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The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian
quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics.
In the Markovian case, the connections between the various types of methods are fairly well understood while,
for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings
of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method
by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the
connections between the realizations of the two methods and also highlight how the probability currents between
the system and environment, or between the property states of the total system, are associated with the decay
rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.
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I. INTRODUCTION

The theory of open quantum systems deals with the
dynamics of the reduced system which is coupled to its
environment [1]. This often leads to decoherence and the
loss of quantum properties [2–5], although there also exists
schemes to exploit system-reservoir interactions for quantum
engineering [6–8]. Recently, non-Markovian dynamics, where
memory effects play a crucial role, has become a very active
research area [9–21]. On the one hand, this is due to the
fact that the fundamental understanding of non-Markovianity
is still missing and, on the other hand, non-Markovianity
may be useful for various quantum information or quantum
engineering tasks [20,22].

The solving of non-Markovian dynamics is often a chal-
lenging task and there exists a large number of both analytical
methods [1,23–26] and numerical Monte Carlo algorithms for
this purpose [11–13,27–37]. Roughly speaking, the Monte
Carlo methods can be divided into discontinuous jumplike
unravelings or continuous diffusion-type unravelings. For the
Markovian case without memory effects, the connections
between the methods are fairly well understood [1,38–43]
while the same cannot be said of the non-Markovian methods
despite a few early studies [35,44].

We focus here on two jumplike unravelings and illustrate
their connections by studying simple quantum optical systems.
The method by Gambetta, Askerud, and Wiseman (GAW) is
based on generating stochastic realizations for the total-system
state vectors and monitoring the random jumps between the
property states of the total system [36]. On the other hand, the
recently developed non-Markovian quantum jump (NMQJ)
method generates jumplike realizations for the state vectors
within the Hilbert space of the reduced system.

We show here that there is an inherent connection between
the reduced-system part of the GAW realizations and the
NMQJ realizations. Moreover, we also study how the prob-
ability currents between the property states are associated to
the decay rates of the time-local master equations, and how
the jump rates between the GAW and NMQJ methods are
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connected. We stress that the NMQJ method can be currently
used for systems for which the time-local non-Markovian
master equation can be derived, whereas the GAW method
has greater generality. Our results provide new insights for
non-Markovian dynamics in terms of the information flow
between the system and the reservoir and will hopefully
stimulate further studies of connections between Monte Carlo
methods for non-Markovian dynamics.

The paper is organized in the following way: In Sec. II
we describe the basic ingredients of the GAW method and, in
Sec. III, of the NMQJ method. By studying simple quantum
optical systems, in Sec. IV we show how the methods are
connected and, finally, Sec. V concludes the paper.

II. UNRAVELING IN TOTAL-SYSTEM SPACE:
GAW METHOD

The method by Gambetta, Askerud, and Wiseman (GAW)
is based on generating piecewise deterministic realizations,
or jumplike unraveling, within the Hilbert space of the
total system, describing the discontinuous transitions between
the property states of the system. We give here the basic
ingredients of the method suitable for undriven quantum
optical systems with spectral-mode unraveling. We note that
the GAW method can also be applied to driven systems and
with temporal-mode unraveling. More details can be found
from Refs. [36,45,46].

We focus on the dynamics of simple undriven quantum
optical systems (e.g., two-level and V systems) which are
coupled to a continuum of electromagnetic field modes at zero
temperature. The dynamics of the state vector of the system
and the environment in HS ⊗ HE , where HS and HE are the
Hilbert spaces of the system and the environment, respectively,
is given by the Schrödinger equation

d

dt
|�(t)〉 = −iH |�(t)〉 . (1)

Here we have set h̄ = 1. The Hamiltonian H = HS + HE +
HSE includes the free evolution of the system HS , the
environment HE , and the system-environment interaction HSE .
The free evolution of the n-level system is governed by
HS = ∑n

k=1 ωk|k〉〈k|, where |k〉 are the energy eigenstates
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of the system and ωk are the corresponding energies. The
free evolution of the N -mode environment is given by HE =∑N

j=1 νja
†
j aj , where the operators aj (a†

j ) are the annihilation
(creation) operators for the j th mode of the environment. For
simplicity we focus on system-environment interactions that,
under the rotating wave approximation (RWA), include only
transition from the excited states to the unique ground state
without any cascade structure. The general form of such an
interaction is

HSE = i

n∑
k>1

N∑
j=1

(gk|1〉〈k|a†
j − g∗

k |k〉〈1|aj ). (2)

From now on we will work in the interaction picture H →
HI (t) = ei(HS+HE )tHe−i(HS+HE )t , where the dynamics is given
by Eq. (1) with the Hamiltonian

HI (t) = i

n∑
k>1

N∑
j=1

(gk|1〉〈k|a†
j e

−i�j,k t − g∗
k |k〉〈1|aj e

i�j,k t ),

(3)

where �j,k = νj − ωk and ωk is the energy difference of the
ground state (labeled with index 1) and the kth excited state
of the system. Here gk is a frequency-dependent coupling
constant.

The total-system state vector |�(t)〉 evolves according to
Eq. (1) with the Hamiltonian (3). Let us define a projective
operator valued measure (POVM) as

πmN
= IS ⊗N

j=1 |nj 〉〈nj | = IS ⊗ |mN 〉〈mN |, (4)

where mN is a shorthand notation for an arbitrary photon
number configuration of the N environmental modes. In the
systems we study we can have, at maximum, one excitation in
the environment. However, the GAW method is, in general, not
limited only to one excitation [36]. We can now define property
states of the total system which are conditioned on some
particular photon number configuration of the environment.
These are

|�mN
〉 = πmN

|�(t)〉/√NmN
= 1√

NmN

|φmN
(t)〉S ⊗ |mN 〉E ,

(5)

where NmN
is a normalization factor. We denote the unnormal-

ized property states by |�̃mN
(t)〉. From now on we drop the

subscript N for notational convenience and the simple index m

refers to a particular configuration of N environmental modes.
The GAW method is a piecewise deterministic process

(PDP) where the jumps take place between the different
property states |�m(t)〉 [36,47]. Let us define P (m,t) as the
probability for the total system to be in state |�m(t)〉 at time t

and write the following equation of motion for P (m,t):

d

dt
P (m,t) =

∑
k

Jm,k(t), (6)

where Jm,k(t) is the probability current from |�k(t)〉 to |�m(t)〉
when Jm,k(t) > 0 and, when Jm,k(t) < 0, it is the probability
current from from |�m(t)〉 to |�k(t)〉 (i.e. in the opposite
direction). We can define this in the following way:

Jm,k(t) = Tm,k(t)P (k,t) − Tk,m(t)P (m,t), (7)

where Tm,k(t) is the transition rate from |�k(t)〉 to |�m(t)〉.
From this definition it is clear that Jm,k(t) = −Jk,m(t). Given
Jm,k(t) and P (m,t), there are many possible transition rates
satisfying Eq. (6). One possibility is to use the following one
[36,47]:

When Jm,k(t) � 0,

Tm,k(t) = Jm,k(t)

P (k,t)
, Tk,m(t) = 0, (8)

and, when Jm,k(t) < 0,

Tm,k(t) = 0, Tk,m(t) = − Jm,k(t)

P (m,t)
. (9)

Since we know the total wave function of the system and
environment, |�(t)〉, the probability of a given property
state |�m(t)〉 is P (m,t) = 〈�(t)|πm|�(t)〉. Using P (m,t) and
Eq. (1) with the Hamiltonian in Eq. (3) we obtain

Jm,k(t) = 2Im{〈�(t)|πmHI (t)πk|�(t)〉}. (10)

The method for generating the realizations of the process
begins with solving the total-system Schrödinger equation
followed by the calculation of the quantities Jm,k(t), Tm,k(t),
and P (k,t). For example, the probability to have a jump
between the property states of the total system |�k(t)〉 →
|�m(t)〉 when Jm,k(t) > 0 and between [t,t + δt] is δtTm,k(t).
Then, by using random numbers, we can decide whether a
jump takes place or not. From Eqs. (8) and (10) we see that
the term δtTm,k(t) includes the occupation probability of the
source state k in the ensemble and the rate term from k to m and,
together, they give the transition rate for a single trajectory.

After generation of the realizations, the state of the reduced
system is

ρS (t) = trE

{∑
m

wm(t)|�m(t)〉〈�m(t)|
}

=
∑
m

wm(t)|φm(t)〉〈φm(t)|, (11)

where wm(t) = #(m)
M

are the approximations for probabilities
P (m,t), M is the size of the statistical ensemble, and #(m) is
the number of ensemble members in state m.

III. UNRAVELING IN REDUCED-SYSTEM
SPACE: NMQJ METHOD

The non-Markovian quantum jump (NMQJ) method is
constructed as a piecewise deterministic process in the Hilbert
space of system HS [11–13] and the key ingredient is the
association of negative decay rates to reverse quantum jumps.
The starting point is the time-local non-Markovian master
equation, which can be derived, for example, with the time-
convolutionless projection operator method (TCL) [1]. The
general form of such a master equation (given here in the
interaction picture) is

d

dt
ρS (t) = −i[HLS(t),ρS (t)] +

∑
j


j (t)

×
(

CjρS (t)C†
j − 1

2
{ρS (t),C†

jCj }
)

, (12)
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where HLS(t) = 1
2

∑
j Sj (t)C†

jCj is the Lamb shift Hamilto-
nian, Sj (t) is the Lamb shift rate, 
j (t) is the decay rate which
can take negative values, and the operator Cj is the Lindblad or
jump operator to channel j . The density matrix of the system
at any point of time is decomposed as

ρS (t) =
Meff∑
i=1

P (|ψi(t)〉,t)|ψi(t)〉〈ψi(t)|, (13)

where M is the size of the statistical ensemble of the
unraveling, Meff is the dimension of the set of different states
needed in the simulation (the so-called effective ensemble
size), and P (|ψi(t)〉,t) is the probability of finding state
|ψi(t)〉〈ψi(t)| in ρS (t). The states in the ensemble evolve
according to [1,42]

d

dt
|ψi(t)〉 = −iHeff(t)|ψi(t)〉

= −i

⎛
⎝HLS(t) − i

1

2

∑
j


j (t)C†
jCj

⎞
⎠ |ψi(t)〉.

(14)

The rate of jumps during positive decay in channel j from
state |ψk(t)〉 to state |ψl(t)〉 with jump operator Cj is

R
j

lk(t) = 
j (t)〈ψk(t)|C†
jCj |ψk(t)〉. (15)

The corresponding quantum jump is given by

|ψk(t)〉 → |ψl(t)〉 = Cj |ψk(t)〉√
〈ψk(t)|C†

jCj |ψk(t)〉
. (16)

The action of operator Cj thus means that the state |ψk(t)〉
is destroyed and the state |ψl(t)〉 is created in the statistical
ensemble.

During a negative decay probability period the jumps occur
in the reverse direction in the following sense:

|ψk(t)〉 ← |ψl(t)〉 = Cj |ψk(t)〉√
〈ψk(t)|C†

jCj |ψk(t)〉
. (17)

The rate of these reverse jumps is obtained from

R
j

kl(t) = −P (|ψk(t)〉,t)
P (|ψl(t)〉,t) 
j (t)〈ψk(t)|C†

jCj |ψk(t)〉. (18)

IV. CONNECTION BETWEEN GAW
AND NMQJ UNRAVELINGS

To make a connection between the two unravelings, we
are interested in (i) whether the reduced-system part of the
total-system-property state realizations of the GAW method
have similarities with the NMQJ realizations and (ii) if jumps
within the two methods occur with the same rates. As we
will show below, the answer to both of these questions is
affirmative.

Comparing the rates, Eqs. (9) and (18), we note that
the jump rates for the reverse probability flow and negative
decay rates [Jm,k < 0 and 
j (t) < 0, respectively] have
similar structure. They are both inversely proportional to the
probability to be in the source state of the jump. In the GAW

method, the given property state is associated to the specific
mode to have the excitation (unless the environment is in the
vacuum state). In the NMQJ realizations, we know whether the
system or the environment has the excitation while, in the latter
case, we do not know which specific mode has the excitation.

In order to reveal the detailed connection between the GAW
and NMQJ methods, let us define the following operators:

�0 = IS ⊗ |01,02, . . . ,0N 〉〈01,02, . . . ,0N | = IS ⊗ |0〉〈0|,
(19)

�1 =
N∑

k=1

IS ⊗ a
†
k|0〉〈0|ak =

N∑
k=1

IS ⊗ |1k〉〈1k|.

From Eq. (4) we see that �0 = πm=0···0 and �1 = ∑
k πk ,

where k = 0 · · · 1k · · · 0 (i.e., k labels all single-excited-mode
configurations of the environment). We can now ask what is
the probability P (0,t) to find zero photons at time t in the
environment. This is given by

P (0,t) = 〈�(t)|�0 |�(t)〉 . (20)

Similarly, the total probability P (1,t) of having one photon in
the environment but not knowing in which mode is

P (1,t) = 〈�(t)|�1 |�(t)〉 . (21)

The connection between the GAW and the NMQJ methods is
found by reformulating the GAW method for the following
combined property states:

|�0(t)〉 = 1√
N0

�0|�(t)〉,
(22)

|�1(t)〉 = 1√
N1

�1|�(t)〉.

For this purpose, we must calculate the combined probability
current from the system to the environment. This is obtained
by considering the total probability current from the N -mode
vacuum states to all 1k states:

J1,0(t) =
N∑

k=1

J1k ,0(t). (23)

It can be easily shown that the combined probability current
satisfies J1,0(t) = −J0,1(t) and

d

dt
P (1,t) = J1,0(t),

(24)
d

dt
P (0,t) = −J1,0(t).

We have
∑N

k=1
d
dt

P (1k,t) = d
dt

P (1,t) and the right-hand side
(rhs) of both equations follow from the definition of Eqs. (6)
and (23). The transition rates have similar structure as in
Eqs. (8) and (9), but we must replace probability with
combined probability and probability current with combined
probability current.

As we will show below for specific examples, the GAW
transition rates defined with combined quantities correspond
to the transition rates of the NMQJ method. Here, |�1(t)〉
and |�0(t)〉, which are defined in the total-system Hilbert
space HS ⊗ HE , are the possible values of the stochastic
wave function of the combined GAW process. If the system
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part belonging to HS of the GAW stochastic wave function
is in the same projective ray as the values of the stochastic
wave function of the NMQJ method, we can conclude that
both methods generate similar realizations for the reduced
system. We will also see that the deterministic evolutions
of the stochastic wave functions for both processes are
identical.

This means that the PDPs of the two methods are the
same in the following sense: The state space consists of the
same set of projective rays in HS , stochastic wave functions
evolve similarly between random jumps in both processes,
and random jumps in both processes take place between
the same two projective rays in HS with equal rates. It
is sufficient that the states belong to the same projective
ray in HS since we are interested only in the dynamics
of the reduced system. Moreover, the states in the same
projective ray give equal contribution to the density matrix
of the system since the complex phase of the state is not an
observable.

The summing of the GAW probability currents means that
we lose the information regarding which mode the excitation
from the system goes to as the system decays. It is intuitive
that the sum of the probability currents corresponds to the
decay rate since the decay rate describes the total effect of
the environment on the system. However, it is important to
note that, for a given sign of the decay rate, there typically
occurs probability-flow components of the GAW realizations
in both directions.

In the examples below, we set the frequency-dependent
couplings to be real valued and equal to gk = √

dνρk(νk),
where ρk(ν) = 1

2π

γ0λ
2

(ν−ωc)2+λ2 is the spectral density, dν is the
mode spacing, λ is the spectral width, ωc is the position of the
peak in frequency space, and γ0 defines the height of the peak.
These parameters are also related to the time scales involved in
the dynamics. We have τS ∼ γ −1

0 , which is the time scale of the
reduced-system evolution, and τE ∼ λ−1 is the time scale of
the environmental correlation functions. We can also compare
our discrete N -mode cases to the exact and numerical solutions
obtained in the continuum limit

∑
k |gk|2 → ∫

dνρk(ν).
In the following, we make a detailed study for a two-level

system (TLA) and a three-level atom in a V configuration (V
system).

A. Two-level atom

The Hamiltonian in the interaction picture is now

HI = i

N∑
k=1

gk(|g〉〈e|a†
ke

i�kt − |e〉〈g|ake
−i�kt ), (25)

where �k = νk − ωeg . The state of the total system and the
initial conditions are

|�(t)〉 = [cg(t)|g〉 + ce(t)|e〉]|0〉 +
N∑

k=1

ck(t)|g〉|1k〉,
(26)

ck(0) = 0,

so that, initially, the modes of the environment are in a
vacuum state. The Schrödinger equation and the interaction

picture Hamiltonian lead to the following system of first-order
differential equations for the amplitudes:

ċg(t) = 0,

ċe(t) = −
N∑

k=1

gke
−i�kt ck(t), (27)

ċk(t) = gke
i�kt ce(t).

Probabilities to find zero or one photon in the environment are,
from Eqs. (20) and (21),

P (0,t) = 〈�(t)|�0|�(t)〉 = |cg(t)|2 + |ce(t)|2,
(28)

P (1,t) = 〈�(t)|�1|�(t)〉 =
N∑

k=1

|ck(t)|2 = 1 − P (0,t).

In the GAW method, the combined property states, which are
the two possible states that the stochastic wave function can
take, are, by using Eq. (22),

|�0(t)〉 = cg(t)|g〉 + ce(t)|e〉√|cg(t)|2 + |ce(t)|2 |0〉 = |φ0(t)〉|0〉, (29)

|�1(t)〉 = 1∑N
j=1 |ck(t)|

N∑
k=1

ck|g〉|1k〉
(30)

= 1√
P (1,t)

N∑
k=1

ck|g〉|1k〉.

Here, in the upper equation, we use |φ0(t)〉 to denote
the reduced-system part of the corresponding total-system-
property state. From Eqs. (10) and (23) we get the combined
probability current

J1,0(t) = −2Re

{
ċe(t)

ce(t)

}
|ce(t)|2 . (31)

The probabilities P (1,t) and P (0,t) satisfy Eq. (24) which can
be easily calculated by using the Hamiltonian and the total
state of the system and the environment, or the definitions of
P (1,t), P (0,t), and J1,0(t) [see text below Eq. (24)]. We can
define the transition rates by using Eqs. (8) and (9). When
J1,0(t) � 0,

T1,0(t) = −2Re

{
ċe(t)

ce(t)

} |ce(t)|2
|cg(t)|2 + |ce(t)|2 ,

(32)
T0,1(t) = 0,

and, when J1,0(t) < 0,

T1,0(t) = 0,
(33)

T0,1(t) = 2Re

{
ċe(t)

ce(t)

} |ce(t)|2
1 − |cg(t)|2 − |ce(t)|2 .

Finally, the reduced density matrix can be obtained by taking
the trace over the environment:

ρs(t) = trE {w0(t)|�0(t)〉〈�0(t)| + w1(t)|�1(t)〉〈�1(t)|}
= w0(t)|φ0(t)〉〈φ0(t)| + w1(t)|g〉〈g|.

Next, we study the TLA with the NMQJ method, keeping
in mind the results previously derived with the GAW method.
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The master equation for the TLA unraveled with the NMQJ
method is

d

dt
ρS (t) = −i

[
1

2
S(t)σ+σ−,ρS (t)

]

+
(t)

(
σ−ρS (t)σ+ − 1

2
{ρS (t),σ+σ−}

)
, (34)

where the decay rate 
(t) and Lamb shift rate S(t) are [1]


(t) = −2Re

{
ċe(t)

ce(t)

}
,

(35)

S(t) = −2Im

{
ċe(t)

ce(t)

}
,

and the non-Hermitian Hamiltonian giving the deterministic
evolution of the stochastic wave function is [1]

Heff(t) = 1
2 [S(t) − i
(t)] σ+σ−. (36)

All the amplitudes ci(t) in Eq. (26) are solutions of the
Schrödinger equation for the system and the environment with
the Hamiltonian from Eq. (25). These amplitudes have the
following connection to the normalized state vectors of the
effective ensemble of the NMQJ method:

|ψ0(t)〉 = cg(t)|g〉 + ce(t)|e〉√|ce(t)|2 + |cg(t)|2 ,

|ψ1(t)〉 = |g〉 ,
(37)

bg(0) = cg(0),

be(0) = ce(0).

Comparing these with the property state |�0(t)〉 of the GAW
method in Eq. (29), we can see that

trE {|�0(t)〉〈�0(t)|} = |φ0(t)〉 〈φ0(t)| = |ψ0(t)〉〈ψ0(t)|,
(38)

trE {|�1(t)〉〈�1(t)|} = |g〉〈g| = |ψ1(t)〉〈ψ1(t)|.
This shows that the reduced-system part of the GAW realiza-
tions and the NMQJ realizations are identical. We are left with
showing in detail that the transition rates are also the same.

The reduced density matrix in NMQJ is

ρS (t) = P (|ψ0(t)〉 ,t) |�0(t)〉〈ψ0(t)|
+P (|ψ1(t)〉 ,t) |ψ1(t)〉〈ψ1(t)|. (39)

When 
(t) � 0 we have transitions from |ψ0(t)〉 → |ψ1(t)〉
and, from Eq. (15), we obtain

R1,0(t) = 
(t)
|ce(t)|2

|cg(t)|2 + |ce(t)|2 . (40)

This is identical to T1,0(t) when J1,0(t) � 0 [see Eqs. (32) and
(35)].

When 
(t) < 0 we have transitions from |ψ1(t)〉 → |ψ0(t)〉
and

R0,1(t) = −P (|ψ0(t)〉 ,t)
P (|ψ1(t)〉 ,t)


(t)
|ce(t)|2

|cg(t)|2 + |ce(t)|2 . (41)

Since ρS (t) must be a positive operator we know that the decay
rate 
(t), and therefore also J1,0(t), must initially be positive.

Let us call t1 the time when 
(t) turns negative for the first
time. Now ρS (t), when t < t1, generated by GAW and NMQJ
must be the same since, from Eq. (38), we see that the states in
the decomposition of ρS (t) belong to the same projective ray
and R1,0(t) = T1,0(t) for t < t1. Therefore we have P (0,t) =
|cg(t)|2 + |ce(t)|2 = P (|ψ0(t)〉,t) and P (1,t) = P (|ψ1(t)〉,t).
Now we can rewrite R0,1(t) as

R0,1(t) = −P (0,t)

P (1,t)

(t)

|ce(t)|2
P (0,t)

= −
(t)
|ce(t)|2
P (1,t)

, (42)

which is the same as T0,1(t) when J1,0(t) < 0 [see Eqs. (33)
and (35)]. It is also clear now that, at t = t1, both J1,0(t) and

(t) turn negative.

Thus we have shown that we can derive the NMQJ results
from the GAW method for this system. This means (i) that we
can obtain the decay rate in the master equation (34) from the
probability currents between the total-system-property states
of the GAW method and (ii) that the random state vector in
HS in both methods obtains its possible values from the same
set of states; namely, |g〉 and |ψ0〉 (we neglect the global phase
since it plays no role here).

In the first example we have chosen the parameters as
|�(t)〉 = |e〉|0〉, time scale [t] = 1/λ, δ = 3λ, and γ0 = 0.8λ.
We use 180 environmental modes and a statistical ensemble
with 104 members. With the parameters mentioned above,
the decay rate in the master equation (34) is time dependent
but always positive, thus corresponding to the time-dependent
Markovian case [48]. This also means that there are no reverse
jumps in the NMQJ method in this parameter regime. However,
as Fig. 1 shows, there are negative probability currents in
the GAW method for specific modes or individual property
states, while the total probability current between the system
and the environment, J1,0(t), remains positive, indicating net
current from the system to the environment. This means that,
while there are individual transitions from one-photon to
zero-photon states in GAW, the number of transitions from
zero-photon states to one-photon states is larger, keeping the
total probability current positive, which then matches the
probability current obtained from NMQJ.

FIG. 1. (Color online) Probability currents J1k ,0(t) as a function
of time t for TLA in the Markovian case. Initial state is |e〉|0〉, δ = 3λ,
γ0 = 0.8λ, and we use 180 environmental modes. Units of time and
mode frequency ωc − νk are 1/λ and λ, respectively. When t ≈ 1 we
see that there occurs negative probability currents.
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FIG. 2. (Color online) Probability currents J1k ,0(t) as a function
of time t for TLA. The parameters are as in Fig. 1 except that γ0 = 4λ

and δ = −4λ. Units of time and mode frequency ωc − νk are 1/λ and
λ, respectively. We can identify the modes for which νk ≈ ωc, which
are responsible for the non-Markovian effects. See the text for details.

In the second example we have chosen the parameters
as in the first example except for γ0 = 4λ and δ = −4λ.
The system is now in the non-Markovian regime, displaying
also negative values for the decay rate. Figure 2 shows the
individual probability currents for this case. The results show
that the region νk − ωc ≈ 0 (or νk ≈ ωc) gives the dominant
contribution to the total probability current, and it has also the
dominant negative contribution. As a consequence, the total
current has negative periods, which is reflected in the negative
regions for the decay rate, and thus the system is driven to the
non-Markovian regime.

In Fig. 3 we have plotted the decay rate which is calculated
from the probability current components. We compare it to
the exact decay rate calculated in the continuum limit and see
that the agreement of the curves is good. In the same figure
we have also plotted the exact solution for the density matrix
and compare it to the simulated ones, and we can see that the
agreement of the curves is excellent.

FIG. 3. (Color online) Decay rate 
(t) and excited state popula-
tion ρee(t) as a function of time t for TLA. The parameters are as in
Fig. 2. Units of time and decay rate are 1/λ and λ, respectively.

B. V system

The Hamiltonian for the V system in the interaction picture
is

HI = i

N∑
k=1

gk(|c〉〈a|a†
ke

i�k,a t + |c〉〈b|a†
ke

i�k,bt + H.c), (43)

where �k,i = νk − ωi , i = a,b, and we have denoted with |a〉
and |b〉 the two upper states and with |c〉 the ground state.
Differential equations for the amplitudes obtained from the
Schrödinger equation are

ċc(t) = 0,

ċb(t) = −
N∑

k=1

gke
−i�k,bt ck(t),

(44)

ċa(t) = −
N∑

k=1

gke
−i�k,a t ck(t),

ċk(t) = gk[ca(t)ei�k,a t + cb(t)ei�k,bt ].

As we have seen in Sec. IV A, the sum of the probability
currents over all modes is related to the decay rate. By using
the same procedure as in Sec. IV A, it is possible to derive the
following equations for the probabilities:

d

dt
P (0,t) = −J1,0(t),

(45)
d

dt
P (1,t) = J1,0(t).

The reduced-system dynamics corresponding to these equa-
tions is given by a nonsecular master equation which is not, in
general, compatible with the form given in Eq. (12), which is
used as a starting point for the NMQJ.

To find the connection between GAW and NMQJ in this
system, we approximate the exact nonsecular dynamics by
decoupling the evolution of the coherences and populations
[28]. Eventually, this means that the emission of the photon
can be associated to one of the two decay channels, and we
write the Hamiltonian as

HI = i

N∑
k=1

gk(|c〉〈a|a†
ke

i�k,a t + |c〉〈b|b†kei�k,bt + H.c.), (46)

where we have introduced new environmental modes de-
scribed by operators bk . This means that we can identify from
which decay channel the photon originated, which prevents
the occurrence of quantum beats [49].

The differential equations for the amplitudes are then

ċc(t) = 0,

ċb(t) = −
N∑

k=1

gke
−i�k,bt cb

k (t),

ċa(t) = −
N∑

k=1

gke
−i�k,a t ca

k (t), (47)

ċb
k (t) = gkcb(t)ei�k,bt ,

ċa
k (t) = gkca(t)ei�k,a t ,
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and these equations are a good approximation for Eq. (44) in
certain parameter regions.

We assume that, initially, the environmental modes are
empty. Then we can give the total state of the system and
the environment as

|�(t)〉 = cc(t) |c〉 |0〉a |0〉b + ca(t) |a〉 |0〉a |0〉b

+ cb(t) |b〉 |0〉a |0〉b +
N∑

k=1

ca
k (t) |c〉 |1k〉a |0〉b

+
N∑

k=1

cb
k (t) |c〉 |0〉a |1k〉b . (48)

From now on we drop the subscripts referring to different
Hilbert spaces. We want to know the probabilities to find a
photon in the environment and we want to identify which of
the excited states has decayed. Therefore, it is natural to use
the following operators:

�0 = IS ⊗ |0〉〈0| ⊗ |0〉〈0|,

�1,a =
N∑

k=1

IS ⊗ |1k〉〈1k| ⊗ |0〉〈0|, (49)

�1,b =
N∑

k=1

IS ⊗ |0〉〈0| ⊗ |1k〉〈1k|.

The probability to have one photon in the environment, which
has been created when the excited state i decayed, is P i(1,t),
where i = a,b, and the probability to have zero photons in the
environment is P (0,t). Following a similar procedure as for the
TLA case presented earlier, we can calculate the probabilities
as

P i(1,t) = 〈�(t)|�1,i |�(t)〉 =
N∑

k=1

∣∣ci
k(t)

∣∣2
,

(50)
P (0,t) = 〈�(t)|�0 |�(t)〉 = |cc(t)|2 + |cb(t)|2 + |ca(t)|2 .

Subsequently, the combined-property states are

|�0(t)〉 = cc(t) |c〉 |0〉 |0〉+ca(t) |a〉 |0〉 |0〉+cb(t) |b〉 |0〉 |0〉√
P (0,t)

,

|�1,a(t)〉 =
∑N

k=1 ca
k (t) |c〉 |1k〉 |0〉√
P a(1,t)

, (51)

|�1,b(t)〉 =
∑N

k=1 cb
k (t)|c〉|0〉|1k〉√
P b(1,t)

.

The differential equations for probabilities P (0,t) and P i(1,t)
can be calculated with the help of Eqs. (23), (47), and (48).
We obtain

d

dt
P (0,t) = −J a

1,0(t) − J b
1,0(t),

d

dt
P a(1,t) = J a

1,0(t), (52)

d

dt
P b(1,t) = J b

1,0(t),

where the combined probability currents J a
1,0(t) and J b

1,0(t)
tell how much probability is flowing from the system to

the environment in each channel separately. The combined
probability currents are now

J i
1,0(t) = −2Re

{
ċi(t)

ci(t)

}
|ci(t)|2 , (53)

where i = a,b. We can define transition rates as in Eqs. (8)
and (9) separately for each decay path since we can partition
the combined probability current into two independent parts.
They are, when J i

1,0(t) � 0,

T i
1,0(t) = J i

1,0(t)

P (0,t)
= −2Re

{
ċi(t)

ci(t)

} |ci(t)|2
P (0,t)

,

(54)
T i

0,1(t) = 0,

and, when J i
1,0(t) < 0,

T i
1,0(t) = 0,

(55)

T i
0,1(t) = − J i

1,0(t)

P i(1,t)
= 2Re

{
ċi(t)

ci(t)

} |ci(t)|2
P (1,t)

,

where i = a,b.
The reduced density matrix generated by the GAW method

is now

ρS (t) = trE {w0(t)|�0(t)〉〈�0(t)| + w1,a(t)|�1,a(t)〉〈�1,a(t)|
+w1,b(t)|�1,b(t)〉〈�1,b(t)|}. (56)

Next we will study the NMQJ method for this system.
The master equation describing the reduced-system dynamics
under the secular approximation is

d

dt
ρS (t)=−i

[
1

2
Sa(t)|a〉〈a|,ρS (t)

]
−i

[
1

2
Sb(t)|b〉〈b|,ρS (t)

]

+
a(t)

(
|c〉〈a|ρS (t)|a〉〈c| − 1

2
{ρS (t),|a〉〈a|}

)

+
b(t)

(
|c〉〈b|ρS (t)|b〉〈c| − 1

2
{ρS (t),|b〉〈b|}

)
.

(57)

The total state of the system and the environment has been
given in Eq. (48) and, by tracing out the environmental degrees
of freedom and taking the time derivative of the expression
|�(t)〉〈�(t)|, we can identify the Lamb shifts and the decay
rates to be


i(t) = −2Re

{
ċi(t)

ci(t)

}
,

(58)

Si(t) = −2Im

{
ċi(t)

ci(t)

}
,

where i = a,b. The non-Hermitian Hamiltonian for NMQJ in
this system is

Heff(t) =
∑

i

1

2
[Si(t) − i
i(t)] |i〉〈i|, (59)
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where again i = a,b. We can give the deterministically
evolving state of the NMQJ process and the initial condition
as

|ψ0(t)〉 = dc(t) |c〉 + da(t) |a〉 + db(t) |b〉 ,
(60)

dj (0) = cj (0),

where j = c,a,b and cj (t) are probability amplitudes from
Eq. (48). By solving the time evolution given by the Hamilto-
nian of Eq. (59), we see that cc(t) = dc(t), ca(t) = da(t), and
cb(t) = db(t). In NMQJ, the realizations of the process are
normalized and therefore we can write

|ψ0(t)〉 = cc(t) |c〉 + ca(t) |a〉 + cb(t) |b〉√
|cc(t)|2 + |cb(t)|2 + |ca(t)|2

,

(61)
|ψ1(t)〉 = |c〉 .

The reduced density matrix of the NMQJ process is then

ρS (t) = P (|ψ0(t)〉 ,t) |ψ0(t)〉〈ψ0(t)|
+P (|ψ1(t)〉 ,t) |ψ1(t)〉〈ψ1(t)|. (62)

As in Eqs. (15) and (18) and using Eqs. (50), we can write the
transition rates when 
i(t) � 0 as

Ri
10(t) = 
i(t)

|ci(t)|2
P (0,t)

,

(63)
Ri

01(t) = 0,

and, when 
i(t) < 0, as

Ri
10(t) = 0,

(64)

Ri
01(t) = −P (|ψ0(t)〉 ,t)

P (|ψ1(t)〉 ,t)

i(t)

|ci(t)|
P (0,t)

,

where i = a,b. By using Eqs. (51) and (61), we obtain the
connection between the GAW and NMQJ state vectors:

trE {|�0(t)〉〈�0(t)|} = |ψ0(t)〉〈ψ0(t)|,
(65)

trE {|�1,i(t)〉〈�1,i(t)|} = |ψ1(t)〉〈ψ1(t)|,
where i = a,b.

FIG. 4. (Color online) Probability currents J1k ,0(t) as a function
of time t in the nonsecular case for the V system. The initial state is

1√
2
(|a〉|0〉 + |b〉|0〉), γ0 = 4λ, δa = 3λ, δb = −3λ, and we have used

240 environmental modes. Units of time and mode frequency ωc − νk

are 1/λ and λ, respectively.

FIG. 5. (Color online) Probability currents J b
1k ,0(t) (left panel)

and J a
1k ,0(t) (right panel) as a function of time t in the secular case for

the V system. The parameters are as in Fig. 4 but the initial state is
1√
2
(|a〉|0〉|0〉 + |b〉|0〉|0〉). Units of time and mode frequency ωc − νk

are 1/λ and λ, respectively.

This means that the system Hilbert-space part of the
possible realizations of the combined GAW process and the
NMQJ process with the same index belong to the the same
projective ray in HS . We also see that there is redundancy in
trE {|�1,i(t)〉〈�1,i(t)|} since both states when i = a,b belong
to the same projective ray in HS . This means that we can
combine w1,b(t) + w1,a(t) = w1(t) in Eq. (56) and that both
transition rates T a and T b induce jumps between the same
two projective rays, but the rates of the jumps are generally
different.

We assume that, from some initial time t0 to t1, the rates

a(t0) and 
b(t) are positive. Then, from Eqs. (54), (58),
and (63) we see that Ri

10(t) = T i
10(t) and Ri

01(t) = T i
01(t). This

implies that the density matrices generated by GAW and
NMQJ are the same, at least to t1, when at least one of the
decay rates or collective probability currents turns negative.
Since NMQJ and GAW both have normalized realizations we

 0

 0.2

 0.4

 0.6

 0.8

 0  2  4  6  8  10  12

Time

ρcc non-sec
ρaa non-sec

ρcc sec 
ρaa sec 

ρcc TCL2
ρaa TCL2

-0.2

 0

 0.2

 0.4
re(ρab) non-sec
im(ρab) non-sec

re(ρab) sec
im(ρab) sec

re(ρab) TCL2
im(ρab) TCL2

FIG. 6. (Color online) Density matrix elements as a function of
time t for the V system The parameters are as in Figs. 4 and 5. Units
of time are 1/λ. For the chosen parameter values ρaa(t) = ρbb(t).
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FIG. 7. (Color online) Top: Sum of probability currents from the
system to the environment as a function of time t for the V system.
Solid red line is the nonsecular case where we cannot distinguish
different decay channels. Blue circles are the secular case where we
have two different decay channels. Bottom: Decay rates as a function
of time t calculated from the GAW method for the secular case (solid
blue line) and decay rate of TCL2 master equation (red circles) for V
system. Parameters are as in Figs. 4 and 5. Units of time, probability
current, and decay rate are 1/λ, λ, and λ, respectively.

can deduce that w0(t) = P (0,t) = P ( |ψ0(t)〉 ,t) and w1(t) =
P (1,t) = P ( |ψ1(t)〉 ,t) when t ∈ [t0,t1].

Now, when negative currents [J i
1,0(t) < 0] or decay rates

[
i(t) < 0] emerge when t > t1, the transition rates are
T i

0,1(t) = Ri
0,1(t) and T i

1,0(t) = Ri
1,0(t) since we have P (0,t) =

P ( |ψ0(t)〉 ,t) and P (1,t) = P ( |ψ1(t)〉 ,t) [the calculation is
the same as we did in Eq. (42)]. Thus we have shown that the
GAW process for the combined property state is an equivalent
process to NMQJ in HS in the sense we defined at the
beginning of Sec. IV.

Next we study a numerical example where the ini-
tial state is written in the nonsecular case as |�(t)〉 =

1√
2
(|a〉S |0〉E + |b〉S |0〉E ) and under the secular approximation,

where each channel has an independent environment, as
|�(t)〉 = 1√

2
(|a〉S |0〉Ea

|0〉Eb
+ |b〉S |0〉Ea

|0〉Eb
). We have writ-

ten here the different Hilbert spaces explicitly for clarity
but, from now on, we omit this for compactness of nota-
tion. Other parameters are defined as [t] = 1/λ, γ0 = 4λ,
δa = 3λ, δb = −3λ, and we have used 240 environmental
modes.

We start with the nonsecular case. Figure 4 shows the
corresponding probability currents between the property states
of the GAW method. The interference of probability currents is
visible. In the secular case, Fig. 5 shows probability currents
under the secular approximation, which decouples the two

excited states. Probability currents cannot interfere because
each excited state interacts with its separate environment. The
comparison between the density matrices for the two cases are
shown in Fig. 6. In the same figure we can also see that, under
the secular approximation, the reduced dynamics are governed
by the master equation (57). We can clearly see the effect of the
interference of the probability currents on the reduced-system
dynamics in the nonsecular case.

In Fig. 7 we show the effect of the secular approximation
on the combined probability current from the system to
the environment; that is, the difference between J1,0(t) and
J a

1,0(t) + J b
1,0(t). There are fast oscillations in J1,0(t) and

it can even be negative when J a
1,0(t) + J b

1,0(t) is positive.
In Fig. 7 we compare the secular approximation decay rate
calculated from GAW to the decay rate of second order TCL
master equation (TCL2) and we see that the match is very
good.

V. CONCLUSIONS

We have studied the non-Markovian dynamics of simple
quantum optical systems by means of two jumplike un-
ravelings. The GAW method uses piecewise deterministic
realizations within the Hilbert space of the total system
while the NMQJ method exploits piecewise deterministic
realizations within the Hilbert space of the reduced system.
Our analysis shows that there exists a connection between
the two methods. In particular, we have demonstrated that
the reduced-system part of the property states of the GAW
are identical for the NMQJ state vectors in the considered
cases. Moreover, the summation over the probability currents
appearing in the GAW formalism are directly connected
to the decay rates of the time-local master equations and
hence to the rates of jumps in the NMQJ method. While
there exists quite a large variety of Monte Carlo methods
for non-Markovian systems [11–13,27–37], both jump and
diffusion type, generally the connections between the methods
have not yet been extensively investigated apart from a
few studies [35,44]. We expect that the results presented
here will stimulate further research in this area, leading to
improved insight into the often complex quantum dynamics of
non-Markovian systems. Moreover, analyzing the probability
currents in a similar manner as treated here may lead to further
understanding of the information flow between the system and
the environment; a topic which is currently vividly discussed
in the context of open quantum systems.
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