
quantum states or the parameter space of a Hamiltonian. In
the case of twist, the holonomy is induced by the bipartite
correlations between quantum states. The key in the mapping
of correlations to parallel transporters in this paper is the
introduction of a Lorentz polar decomposition.

The paper is organized as follows: In the following section
we show how one may assign a parallel transporter to a two-
qubit link and we introduce the measure twist. We then provide
analytical results for two- and three-qubit states in Secs. III
and IV, respectively, before concluding in Sec. V.

II. MAPPING THE CORRELATIONS IN A QUANTUM
STATE TO A PARALLEL TRANSPORTER

In this section we show how we map a parallel transporter
to each two-qubit link, the properties of these parallel
transporters, and the gauge invariance of a measure we call
twist, given by the Wilson loop. The approach we use here
is inspired by our previous work [19], which showed how
to generate local invariants. We represented bipartite states by
correlation matrices, sometimes known as the Hilbert-Schmidt
representation. That is, the two-qubit density matrix ρab is
now represented by a real (although generally not positive or
symmetric) 4 × 4 correlation matrix S(a,b), whose elements
i,j are given by

S(a,b)ij = 1
2 tr[(σa

i ⊗ σb
j )ρab]. (1)

We can also imagine performing local operations on the
state ρab to take it to a new state ρ ′

ab = A ⊗ BρabA
† ⊗ B†. In

the Hilbert-Schmidt representation, the local operations act on
S(a,b) as follows:

S(a,b)′ = AS(a,b)BT , (2)

where the elements of the real, 4 × 4 matrices of the local
operations on a and b in the new representation are given by

Ai1i2 = 1
2 tr

(
A†σa

i1
Aσa

i2

)
,

(3)
BT

j1j2
= 1

2 tr
(
Bσb

j1
B†σb

j2

)
.
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The local operation A must obey the constraint AA† � I (and
likewise for B) to take ρ to a state with normalization � 1.
However, the standard practice when thinking about SLOCC
protocols is to rescale A and B by a positive constant so they
have determinant 1. That is, they are now elements of SL(2,C)
if they are reversible operations. In a SLOCC protocol one does
not care about normalization, only that it may be possible to
convert one state to another with some nonzero probability.
This rescaling also makes sense when studying entanglement,
as the concurrence and three-tangle in a state remain invariant
when considering local operations in this group as previously
mentioned. From this point on we restrict the local operations
to be elements of SL(2,C). When making this rescaling, the
local operations in the Hilbert-Schmidt basis now become
elements of SO+(1,3), the group of proper, orthochronous
Lorentz transformations [11,20]. This is due to the well-known
homomorphism SL(2,C) � SO+(1,3). One can verify that A
and B are indeed elements of V ∈ SO+(1,3) from the defining
property of the Lorentz group: that it preserves the Minkowski
metric, η = diag{1, − 1, − 1, − 1},

V ηV T = η. (4)

where η is equivalent to the spin-flip operator used in calcu-
lation of the well-known entanglement measure, concurrence,
and is also equivalent to the singlet state |01〉-|10〉 when written
as a correlation matrix.

A. Lorentz polar decomposition and association of a parallel
transporter to each two-qubit link

Given a single copy of an arbitrary two-qubit state, what is
the most entangled state one can convert it to using SLOCC? In
a series of papers [8–12] it was shown that the most entangled
state one can produce is a Bell diagonal state, a mixture of
some or all of the four Bell states |�±〉 = |01〉 ± |10〉, |�±〉 =
|00〉 ± |11〉. In the correlation matrix representation, the four
Bell states are the diagonal matrices

S|�−〉 = 1
2 diag{1, − 1, − 1, − 1},

S|�+〉 = 1
2 diag{1,1,1, − 1},

(5)
S|�−〉 = 1

2 diag{1, − 1,1,1},
S|�+〉 = 1

2 diag{1,1, − 1,1}.

Since a Bell diagonal state is just a mixture of these pure
Bell state correlation matrices, a Bell diagonal state must
also be a diagonal correlation matrix. This prompts a natural
decomposition of an arbitrary two-qubit state represented by
a correlation matrix S(a,b) [11]:

S(a,b) = Va�abW
T
b , (6)

where �ab = diag{s0,s1,s2,s3} represents a Bell diagonal state
and Va and Wb [elements of SO+(1,3)] are the local operations
taking one from the Bell diagonal state to the state represented
by S(a,b). This is a special form of a singular value decompo-
sition (SVD) with a SLOCC operational interpretation. With
the usual SVD one makes the entries of �, the singular values,

real and positive and puts them in nonincreasing order down
the diagonal. Since V,W ∈ SO+(1,3) we can order the Lorentz
singular values in nonincreasing order and they are real since
S, V , and W are real. However, we cannot generally make them
all positive since doing so could result in a density matrix with
negative probabilities, an invalid physical state. The leading
Lorentz singular value, s0, is always positive and the largest
(it represents the normalization of the state). The remaining
three Lorentz singular values, s1, s2, and s3, take the same
sign (generically negative). The ordering of these remaining
three singular values does not affect the parallel transporter we
assign to each link; however, the sign they take does. These
singular values represent the expectation values of spin in
the three spatial directions si = s0〈σi ⊗ σi〉 rescaled by the
normalization of the state s0.

The Lorentz singular values are SL(2,C) invariants and
are closely related to the concurrence in the two-qubit state
[10,11]. That is, the entanglement in the state is related to the
(dilated) magnitude of the correlations. It is a Lorentz scalar.
The concurrence C for an arbitrary two-qubit state is

C = max{0, − tr�}. (7)

By rewriting the Lorentz SVD, we can also find a left
Lorentz polar decomposition. That is, we may rewrite S as

S(a,b) = 	(a,b)S̃(a,b), (8)

where 	(a,b)=VaηWT
b η ∈ SO+(1,3) and S̃(a,b)=

Wb�abW
T
b . This is equivalent to our previous decomposition

of S except now S̃(a,b) represents a state with correlations
that are symmetric under interchange of the qubits and
	(a,b) represents the local operation performed on a that
symmetrizes the correlations. Moreover, if S is full rank, 	

is unique although V and W may not be. 	 is the parallel
transporter we assign to each two-qubit link in our gauge
theory. We give more details about the properties of S̃ and 	

and their calculation in Secs. II C and II D, respectively.
Just as one can also decompose an arbitrary matrix into the

right polar form using the standard SVD, one can also do the
same for the Lorentz SVD. That is, we may write S(a,b) =
S̃(a,b)′	(a,b)′, where S̃(a,b)′ = Va�abV

T
a and 	(a,b)′ =

ηVaηWT
b . The interpretation of this decomposition is that now

	(a,b)′ represents the local operation performed on qubit b

that symmetrizes the correlations in the two-qubit state. S̃(a,b)′
is the (different) symmetrized state. While 	(a,b)′ �= 	(a,b)
[they are related by 	(a,b)′ = η	(a,b)η], the eigenvalues
and trace of a cyclic product of the 	 representing the
overall transformation around a loop remain the same provided
one is consistent in taking just the left or the right polar
decomposition. It is this total transformation that we look at in
the next section.

One might worry that, restricting the matrices V and W

to be elements of the Lorentz group, one may not always be
able to bring a two-qubit correlation matrix to Bell diagonal
form and indeed some cases do exist. These nondiagonalizable
cases are not generic, however. Verstraete et al. [12] have
listed the nondiagonalizable cases, most of which turn out to
be product states comprising one or more pure subsystems.
We do not consider two-qubit links composed of product
states since it seems unlikely that one can consistently define
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a correlation-related parallel transporter in such examples.
There is one other nondiagonalizable case: it is the state
p0|00〉〈00| + p1|�+〉〈�+| + p2|�−〉〈�−|. These states can
still be brought to a well-defined diagonal form with infinite
Lorentz transformations, a process known as quasidistillation,
and we use this technique in Sec. IV. However, one does
not have to apply infinite Lorentz transformations to assign a
parallel transporter to these states; the parallel transporter only
has to symmetrize (S = ST ) the correlations in the two-qubit
link. This can be done without the use of infinite Lorentz
transformations.

B. Twist as a measure of asymmetry of correlations: A Lorentz
group gauge theory

We now take a cyclic product of the parallel transporters
	 representing a loop around the lattice points (qubits) to
form our measure of the degree of asymmetry of bipartite
correlations globally. We define this measure, twist ξ , as

ξ (ab · · · z) = 1
4 tr{	(a,z) · · · 	(c,b)	(b,a)}. (9)

The constant 1/4 is chosen to give ξ = 1 when the over-
all transformation is the identity. We now ask how the
parallel transporters transform under local operations or, in
the language of gauge theories, gauge transformations U ∈
SO+(1,3). From Eqs. (2) and (6) we see that Va → UaVa and
WT

b → WT
b UT

b . This implies 	(a,b) transforms as

	(a,b) → Ua	(a,b)U−1
b , (10)

just as parallel transporters should indeed transform under
gauge transformations. We have used the identities ηη = I
and ηUT η = U−1. One can now see that, under gauge trans-
formations, the parallel transporters do change but the total
transformation around a loop only changes up to a similarity
transformation, leaving the trace and the eigenvalues of
the overall transformation 	(a,z) · · · 	(c,b)	(b,a) invariant
under SO+(1,3). This overall transformation is sometimes also
known as a holonomy. In the case of twist it is a Lorentz group
holonomy.

Twist is therefore a measure of the asymmetry of the corre-
lations you cannot “gauge” away globally. One is reminded of
the Aharonov-Bohm effect [21] and the geometric phase [18]
as illustrations of features that, although they can be gauged
away locally, cannot be gauged away globally. Twist shares
another property of the Aharonov-Bohm effect; that one cannot
associate a twist to an individual link since each parallel
transporter associated to that link can be “gauged away.” We
can only meaningfully associate a twist globally to the entire
loop of links. In this sense, twist is a nonlocal property of
the bipartite correlations present in the loop. We give a simple
illustration of the idea in Fig. 1.

Experimentally determining the amount of twist in an
unknown quantum state is a similar problem to determining
the amount of entanglement. Both can be inferred from state
tomography. If, however, one knows the state beforehand, one
can confirm the amount of twist by applying sequentially
local operations to each qubit around a particular loop
that symmetrize or “untwist” the bipartite links. Using our

(a) (b)

(c)

FIG. 1. Graphical representation of twist ξ (abc) for a state of
three qubits. The ribbons between the qubits represent the twist—the
degree of asymmetry in the correlations in each two-qubit link. The
twist in each link is not invariant by itself, however. One can untwist
each link by careful choice of local gauge transformation (represent-
ing a local operation) U ∈ SO+(1,3). (b) Local transformation on b

that results in the link 	(b,a) being the identity 	(b,a) → Ub	(b,a).
Similarly, (c) corresponds to the local transformation on qubit c that
untwists 	(c,b)U−1

b ; i.e., 	(c,b)U−1
b → Uc	(c,b)U−1

b . One can still
perform a local transformation on qubit a; however, the total twist in
the link does not change. Even though locally we can untwist each
link, we cannot gauge away the twist globally.

three-qubit example illustrated in Fig. 1, one applies the local
operation 	(b,a)−1 to qubit b to symmetrize the link ba and
then applies 	(b,a)−1	(c,b)−1 to qubit c to symmetrize bc.
One should find that the last link ac can only be symmetrized
by the overall transformation 	(b,a)−1	(c,b)−1	(a,c)−1 on
qubit a but in doing so makes the neighboring link, ab,
asymmetric by the same amount. This could be confirmed
by tomography on one of the bipartite links. One should note
since these operations are generally probabilistic they are not
always successful. If one obtains the undesired outcome one
would need to apply a compensating operation that cancels out
this undesired outcome which is also generally probabilistic.

C. Properties of � and S̃

In the Lorentz SVD given in Eq. (6) we have chosen to
make the three singular values s1, s2, and s3 take the same
sign as this results in a unique 	 when the singular values are
all nonzero. Giving them the same sign also seems natural
as the three spatial correlation singular values are treated
equally. There are two possible cases: (i) The sign is negative
if det S < 0 and (ii) the sign is positive if det S > 0. For case
(i), the diagonal matrix � represents a Bell state mixture, the
largest component of this mixture being the singlet, |�−〉. In
case (ii), the singlet makes up the smallest component in the
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Bell diagonal mixture. In both cases the ordering of the remain-
ing three Bell states, |�−〉, |�+〉, and |�+〉, does not affect
the form of the parallel transporters 	; however, it does affect
the form of the symmetrized correlation matrix S̃. One can
see why the ordering of the singlet is the determining factor
on the form of 	 from its special properties, namely that it is
invariant under symmetric local operations, i.e., A ⊗ A|�−〉 =
|�−〉 where A ∈ SL(2,C). This last fact can be seen even
more clearly in the correlation matrix form since S|�−〉 ≡ η

and our relation becomes equivalent to the defining property
of the Lorentz group, Eq. (4). That is, under symmetric local
operations, the singlet state is invariant, and it remains in the
antisymmetric state space, a state space consisting of a single
point. To change the ordering of the singlet state in the Bell
mixture one has to apply different local operations to the two
qubits. The three remaining triplet Bell states are not invariant
under symmetric, local operations; however, they do of course
remain in the much larger symmetric state space. In fact one
can transform any triplet Bell state into any other using a subset
of these symmetric local operations. Using these facts we can
see that the ordering of the triplet states in a Bell state mixture
does not affect the form of 	 since making the replacements
V → V U and W → WU leave it invariant. U ∈ SO+(1,3)
is a local operation applied to both subsystems. One also
notes that the absolute singlet content in S̃ is unaffected
by symmetric local operations. It is thus the ordering of
the singlet that determines the form of the parallel trans-
porters and the absolute singlet content in the symmetrized
states.

The parallel transporters are well defined and unique when
S is full rank; however, they are not unique when one or more
si are zero. It is necessary but not sufficient for S to be full rank
for entanglement to exist in that link. Therefore the assignment
of a unique parallel transporter to a link does not mean that link
is entangled; however, it does imply that the correlations in that
link are “quantum,” that is, correlations that do not appear in
classical physics. This type of weaker correlation is generally
known in the literature under the name discord [22]. In this
paper we only consider the cases where S is full rank and
therefore the parallel transporters are unique. However, one
may be able to define the notion of a partial holonomy in the
cases of rank(S) � 2, corresponding to classical correlation
(rank 2) and partial quantum correlation (rank 3), by assigning
a parallel transporter over the subspace in which the singular
values are nonzero. This idea has been proposed in the context
of geometric phases by Kult et al. [23]. In the case S is rank
1, the bipartite link is a product state, meaning that the two
qubits are uncorrelated. The two qubits know nothing about
each other and never can if we restrict to using only local
operations. Assigning a parallel transporter in this case does
not seem possible.

D. Calculation of the parallel transporters, �

Calculation of a parallel transporter for a given link involves
finding the two elements V and W in SO+(1,3) that diagonalize
S in Eq. (6). A typical S has all nonzero elements. An arbitrary
element of SO+(1,3) may be decomposed into a product of two
different elements of R1,R2 ∈ SO(3), two spatial rotations,
sandwiching an element of B ∈ SO(1,1), a Lorentz boost

along one spatial axis, V = R1BR2. Explicitly the 4 × 4
representations are

Ri =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cαcβ sαcβsγ − sβcγ sαcβcγ + sβsγ

0 cαsβ sαsβsγ + cβcγ sαsβcγ − cβsγ

0 −sα cαsγ cαcγ

⎞
⎟⎟⎟⎠ ,

(11)

B =

⎛
⎜⎜⎜⎝

cosh ϕ 0 0 sinh ϕ

0 1 0 0

0 0 1 0

sinh ϕ 0 0 cosh ϕ

⎞
⎟⎟⎟⎠, (12)

where cα = cos α and sα = sin α and we have analogous
relations for the two other Euler angles β and γ . This
decomposition suggests an iterative procedure to diagonalize S

by applying a rotation R followed by a boost B to each qubit in
the link. The aim is to depolarize each of the individual qubit’s
Bloch vectors simultaneously, making each individual qubit’s
density matrix proportional to the identity. Rotations do not
change the length of these Bloch vectors but they can change
each of the spatial components. One strategy one might try is
to first rotate each qubit’s Bloch vector so that it is aligned
along one spatial axis, say the z axis, making each of the
entries S01, S02 and S10, S20 zero, and then to boost along the
z axis in the opposite direction to which that Bloch vector
points by a small amount. One repeats this until both qubits
are simultaneously depolarized. The state is then proportional
to a Bell diagonal state, although S may not be diagonal or
in the correct signature. One can diagonalize the final 3 × 3
block by applying two final spatial rotations, R1. More detailed
calculational techniques are reported in [10,11,24,25].

Another strategy rather than finding V and W directly is
to simplify the form of the two-qubit links by applying gauge
transformations to each of the qubits since the overall trans-
formation around a loop is gauge invariant. For example, in
the three-qubit case, one may simplify calculation by choosing
Ua , Ub, and Uc to reduce the complexity of diagonalizing S;
i.e., make the transformations

S(b,a) → UbS(b,a)UT
a ,

S(c,b) → UcS(c,b)UT
b , (13)

S(a,c) → UaS(a,c)UT
c .

One may also find it simpler to work in the density matrix
basis; rather than dealing with real 4 × 4 matrices, one can
find 2 × 2 complex matrices, A,B ∈ SL(2,C), that take each
two-qubit density matrix, ρ, to a Bell diagonal state, ρ ′; that
is, ρ ′ = A ⊗ BρA† ⊗ B†.

Analytical calculation of V and W is possible when the
singular values are nondegenerate, corresponding to unique
V and W . One can solve the eigenproblem for ST ηSη =
W�2W−1. W−1 is a Lorentz matrix whose columns are the
eigenvectors of W . Likewise one can find V by solving the
eigenproblem for SηST η.
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III. RESULTS FOR TWO-QUBIT STATES

A. Pure states of two qubits

We first consider a pure state of two qubits which can be
written (up to local unitary equivalence) as α|00〉 + β|11〉,
where α and β are real. We wish to calculate twist for this
state, the path from qubit a to b and back again, given by

ξ (ab) = 1
4 tr{	(a,b)	(b,a)}. (14)

We can use gauge transformations Ua and Ub to simplify the
calculation of 	. Using the SO+(1,3) transformation on qubit
a,

Ua =

⎛
⎜⎜⎜⎜⎝

1
2αβ

0 0 β2−α2

2αβ

0 −1 0 0

0 0 1 0
α2−β2

2αβ
0 0 − 1

2αβ

⎞
⎟⎟⎟⎟⎠, (15)

and the transformation Ub = I, one can convert each link
to S(a,b) = �ab = αβdiag{1, − 1, − 1, − 1}, a state pro-
portional to the singlet, which, of course, has symmetric
correlations under interchange of the qubits. This is the
well-known result that, given a single copy of a pure, entangled
state of two qubits, one can always convert it to a singlet using
SLOCC [7]. The gauge transformation Ua is equivalent to the
SL(2,C) matrix

A =
⎛
⎝ 0 −

√
α
β√

β

α
0

⎞
⎠ (16)

in the density matrix basis.
Since we can gauge away all the freedom in each link, the

parallel transporters can all be consistently gauge transformed
to 	(a,b) = 	(b,a)−1 = I, giving ξ (ab) = 1. This gives the
result that all pure states of two qubits are untwisted.

B. Mixed states of two qubits

Arbitrary two-qubit states are also untwisted [ξ (ab) = 1].
This is simply seen by noting that S(a,b) = S(b,a)T . Since
S(a,b) = Va�abW

T
b , S(b,a) = Wb�abV

T
a . Note �ab is now

generally no longer proportional to the singlet but it does
have the same signature (+, − , − ,−). The decomposition of
S(a,b) implies 	(a,b) = 	(b,a)−1 or equivalently there exist
gauge transformations Ua and Ub that untwist the link. For
example, choose Ua = V −1

a and Ub = W−1
b . This illustrates

another key property of gauge theories; one can only get the
possibility of a nontrivial holonomy from a loop that encloses
some area. Clearly for two-qubit paths this can never be done.
One needs to consider states of three qubits and higher for the
possibility to see nontrivial twist.

IV. RESULTS FOR THREE-QUBIT STATES

A. Pure states of three qubits

It is well known that a pure state of three qubits can be
brought to one of two standard forms using SLOCC: (i) the
GHZ state |000〉 + |111〉 or (ii) the W state |001〉 + |010〉 +
|100〉. A generic pure three-qubit state is of the GHZ class [5].
Since both of these states are symmetric under permutations of

the qubits we expect that pure states of three qubits have trivial
twist. However, we prove that the overall transformation is a
π rotation.

Theorem. A generic state of three qubits in a pure state has
ξ (abc) = 0, with total transformation 	(a,c)	(c,b)	(b,a) ≡
diag{1,1, − 1, − 1} in some basis. That is, the twist around
the three-qubit loop is a π (Pauli) rotation around some spatial
axis.

Proof. We prove this by again making a careful choice
of gauge transformation, U , on each qubit locally. After this
choice one finds that there is a Pauli rotation that cannot be
gauged away globally.

We use parametrizations of GHZ and W states first given
by Dür et al. [5] and solve for each class individually. These
two parametrizations populate the whole of pure three-qubit
state space.

Any state in the SLOCC GHZ class can be written as

|GHZ〉 = cδ|000〉 + sδe
iϕ|φaφbφc〉 (17)

up to local unitaries. In the GHZ form, |φa〉 = cα|0〉 + sα|1〉,
|φb〉 = cβ |0〉 + sβ |1〉, and |φc〉 = cγ |0〉 + sγ |1〉; c and s stand
for cos and sin, respectively, and the real angles have the ranges
α,β,γ ∈ (0,π/2], δ ∈ (0,π/4], and ϕ ∈ (0,2π ].

We next calculate S(b,a), S(c,b), and S(a,c) for each two-
qubit link and try to get each link into the � form using
local operations (gauge transformations) U . We choose the
following SL(2,C) transformations:

A =

⎛
⎜⎝ 0

(
e−iϕ

s2
αtδ

) 1
4

− (
eiϕs2

αtδ
) 1

4

(
eiϕc2

αtδ
t2
α

) 1
4

⎞
⎟⎠, (18)

B =

⎛
⎜⎝

(
eiϕs2

βtδ
) 1

4 −
(

eiϕc2
β tδ

t2
β

) 1
4

0
(

e−iϕ

s2
β tδ

) 1
4

⎞
⎟⎠, (19)

C =

⎛
⎜⎝ 0

(
e−iϕ

s2
γ tδ

) 1
4

− (
eiϕs2

γ tδ
) 1

4

(
eiϕc2

γ tδ

t2
γ

) 1
4

⎞
⎟⎠, (20)

where t stands for tan and the corresponding Lorentz element
Ua is given either by Eq. (3) or by

Ua = T (A ⊗ A∗)T † (21)

and likewise for Ub and Uc. T is the matrix

T = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 1

0 1 1 0

0 i −i 0

1 0 0 −1

⎞
⎟⎟⎟⎠. (22)

Using the gauge transformations Ua , Ub, and Uc on S(b,a),
S(c,b), and S(a,c), i.e.,

S(b,a) → UbS(b,a)UT
a ,

S(c,b) → UcS(c,b)UT
b , (23)

S(a,c) → UaS(a,c)UT
c ,
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we can reduce each S to diagonal form. However, the gauge-
transformed UaS(a,c)UT

c has the signature (+, + , − ,+). We
therefore need to multiply it by diag{1, − 1,1, − 1}, a Pauli
y rotation, to put the final link in the desired form. This final
Pauli rotation is the holonomy, since we cannot gauge it away.
In other words,

	(a,c)	(c,b)	(b,a) = diag{1, − 1,1, − 1}, (24)

giving ξ (abc) = 0 for all states in the GHZ SLOCC class.
Note that the result would have been the same without

the use of the gauge transformations since the overall trans-
formation is gauge invariant. The careful choice of gauge
transformation just made the calculation simpler.

Any state in the SLOCC W class can be written as

|W 〉 = w|000〉 + x|001〉 + y|010〉 + z|100〉 (25)

up to local unitaries with w,x,y,z � 0. We can follow the same
strategy as for the GHZ case, trying to reduce the complexity
of finding 	 by gauging away as much of the twist as possible.
If we choose the gauge transformations

A = Q

⎛
⎝

√
z
x

− w√
xz

0
√

x
z

⎞
⎠, (26)

B = Q

⎛
⎝−i

√
y

x
0

0 i
√

x
y

⎞
⎠, (27)

C = Q, (28)

we can reduce S(b,a) and S(c,b) to the desired � form. S(a,c)
is also diagonal but with the wrong signature (+, + , + ,−).
Again, we have given these transformations in SL(2,C) form.
However, it is simple to find Ua , Ub, and Uc in SO+(1,3)
form using either Eq. (3) or Eq. (21). A key step in the
gauge-transformation procedure is using the local operator
Q = diag{n,1/n}. To get these states in the desired Bell
diagonal form we must take the limit n → ∞, which takes
Q to the limit of a projective measurement. Since projections
are not invertible they are not group elements and strictly do not
belong to representations of SL(2,C) or SO+(1,3). However,
one can get infinitesimally close to a projective measurement,
and the Lorentz singular values of S are well defined in
this limit. In fact each S becomes proportional to a pure
Bell state, the links S(b,a) → yz diag{1, − 1, − 1, − 1} and
S(c,b) → xy diag{1, − 1, − 1, − 1} being proportional to the
singlet |�−〉, and the final link S(a,c) → xz diag{1,1,1, − 1}
being proportional to |�+〉. This is a process known as
“quasidistillation” [26]. Two-qubit states of this form can
be brought to pure Bell states but the probability of success
decreases to zero.

These gauge transformations untwist all the links except
for S(a,c), which has the incorrect signature. Therefore the
overall holonomy for W states is again a Pauli rotation,
	(a,c)	(c,b)	(b,a) = diag{1, − 1, − 1,1} (z rotation in this
particular basis), giving ξ (abc) = 0 once again.

Discussion. We find that the total transformation around
a loop for pure states of three qubits is equivalent to

the matrix diag{1, − 1,1, − 1}. In the GHZ case we find
that the links ab and bc could be brought to the form
λ0|�−〉〈�−| + λ1|�+〉〈�+|, where λ0 > λ1 by the local
gauge transformations U , whereas the remaining link ac can
only be brought to the form λ0|�+〉〈�+| + λ1|�−〉〈�−|. The
links ab and bc are in the desired form; i.e., they correspond
to � with signature (+, − , − ,−). These are Bell diagonal
states whose largest contribution in the Bell state mixture
is the singlet. We have chosen this particular signature as
it makes the parallel transporter 	 unique provided S is
full rank and seems most natural (the spatial components of
S corresponding to σx , σy , and σz are all treated equally).
The singlet |�−〉 is also unique among the Bell states since
it is the only antisymmetric state, whereas the other three
Bell states are symmetric. We found that one cannot put
every two-qubit link in the form λ0|�−〉〈�−| + λ1|�+〉〈�+|
consistently with local gauge transformations. For the GHZ
case we find two of the three links can be brought to
mixtures composed of the singlet while the remaining link
must necessarily be a mixture of the symmetric Bell states.
One can see a similar thing happens with the W-state
case.

Note that each of the two-qubit density matrices have
a maximal rank of 2 as a consequence of the Schmidt
decomposition of the pure three-qubit state. This fact gives one
enhanced freedom in choosing local gauge transformations U

and allows one not only to symmetrize each two-qubit state
simultaneously but also to put each link in Bell diagonal form,
maximizing the entanglement in each link. Rank 2 density
matrices correspond to a � with the form

� =

⎛
⎜⎜⎜⎜⎝

y 0 0 0

0 −x 0 0

0 0 −x 0

0 0 0 −y

⎞
⎟⎟⎟⎟⎠. (29)

The Lorentz singular values are given by y = 1
2 (λ0 + λ1)

and x = 1
2 (λ0 − λ1), where λi are the eigenvalues (given

in nonincreasing order) of
√√

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)
√

ρ, a
familiar operator used in calculation of the concurrence [3].
Now one can see where the extra gauge freedom comes in.
� is composed of two degenerate blocks, degenerate with
regard to the Minkowski metric. In other words, � is the
direct product yσz ⊕ −xI. This means � is invariant under
transformations of the form u�uT , where u = SO(1,1) ⊕
SO(2), giving the extra freedom in choosing the last gauge
transformation.

The interpretation of the result prompts the question
whether one can put each of the three two-qubit links in a
mixture of symmetric Bell states simultaneously. A mixture of
symmetric Bell states for the case of rank 2 Bell diagonal states
corresponds to � = diag{y,y,x, − x} (ρ = λ0|�+〉〈�+| +
λ1|�+〉〈�+|). One can indeed find U that take each link
to a state of this form simultaneously. However, it should
be noted that the parallel transporter assigned to each link
	 = V ηWT η is no longer unique since � no longer has the
Minkowski signature. We can, however, choose the 	 closest
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to the identity, in some sense the “most parallel” transformation
between the qubits. Including this extra rule, one finds the
overall transformation associated to this new rule of parallel
transport is the identity.

As a final comment, we note that our result has similarity
to the Wigner angle or Wigner rotation [27,28]. The product
of two pure Lorentz boosts in different spatial directions is
not equal to another pure Lorentz boost; rather it is a pure
boost multiplied by a rotation, the Wigner rotation. Aravind
has shown that the Wigner rotation can be thought of as a
holonomy in rapidity space (hyperbolic space) resulting from
the area enclosed by the two pure boosts and the pure boost
connecting the end points. The magnitude of this rotation
is given by the area of a hyperbolic triangle, the length
of whose sides are given by the rapidities of each of the
boosts.

B. Mixed states of three qubits

Mixed states of three qubits show a wide range of
possible holonomies. Generically, they have a full SO+(1,3)
holonomy group structure; however, they may be hard to solve
analytically. Here we give some simple examples.

1. Untwisted states

There is an untwisted state

1
6 (|�−

ab〉〈�−
ab| ⊗ Ic + |�−

bc〉〈�−
bc| ⊗ Ia + |�−

ac〉〈�−
ac| ⊗ Ib).

(30)

For this particular state each two-qubit link is the Werner
state

1
6I + 1

3 |�−〉〈�−| = 1
2 |�−〉〈�−| + 1

6 (|�+〉〈�+| + |�+〉
× 〈�+| + |�−〉〈�−|), (31)

corresponding to the correlation matrix S = 1
2 × diag{1, −

1
3 , − 1

3 , − 1
3 }. Each of the links has no entanglement, although

this state is right on the cusp of being entangled; adding a
infinitesimal amount more of the antisymmetric Bell state
|�−〉 to the mixture would result in an entangled state. One
also notes this state is an equal mixture of symmetric and
antisymmetric Bell states.

There is also the complementary untwisted state

1
2 (|GHZ〉〈GHZ| + |W 〉〈W |) , (32)

where the states are |GHZ〉 =
√

1
3 |000〉 +

√
2
3 |111〉 and |W 〉 =√

1
3 (|001〉 + |010〉 + |100〉). Each two-qubit correlation ma-

trix has the form S = 1
2 diag{1, 1

3 , 1
3 , 1

3 }; i.e., it is the same
as the example above except each link is in the signature
(+, + , + ,+), that is, each link is an equal mixture of the three
symmetric Bell states, |�+〉〈�+| + |�−〉〈�−| + |�+〉〈�+|.
This state is conjectured to be the state of two qubits with
maximal dissonance, that is, maximal quantum correlations
that are not entanglement [29].

2. SO(1,1) holonomy from rank 3 bipartite density matrices

The three-qubit state

p|GHZ〉〈GHZ| + (1 − p)|ψ〉〈ψ | (33)

shows a wide range of interesting behavior depending on
the values of its variables. Depending on these values, the
overall transformation around the loop can be the identity,
a π rotation, or a general element of SO(1,1). Each link
can exist in three possible regions in parameter space, two
having entanglement in the two-qubit link and one region
being separable. The regions are separated by two critical
points such that one of the singular values si = 0, resulting
in det S = 0. The critical points in this example mark the
transition from the link being entangled to separable. The
pure states defined in Eq. (33) are |GHZ〉 = 1√

2
(|000〉 + |111〉)

and |ψ〉 = x|001〉 + y|010〉 + z|100〉 + w|111〉. We choose
the amplitudes of |ψ〉 to be real and positive.

We solve this example analytically by finding the form
of the diagonalizing matrices V and W for each link directly
without prior use of gauge transformations. One may then have
to apply a Pauli rotation to get � into the correct signature.
The Pauli rotation applied depends on which of the regions
the bipartite link belongs, which in turn depends on values
of the variables p, x, y, z, and w. We solve for the link ab;
solutions for the other two links follow in an analogous way.
The form of the correlation matrix is

S(b,a)

= 1

2

⎛
⎜⎜⎜⎜⎝

w2 + x2 + y2 + z2 0 0 (1 − p)(−w2 + x2 + y2 − z2)

0 2(1 − p)(wx + yz) 0 0

0 0 −2(1 − p)(wx − yz) 0

(1 − p)(−w2 + x2 − y2 + z2) 0 0 p + (1 − p)(w2 + x2 − y2 − z2)

⎞
⎟⎟⎟⎟⎠.

(34)
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One may diagonalize this correlation matrix with Vb = T (B ⊗
B∗)T † and Wa = T (A ⊗ A∗)T †, where

A =

⎛
⎜⎝

(
ε(x)y
ε(w)z

)1/4
0

0
(

ε(w)z
ε(x)y

)1/4

⎞
⎟⎠,

B =

⎛
⎜⎝

(
ε(x)z
ε(w)y

)1/4
0

0
(

ε(w)y
ε(x)z

)1/4

⎞
⎟⎠, (35)

and ε(q) =
√

p + 2(1 − p)q2. The resulting diagonal matrix,
�, has singular values

s0 = 1
2ε(w)ε(x) + (1 − p)yz,

s1 = (1 − p)(yz + wx),
(36)

s2 = (1 − p)(yz − wx),

s3 = 1
2ε(w)ε(x) − (1 − p)yz.

However, depending on the values of the variables, the signs of
the singular values may not be correct. There are three regions,
I, II, and III, corresponding to the different signs s2 and s3

may take; s0 � s1 � 0 for all values. Region I corresponds
to the range of parameters in which wx > yz, with the first
critical point occurring at wx = yz when s2 = 0. This region
is entangled with concurrence CI = 2(1 − p)(wx − yz) =
−2s2; however, the signature of � is (+, + , − ,+). We can
bring it to the correct signature (+, − , − ,−) by applying a
Pauli y rotation to either A or B; this choice does not change the
form of the parallel transporter 	 we assign to the link. If we
choose to put the rotation on qubit a, we replace A → iAσy .

Region II is separable although it still has dissonance and
this occurs over the range wx < yz < ε(w)ε(x)

2(1−p) corresponding
to det S > 0. In this case the signature of � is correct, (+, + ,

+ ,+), and we can construct the parallel transporter from V

and W without applying a Pauli rotation.
Region III is also entangled and lies in the range yz >

ε(w)ε(x)
2(1−p) . The concurrence in this region is given by CIII =

2(1 − p)yz − ε(w)ε(x) = −2s3. The signature of this region
is (+, + , + ,−); therefore, one needs to apply a Pauli z

rotation to one of the qubits.
The parallel transporters one assigns to each link are thus

determined by the region that each two-qubit link resides
in. There are 33 = 27 possible combinations in assigning
three regions to three links and therefore 27 possible overall
transformations (or holonomies) around the three-qubit loop.
Many of these combinations turn out to give the same overall
transformation, however.

We investigate the possible forms by first making some
observations about V and W . They consist of two blocks,
one spanning the identity and z component which belongs to
the group SO(1,1) and a second block equal to the identity
spanning x and y. If the coefficients in the link are such that
it belongs to region I, we need to apply a Pauli y rotation to
get the signature correct. This rotation takes one of V or W

to the block diagonal form O(1,1) ⊕ σz and thus the parallel
transporter assigned to a link residing in region I also has this

form. Applying the same arguments to regions II and III, we
find

	I = O(1,1) ⊕ σz,

	II = SO(1,1) ⊕ I, (37)

	III = SO(1,1) ⊕ −I.

We can therefore observe that any loop with an odd number
of links in the entangled region I has an overall transformation
belonging to O(1,1) ⊕ σz. An element from this group can
only have eigenvalues {1, − 1,1, − 1}, giving ξ (abc) = 0.
That is, the overall transformation is a π rotation.

Calculation for the case when all three links are separable
(all three in region II) yields a trivial total transformation,
the identity, corresponding to ξ (abc) = 1. From this case one
can infer that combinations of regions II and III result in a
total transformation of either the identity [ξ (abc) = 1] or a π

rotation [ξ (abc) = 0], the former case occurring if there is an
even number of region III links and the latter if there are an
odd number of region III links.

The only remaining cases are those that feature an even
number of region I links. These cases have nontrivial holon-
omy. We first look at the cases where all links are entangled,
that is, 	I(a,c)	I(c,b)	III(b,a), and the two other permuta-
tions of region III. The eigenvalues of this transformation are

	I(a,c)	I(c,b)	III(b,a) = diag

{
yε(z)

zε(y)
, − 1, − 1,

zε(y)

yε(z)

}

⇒ ξ (abc) = [yε(z) − zε(y)]2

4yzε(y)ε(z)
,

(38)

	I(a,c)	III(c,b)	I(b,a) = diag

{
yε(x)

xε(y)
, − 1, − 1,

xε(y)

yε(x)

}

⇒ ξ (abc) = [xε(y) − yε(x)]2

4xyε(x)ε(y)
,

(39)

	III(a,c)	I(c,b)	I(b,a) = diag

{
xε(z)

zε(x)
, − 1, − 1,

zε(x)

xε(z)

}

⇒ ξ (abc) = [xε(z) − zε(x)]2

4xzε(x)ε(z)
.

(40)

The final case, that of one unentangled link,
	I(a,c)	I(c,b)	II(b,a), and its permutations are identical to
the case above; however, the eigenvalues taking the value −1
become 1.

In this example the holonomy is determined by the location
of the critical points in each link. These critical points
mark the transition from entangled to separable. One can
verify analytically that any two-qubit density matrix with
rank 3 or smaller will also have critical points determined by
the entangled-to-separable transition. However, for two-qubit
density matrices of rank 4, this behavior no longer holds as we
illustrate in the next example.

The special role of the singlet in the holonomy is also
highlighted again in this example. It is interesting and strange
to note one can put all links simultaneously into states that do
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not have any singlet content. That is, one can make each �

a mixture of the three symmetric Bell states λ0|�+〉〈�+| +
λ1|�−〉〈�−| + λ2|�+〉〈�+| and the holonomy will be the
identity no matter in which of the regions each of the two-qubit
links resides. This is not possible if one requires any singlet
content; the holonomy is always a π rotation or a more general
element of SO(1,1). We believe this is due to the malleability,
or size of the symmetric state space; the ordering of the
three triplet states does not change the form of the parallel
transporters. The singlet is much more rigid, and its ordering
changes the parallel transporters.

3. SO(1,1) holonomy from rank 4 bipartite density matrices

An example of a state with SO(1,1) holonomy with two-
qubit density matrices that are each full rank is the following
state:

p|W 〉〈W | + (1 − p)|W 〉〈W |. (41)

The state |W 〉 is defined in Eq. (25) and |W 〉 = σ⊗3
x |W 〉. In

the following we take w = 0 [choosing w �= 0 results in a
SO+(1,2) holonomy] and p ∈ [0,1].

For these states we chose to solve for the parallel trans-
porters directly without the prior use of gauge transformations.
That is, we find the V and W for each two-qubit link in the
Lorentz SVD given by Eq. (6). One finds the subspace of each
S spanned by σx and σy is already diagonal, and the singular
values associated to this subspace are degenerate. Only the
subspace spanned by I and σz needs to be diagonalized. This
can be achieved by simple Lorentz boosts applied in the z axis
given by the group SO(1,1). Explicitly each V and W has the
form

⎛
⎜⎜⎜⎝

cosh ϕ 0 0 sinh ϕ

0 ±1 0 0

0 0 ±1 0

sinh ϕ 0 0 cosh ϕ

⎞
⎟⎟⎟⎠ (42)

and therefore the parallel transporters and the overall trans-
formation around the loop have the same form. That is, the
holonomy is a simple pure boost along some spatial axis.
Two of the singular values for each link are degenerate and
take the same sign. The last spatial singular value associated
to the boost, however, can change sign. It is negative when
det S < 0, in which case the central diagonal block in Eq. (42)
becomes −I and I when det S > 0. This critical point occurs
at x2√p(1 − p) =

√
p(1 − p)(y2 − z2)2 + y2z2 for the link

ab with analogous relations for the other two links. There
are therefore two regions separated by the sign change of
this singular value. The sign change in this example does not
mark the transition between entangled and separable since
the two-qubit density matrices are rank 4 rather than rank 3.
However, we can relate this point to (negative) concurrence;
at the critical value the Bell state with the smallest probability
in mixture represented by � has probability p3 = −2C, where
C = λ0 − λ1 − λ2 − λ3 is negative at the critical point.

It is not hard to solve for this case. One finds the twist is
given by the hyperbolic cosine of the sum of the hyperbolic
angles, ϕ:

ξ (abc) = cosh2

(
ϕac + ϕcb + ϕba

2

)
(43)

when there are an even number of links with det S < 0 and

ξ (abc) = sinh2

(
ϕac + ϕcb + ϕba

2

)
(44)

when there are an odd number of links with det S < 0.
The rapidities (hyperbolic angles), ϕ, familiar variables from
special relativity, are given by

ϕ = 1

2
ln

(
1 + β

1 − β

)
(45)

and each β is

βba = (1 − 2p)(y2 − z2)

y2 + z2
, (46)

βcb = (1 − 2p)(x2 − y2)

x2 + y2
, (47)

βac = (1 − 2p)(z2 − x2)

z2 + x2
. (48)

Notice when p ∈ {0, 1
2 ,1}, ξ = 1; i.e., one can untwist the

bipartite correlations globally. One can also untwist the
bipartite correlations for all p if two or more of x, y, and
z are equal since the state before gauge transformations is
more symmetrical.

V. CONCLUSIONS

In this paper we have introduced a measure quantifying the
global degree of asymmetry of two-qubit correlations in the
spirit of a lattice gauge field theory. We call this measure twist
and it is phrased as the familiar Wilson loop. Twist is defined
as the trace of the total transformation or holonomy around a
loop, a feature that cannot be “gauged” away by general local
operations; the gauge group naturally emerging is the Lorentz
group SO+(1,3) familiar from special relativity. This measure
can be interpreted operationally in terms of a SLOCC protocol.
We defined this measure as the trace of the total transformation,
which is a multipartite SL(2,C) invariant of the state. However,
one may be able to get more information about the state by
considering the eigenvalues of the total transformation, which
are also multipartite SL(2,C) invariants. We point out that
these invariants are not the polynomial invariants that have
been typically studied in the literature. We have found that
pure states of three qubits have a total transformation that is a
π rotation and we have provided some analytical examples of
mixed three-qubit states with more general transformations:
elements of SO(1,1), the group of Lorentz transformations in
one dimension.

In this work we have investigated the possible analogy
between nonlocality in well-known gauge field theory effects
such as the Aharonov-Bohm effect and the nonlocality present
in certain quantum states violating Bell inequalities. The aim
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is to phrase the nonlocality found in entangled states in terms
of the familiar geometrical and topological ideas from gauge
field theories. Our twist invariants are nonlocal, but not in the
sense of states violating Bell inequalities. They are nonlocal
in the sense that one may not attribute a twist to an individual
link in the loop, since one may gauge it away to the trivial
transformation. The twist is a property of the entire loop of
links and thus measures the global asymmetry of the two-qubit
correlations in that loop.

We have found that entanglement is not necessary to be
able to define a unique parallel transporter to a link except in
the case of rank 2 and lower two-qubit density matrices. In the
rank 3 case, entanglement does, however, define the critical
points in the link and these points affect the parallel transporter
one assigns to a link. Generically, however, to assign a unique
parallel transporter to a link, one needs a weaker type of
quantum correlation known in the literature as discord. Two-
qubit entanglement is determined by the magnitudes of the
dilated correlations. One can phrase it as the sum of the singular
values of the correlation matrix. Twist, however, appears
to characterize the asymmetry of the quantum correlations.
In constructing twist, one makes use of the additional
information about the state encoded in the local operations
that bring the correlation matrix to Bell diagonal form.

The constructions used in this paper are all based on
two-qubit correlations. It is not clear that these ideas generalize
simply to d-level systems or three-qubit and higher correla-
tions. For a two-qubit correlation matrix, there is a simple
standard form; one can bring any two-qubit state to a Bell
diagonal state with local operations. It is not clear that this
standard form exists for two qudits or three or more qubits. In
the case of three qubits, one has a 4 × 4 × 4 correlation tensor.
One can imagine several possible standard forms for such an
object.

We have several questions motivated by the similarity of
this work to other ideas in modern theoretical physics. For
example, in loop quantum gravity, the primitive variables are
also phrased as Wilson loops; however, parallel transporters
are assigned from the relation between the discrete points
of space rather than the relation between qubits [30]. One
possible avenue of investigation could be to look for states with
bipartite correlations that mimic simple curved spacetimes. For
example, can one find an N -qubit state that has the property
such that the larger the loop around a central qubit becomes,
the more trivial the total transformation? This could be a toy
example of a simple curved spacetime such as the spherically
symmetric Schwartzchild metric.

One may also look for links between knots and quantum
correlations. Witten has phrased Wilson loops in gauge field
theories with a Chern-Simons action in 2 + 1 dimensions as
knot invariants [31]. One wonders whether one can find states
where a similar analogy can be made in our construction.

On a more concrete note, we hope that the ideas presented
in this paper are useful in constructing and gaining an intuition
for invariant correlation properties in N -qubit states.
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Berge Englert, Richard Jozsa, Noah Linden, Ognyan Ore-
shkov, Jiannis Pachos, Wonmin Son, Andreas Winter, and
especially Bill Wootters for helpful comments and discussions.
For financial support, M.S.W. acknowledges EPSRC, QIP IRC
(www.qipirc.org, Grant No. GR/S82176/01), the NRF and
the MoE (Singapore), and an Erwin Schrödinger JRF. E.S.
and V.V. acknowledge the National Research Foundation and
the Ministry of Education (Singapore). M.E. acknowledges
support from the Swedish Research Council (VR).

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[2] C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V.
Thapliyal, Phys. Rev. A 63, 012307 (2000).

[3] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[4] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61,

052306 (2000).
[5] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314

(2000).
[6] F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys.

Rev. A 65, 052112 (2002).
[7] H. K. Lo and S. Popescu, Phys. Rev. A 63, 022301 (2001).
[8] N. Linden, S. Massar, and S. Popescu, Phys. Rev. Lett. 81, 3279

(1998).
[9] A. Kent, Phys. Rev. Lett. 81, 2839 (1998).

[10] A. Kent, N. Linden, and S. Massar, Phys. Rev. Lett. 83, 2656
(1999).

[11] F. Verstraete, J. Dehaene, and B. De Moor, Phys. Rev. A 64,
010101(R) (2001).

[12] F. Verstraete, J. Dehaene, and B. De Moor, Phys. Rev. A 65,
032308 (2002).

[13] M. Teodorescu-Frumosu and G. Jaeger, Phys. Rev. A 67, 052305
(2003).

[14] A. Osterloh and J. Siewert, Phys. Rev. A 72, 012337
(2005).

[15] A. Osterloh, Appl. Phys. B 98, 609 (2010).
[16] G. Münster and M. Walzl, e-print arXiv:hep-lat/0012005.
[17] W. K. Wootters, J. Math. Phys. 43, 4307 (2002).
[18] M. V. Berry, Proc. R. Soc. London A 392, 45

(1984).
[19] M. S. Williamson, M. Ericsson, M. Johansson, E. Sjöqvist,
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