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Different measures have been presented to depict the deviation of quantum time evolution in open systems
from Markovian processes. We demonstrate that the measure proposed by Breuer, Laine, and Piilo [Phys. Rev.
Lett. 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga, and Plenio [Phys. Rev. Lett. 105,
050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent to
each other when they are applied to open two-level systems coupled to environments via the Jaynes-Cummings
or dephasing models. This equivalence implies that the three measures, in different ways, capture the intrinsic
character of the non-Markovianity of quantum evolutional processes. We also show that the maximization in
the definition of the first measure can be actually removed for the considered models without influencing the
sensibility of the measure to detect non-Markovianity.
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I. INTRODUCTION

The evolution of open quantum systems can be divided into
two basic types: Markovian and non-Markovian processes [1].
For Markovian processes, the correlation time between the
system and environment is considered to be infinitesimally
small so that the dynamical map does not carry any memory
effects, leading to a monotonic flow of the information from
the system to the environment. In contrast, non-Markovian
processes with memory have different dynamical traits which
give rise to the backflow of information from the environment
to the system [2,3]. Recently, people found that non-Markovian
processes can lead to distinctly different effects on decoher-
ence and disentanglement [4,5] of open systems compared to
Markovian processes. Many relevant physical systems, such
as the quantum optical system [1], quantum dot [6], and
color-core spin in semiconductor [7], could not be described
simply by Markovian dynamics. Some problems in quantum
chemistry [8] and the excitation transfer of a biological
system [9] also need to be treated as non-Markovian processes.
Because of these distinct properties and extensive applications,
more and more attention and interest have been devoted to the
study of non-Markovian processes of open systems, including
the measures of non-Markovianity [2,3,10–13], the positivity
[14–16], and some other dynamical properties [17–20] and
approaches [21,22]. Experimentally, the simulation [23,24] of
non-Markovian environment has been realized.

The measure of non-Markovianity of quantum evolution
is a fundamental problem which aims to detect whether a
quantum process is non-Markovian and how much it deviates
from a Markovian one. So far, almost all measures can
only be applied to the former, i.e., as the sufficient (not
necessary) condition for the emergence of non-Markovianity.
It still remains elusive and, in some sense, controversial for
measuring the non-Markovianity of quantum processes. Based
on the distinguishability of quantum states, Breuer, Laine,
and Piilo (BLP) [2] proposed a measure to detect the non-
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Markovianity of quantum processes for the flow of information
between the system and environment. Alternatively, Rivas,
Huelga, and Plenio (RHP) [10] also presented two measures
of non-Markovianity by exploiting the dynamical behavior
of quantum entanglement under the local trace-preserving
completely positive (CP) maps. Other measures of non-
Markovianity include the one proposed by Wolf et al. [11]
based on the breakdown of the semigroup property, the one
proposed by Lu et al. [13] using quantum Fisher information
flow, and the one proposed by Usha Devi et al. [12] using
relative entropy difference and fidelity difference. It is worth-
while to stress that these measures of non-Markovianity are
not generally equivalent. Thus studying the relations among all
of these measures under some specific models becomes very
important. Very recently, Haikka et al. [25] studied the links
between the BLP measure and one of the RHP measures for a
laser-driven qubit system embedded in a structured Lorentzian
environment. They showed, both analytically and numerically,
that the two measures agree in the nonsecular regime. But for
other cases, no definite result has been presented.

In this paper, we study the equivalence of the three measures
of non-Markovianity proposed recently by BLP [2] and by
RHP [10] for a two-level system coupled to its environment
via a damped Jaynes-Cummings or dephasing model. Two
important results are found: First, the three measures are
exactly equivalent in the aspect of detecting non-Markovianity
for the involved models; second, for our considered models, we
find that the maximization in the definition of the BLP measure
may actually be removed. This is the problem extensively
explored [26,27]. Our work has the following features: the
interaction models considered here are most fundamental in
the theoretical studies of dynamics of open quantum systems,
and we do not need to assume any specific spectral density
for the structured environment. Thus our results possess
good adaptability. Moreover, our deductions are completely
analytical and hence the results are more convincing.

The article is organized as follows. In Sec. II we briefly
review the three measures proposed by BLP and RHP. The
definition of equivalence between different measures is also
presented. In Sec. III and Sec. IV we study the equivalence of
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the three measures for a two-level system interacting with the
environment via the damped Jaynes-Cummings model and the
dephasing model. The conclusion is presented in Sec. V.

II. REVIEW OF THE THREE MEASURES

In Ref. [2], BLP presented a measure of non-Markovianity
for quantum processes of open systems based on the idea that
Markovian processes tend to continuously reduce the trace
distance between any two states of a quantum system. Thus an
increase of the trace distance during any time interval implies
the emergence of non-Markovianity. The authors further linked
the changes of trace distance to the flow of information
between the system and its environment, and concluded that
the backflow of information from environment to the system
is the key feature of a non-Markovian dynamics. Considering
that the measure should reveal the total feature of a whole
quantum process, they thus suggested the quantity

N = max
ρ1,2(0)

∫
σ>0

dtσ [t,ρ1,2(0)] (1)

as the measure of non-Markovianity of a quantum process,
where σ [t,ρ1,2(0)] denotes the time derivative of the trace
distance for a pair of dynamical states with initial values ρ1,2(0)
of the considered system. The time integration is extended over
all intervals in which σ is positive, and the maximum is taken
over all pairs of initial states. For any Markovian process, we
have N = 0; if N > 0, the process must be non-Markovian.

Alternatively, RHP [10] presented another method to
measure the non-Markovianity of a quantum process which
is based on the monotonic drop of quantum entanglement be-
tween bipartite systems under the influence of local Markovian
environments. Suppose a system of interest is initially prepared
in a maximally entangled state with an ancillary particle, where
only the system is influenced by a noise environment and the
ancillary particle is noise-free. Then the quantity for measuring
the non-Markovianity of the quantum process is defined as

I (E) =
∫ tmax

t0

∣∣∣∣dE[ρSA(t)]

dt

∣∣∣∣dt − �E, (2)

where the time derivative in the integrand is for the dynamical
entanglement between the system and ancillary particle.
�E = E[ρSA(t0)] − E[ρSA(tmax)] denotes the difference of
entanglement at the initial time t0 and the final time tmax of
the interest quantum process.

The above two measures, N and I (E), are introduced,
respectively, through the monotonicity of trace distance or
quantum entanglement under CP (or local CP) maps. Their
mathematical forms are actually similar. It is not difficult to
find that Eq. (2) may be equivalently rewritten as

I (E) = 2
∫

Ė(t)>0
Ė(t)dt, (3)

with Ė(t) the time derivative of the dynamical entanglement
E(t). Obviously, the measure I (E) is formally very similar to
N , with the time derivative Ė(t) of the dynamical entangle-
ment replaced by the time derivative σ = Ḋ of the dynamical
trace distance D(ρ1(t),ρ2(t)). The visible difference is as
follows: the measure N involves a maximum over all pairs
of initial states, while I (E) is defined via a given maximally

entangled initial state and thus escapes from the optimization
problem. Actually, the escape of the optimization is just one of
the original intentions for the measure I (E) to be proposed. In
the following sections, we will demonstrate that for the models
under consideration, the maximization process can actually be
removed.

The third quantity for measuring the non-Markovianity
of a quantum process is also based on the entanglement
dynamics between the system and an ancillary particle. Given
the maximally entangled state |�〉 of the system plus the
ancillary particle, a locally complete positive map ε will keep
the positivity of the density operator ρ = |�〉〈�| invariable,
i.e., ε(|�〉〈�|) � 0. Starting from this point of view, a measure
of non-Markovianity of quantum processes is then born [10],

I =
∫ ∞

0
g(t)dt, (4)

with

g(t) = lim
ε→0+

‖[I + (Lt ⊗ I )ε]|�〉〈�|‖ − 1

ε
, (5)

whereLt is the super operator in the non-Markovian dynamical
master equation dρ

dt
= Lt (ρ) for the open system.

The above three measures N , I (E), and I, for the non-
Markovianity of a quantum process are introduced in differ-
ent ways. The physical meanings are different. A question
naturally arises: Are they equivalent to each other? In this
paper, we demonstrate that the three measures are equivalent
to each other when they are applied to open two-level systems
with damped Jaynes-Cummings or dephasing models. This
equivalence implies that the measures, from different sides,
well capture the intrinsical characters of non-Markovianity of
quantum evolutional processes.

Before we conclude this section, let us elaborate on the
implication for the different but equivalent measures. When
we mention that two measures M1 and M2 are equivalent,
what we mean is that for a given quantum process, if the
non-Markovianity emerges tested by the measure M1, then
this also works by the measure M2. Conversely, if the non-
Markovianity does not emerge using M1, nothing would appear
using the measure M2. The exact logistics are as follows:
M1 > 0 ⇐⇒ M2 > 0 and M1 = 0 ⇐⇒ M2 = 0.

III. THE CASE OF THE JAYNES-CUMMINGS MODEL

In this section, we will demonstrate the equivalence of the
three measures of non-Markovianity by the Jaynes-Cummings
model describing a two-level system coupled to its environ-
ment. To this end, we should first derive the expressions of the
three measures given the specific interaction model. For the
calculation of N , the environment is assumed to be initially in
a vacuum state, but its spectral density is arbitrary. This case
can be solved exactly. For any pair of initial atomic states, i.e.,
ρ1(0) and ρ2(0), we obtain the time derivative of the distance
of the corresponding dynamical states as [3]

σ (t,ρ1,2(0)) = 2|G(t)|2a2 + |b|2√
|G(t)|2a2 + |b|2

d

dt
|G(t)|, (6)

where a = 〈1|ρ1(0)|1〉 − 〈1|ρ2(0)|1〉 and b = 〈1|ρ1(0)|0〉 −
〈1|ρ2(0)|0〉 are the differences of populations and of coherence,
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respectively, between the two given initial states. The function
G(t) is defined as the solution of the integrodifferential
equation,

d

dt
G(t) = −

∫ t

0
dt1f (t − t1)G(t1), (7)

with the initial condition G(0) = 1. The kernel f (t − t1)
denotes the two-point reservoir correlation function which is
the Fourier transformation of the spectral density. Introducing
the time-dependent decay rate,

γ (t) = −2Re

(
Ġ(t)

G(t)

)
= − 2

|G(t)|
d

dt
|G(t)|, (8)

then the derivative of the trace distance may be rewritten as

σ (t,ρ1,2(0)) = −γ (t)F (t). (9)

Here the completely positive real function F (t) is defined as

F (t) = a2e− 3
2 �(t) + |b|2e− 1

2 �(t)√
a2e−�(t) + |b|2

, (10)

with �(t) = ∫ t

0 dt ′γ (t ′). According to Eq. (1), the non-
Markovian measure N may be expressed as

N = −
∫

γ (t)<0
γ (t)F (t)dt, (11)

where we have assumed that the pair of initial states ρ1,2(0) just
maximizes N so that the maximization symbol is removed.
Actually, due to the complete positivity of the function
F (t), the time intervals in which the trace distance increases
monotonously, or equivalently to the intervals in which non-
Markovianity emerges (we call them non-Markovian intervals
below), are uniquely determined by the condition γ (t) < 0.
The change of initial state ρ1,2(0) would not alter the positions
and lengths of these non-Markovianity intervals, i.e., it would
not alter their distribution. No matter how the initial states
change, N would not shift from positive to zero, or vice
versa. In this sense, the maximization to Eq. (11) may be
removed without influencing the sensibility of N to detect
non-Markovianity. This is an important result which solves
the problem being explored by many researchers [26,27].

We turn to the calculation of the second measure I (E).
Consider a maximally entangled state of two-level atoms,

|�〉 = 1√
2

(|10〉SA + |01〉SA), (12)

where atom 1 is our considered system which couples to
an environment via Jaynes-Cummings interaction and atom
2 is an ancillary particle which remains isolated from the
environment. The whole Hamiltonian reads

H = H0 + HI ,

H0 =
2∑

i=1

ω0σ
(i)
+ σ

(i)
− +

∑
k

ωkak
†ak, (13)

HI =
∑

k

gkσ
(1)
+ ak + H.c.,

where σ
(i)
+ and σ

(i)
− denote ladder operators for the ith atom, ωk

and ak are the frequency and annihilation operator regarding

the kth harmonic oscillator of the environment, and gk is the
coupling constant. We assume that the two atoms have the
same transition frequency ω0. In the interaction picture with
respect to H0, one has

H̃I = σ 1
+

∑
k

gkakexp[(ω0 − ωk)t] + H.c. (14)

Assume that the two atoms are initially in the entangled state
|�〉 and environment is initially in the vacuum state |0〉. The
time evolution of the wave function for the compound system
including both the atoms and environment may be expressed
as

|ψ(t)〉 = c1(t)|10〉SA|0〉E + c2(t)|01〉SA|0〉E
+

∑
k

ck(t)|00〉SA|1k〉E. (15)

Tracing out the environment, we obtain

ρSA(t) = [1 − |c1(t)|2 − |c2(t)|2]|00〉〈00| + |c1(t)|2|10〉〈10|
+ |c2(t)|2|01〉〈01| + c1(t)c∗

2(t)|10〉〈01|
+ c∗

1(t)c2(t)|01〉〈10|, (16)

where the time-dependent coefficients are governed by the
Schrödinger equation:

−i
∂

∂t
|ψ(t)〉 = H̃I (t)|ψ(t)〉. (17)

After a straightforward deduction, we find c2(t) = c2(0) =
1/

√
2 and c1(t) = G(t)/

√
2 with G(t) determined by Eq. (7).

If we use concurrence to describe the entanglement between
the system and the ancillary particle, we have from Eq. (16),

C[ρSA(t)] = 2|c∗
1(t)c2(t)| = |G(t)|, (18)

and thus

d

dt
C[ρSA(t)] = −1

2
γ (t)e−�(t)/2, (19)

where the definition of γ (t) in Eq. (8) has been used. Then
Eq. (3) immediately produces

I (E) = −
∫

γ (t)<0
γ (t)e−�(t)/2dt. (20)

It shows again that the non-Markovian intervals for measure
I (E) are uniquely determined by the condition γ (t) < 0.

For calculating the third measure I, we solve the master
equation of the open two-level system [1],

dρ

dt
= − i

2
S(t)[σ+σ−,ρ] + γ (t)

[
σ−ρσ+ − 1

2
{σ+σ−,ρ}

]
,

(21)

where S(t) = −2Im( Ġ(t)
G(t) ) with G(t) determined by Eq. (7) and

γ (t) is defined by Eq. (8). Straightforward calculation leads to

g(t) =
{

0 for γ (t) � 0

−γ (t) for γ (t) < 0
(22)

and thus

I = −
∫

γ (t)<0
γ (t)dt. (23)
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Once again, the non-Markovian intervals for this measure are
determined by γ (t) < 0.

Through the arguments above, we conclude that for an open
two-level system with a damped Jaynes-Cummings model,
the distributions of non-Markovian intervals for the three
measures N , I (E), and I are exactly the same, which are
determined uniquely by the condition γ (t) < 0. According to
the viewpoint of equivalence for different measures mentioned
in Sec. II, we thus conclude that the three measures are
equivalent for detecting the existence of non-Markovianity
of a two-level system interacting with the environment via
the Jaynes-Cummings model. In the argument above, we did
not assume any specific structure of spectral density. Thus
the result has good adaptability. The results are valid for an
arbitrary structured environment (Lorentzian, Ohmic, waveg-
uide spectrum, etc.), arbitrary detunings (including resonance)
between the system and its environment, and arbitrary coupling
strengths. For a Lorentzian structured environment, the exact
expression [28] of γ (t) was evaluated, which is related to the
spectral width, the atomic free-decay rate, and the detuning
between the center frequency of the spectrum and atomic
transition. The existence of non-Markovian intervals for some
choices of the microscopic degrees of freedom of the bath has
been demonstrated [2,28].

IV. THE CASE OF THE DEPHASING MODEL

As the second example to demonstrate the equivalence of
the non-Markovianity measures, we consider a two-level atom
which is coupled to a reservoir of harmonic oscillators via the
dephasing model. The Hamiltonian in the Schrödinger picture
is taken to be

H = ω0

2
σz +

∑
k

ωkb
†
kbk +

∑
k

σz(λkb
†
k + λ∗

kbk), (24)

where ω0 is the transition frequency and σz = |1〉〈1| − |0〉〈0|
is the Pauli operator of the atom. ωk and bk are, respectively,
the frequency and annihilation operators for the kth harmonic
oscillator of the reservoir. The coupling strength λk is assumed
to be complex in general. This dephasing model, which is
extensively used to simulate the decoherence of a qubit coupled
to its environment in quantum information science, can be
solved exactly. For the initial state of the total system

ρSB(0) = ρ(0) ⊗ ρB, (25)

with ρ(0) the initial state of the atom and ρB the initial thermal
equilibrium state of the reservoir, the evolution of the elements
of the reduced density matrix of the atom may be written as [1]

ρ11(t) = ρ11(0),ρ00(t) = ρ00(0),
(26)

ρ10(t) = ρ∗
01(t) = ρ10(0)e�p(t).

Here the negative dephasing function �p(t) is defined as

�p(t) = −
∫ ∞

0
dωJ (ω)coth(ω/2kBT )

1 − cosωt

ω2
, (27)

with J (ω) the spectral density of the reservoir, kB the Boltz-
mann constant, and T the reservoir temperature in thermal
equilibrium. For any pair of initial states ρ1(0) and ρ2(0) of

the atom, one can easily obtain ρ1(t) and ρ2(t), and then get
the dynamical trace distance as

D(t,ρ1,2(0)) =
√

a2 + |b|2e2�p(t), (28)

where a = 〈1|ρ1(0)|1〉 − 〈1|ρ2(0)|1〉 and b = 〈1|ρ1(0)|0〉 −
〈1|ρ2(0)|0〉 are the differences of the population and of co-
herence for the two given initial states, respectively. Inserting
this trace distance into Eq. (1), we immediately get to the
non-Markovian measure for this dephasing model as

Np = −2
∫

γp(t)<0
dtγp(t)

|b|2e2�p(t)√
a2 + |b|2e2�p(t)

, (29)

where the dephasing rate is defined as γp(t) = − 1
2 �̇p(t),

and based on the same reason as before, we neglect the
maximization toNp. It shows that the non-Markovian intervals
are uniquely determined by γp(t) < 0.

In order to calculate the expression of the second measure
I (E), we introduce an isolated ancillary atom which is initially
prepared in a maximally entangled state |�〉 in Eq. (12) with
the system atom. According to the evolution of Eq. (26) and
employing the trick from Ref. [29], one can easily obtain
the time evolution of the density matrix for the system and
ancillary atoms,

ρSA(t) = 1
2 [|10〉〈10| + e�p(t)|01〉〈10|
+ e�p(t)|10〉〈01| + |01〉〈01|], (30)

where the first state refers to the system and the second one to
the ancillary atom. It is easy to find that the concurrence for
this state is C(t) = exp[�p(t)], and thus Eq. (3) produces

I (E)
p = −4

∫
γp(t)<0

γp(t)e�p(t)dt. (31)

Again, the non-Markovian intervals for measure I (E)
p are also

uniquely determined by γp(t) < 0.
Finally, let us calculate the measure I of Eq. (4). It is not

difficult from Eq. (26) to write the master equation for the
dephasing of a two-level atom as

dρ

dt
= γp(t)[σzρσz − ρ], (32)

where we again have used the relation �̇p(t) = −2γp(t).
Following the same deduction for Eqs. (21)–(23), we obtain

Ip = −2
∫

γp(t)<0
γp(t)dt. (33)

Once again, the non-Markovian intervals for this measure are
uniquely determined by γp(t) < 0.

In a word, for a two-level system with a dephasing model,
we again draw the conclusion that the distributions of non-
Markovian intervals for the three measures are exactly the
same and uniquely determined by the condition γp(t) < 0.
Thus the three measures are equivalent. Again, the result is
valid for any spectral density of environment. As an example,
we consider the Ohmic spectrum J (ω) = ωe−ω/. It has
a linear increase for small frequencies and an exponential
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FIG. 1. Dephasing rate γp(τ ) of Eq. (34) as a function of the
dimensionless time τ for parameters τB = 10−13 s and ̃ = 20. The
time intervals in which γp(τ ) < 0 are the so-called non-Markovian
intervals.

frequency cutoff at . Such a form for the spectral density
is typically obtained in a quantum optical regime [1]. For this
special spectrum, the dephasing rate can be written as

γp(τ ) = 1

2τB

∫ ∞

0
dω̃e−ω̃/̃ coth

(
ω̃

2

)
sin(ω̃τ ), (34)

where the thermal correlation time is defined as τB = 1/kBT

and ω̃ = ωτB , ̃ = τB , τ = t/τB are, respectively, the
dimensionless frequencies and dimensionless time. In Fig. 1,
we plot this dephasing rate as a function of dimensionless
time for the parameters τB = 10−13 s and ̃ = 20, where the
non-Markovian intervals can be observed visibly.

In the end of this section, we would like to point out
that in our discussions, the master equations (21) and (32)
both have Lindblad forms with single time-dependent decay
rates γ (t) or γp(t). It is well known that the dynamical
maps in these cases are completely positive. However, for
generalized non-Lindblad types of master equations, the CP
of the dynamical maps could not always be satisfied. As a
simple example, consider the memory-type master equation
of two-level systems,

dρ(t)

dt
=

∫ t

0
dτK(τ )ρ(t − τ ), (35)

with the memory kernel K(τ )ρ = k(τ )[σ−ρσ+ − 1
2σ+σ−ρ −

1
2ρσ+σ−]. This equation is the straightforward general-
ization of the common Lindblad master equation to the
memory non-Markovian form. For the exponential memory
function [30] k(τ ) = V e−γ τ with V > 0, the equation can
be solved exactly, which gives one of the density-matrix
elements ρ00(t) = ρ00(0) + [1 − �(t)]ρ11(0) with �(t) =
e−γ t/2[cos(�t

2 ) + γ

�
sin( �t

2 )] and � =
√

4V − γ 2. Obviously,
when 4V > γ 2, the CP of the dynamical map can be violated.
This example indicates that a memory-type master equation is
not always be suitable for describing the evolution of a true
open system. Our conclusion about equivalence of measures

naturally could not be valid in this case, because the notion of
quantum trace distance is no longer valid.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have compared the three measures of
non-Markovianity proposed in Refs. [2] and [10], respectively,
for two-level systems interacting with environments via a
damped Jaynes-Cummings or dephasing model. The results
show that the three measures have exactly the same distribution
of non-Markovian intervals, and hence are actually equivalent
for detecting non-Markovianity of quantum processes. This
equivalence implies that these measures well capture the
intrinsic character of non-Markovianity of quantum processes
in different ways. We have also found that the maximization
in the BLP measure can be removed for the considered
models without influencing the sensibility of the measure to
detect non-Markovianity. This result, which avoids the compli-
cated mathematical calculations, is important. The dynamical
models considered here, i.e., the damped Jaynes-Cummings
and dephasing models, represent two kinds of fundamental
coupling forms in studying problems of open systems. And
we did not assume any specific spectral density for the struc-
tured environment. Thus our results have good adaptability.
They apply to an arbitrary structured environment, arbitrary
detunings between a system and its environment, and arbitrary
coupling strengths.

In the discussion of the damped Jaynes-Cummings or
dephasing model, the corresponding master equations (21)
and (32) are in Lindblad form with a single time-dependent
decay rate γ (t) [or γp(t)]. In these cases, we find that γ (t) < 0
or γp(t) < 0 is the sufficient condition for the appearance
of non-Markovianity. However, for Lindblad-like equations
with multiple time-dependent decay rates, the situation would
become more complicated. What about the conditions of
non-Markovianity? Are the three measures still equivalent?
These problems deserve further investigation.

In addition, the damped Jaynes-Cummings model is based
on the rotating-wave approximation, which neglects in the
microscopic system-reservoir interaction Hamiltonian, the
counterrotating terms responsible for the virtual exchanges
of energy between system and environment. It was shown for
the damped harmonic oscillator system [31] that these virtual
processes may strongly affect the short time behaviors of open
quantum systems and are responsible for the non-Markovianity
of the system dynamics. Thus it is meaningful to study the
properties of non-Markovianity when the more realistic effect
of non-rotating-wave terms is taken into account.

In a word, exposing the relations between different mea-
sures of non-Markovianity in different physical systems or
different dynamical models is important, which helps to
expose the nature of non-Markovian dynamics and find out
effective methods to correctly identify and measure the non-
Markovianity. Our work is only a start. We expect further
research could be stimulated.
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