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Optical homodyne tomography with polynomial series expansion
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We present and demonstrate a method for optical homodyne tomography based on the inverse Radon transform.
Different from the usual filtered back-projection algorithm, this method uses an appropriate polynomial series
to expand the Wigner function and the marginal distribution, and discretize Fourier space. We show that
this technique solves most technical difficulties encountered with kernel deconvolution-based methods and
reconstructs overall better and smoother Wigner functions. We also give estimators of the reconstruction errors
for both methods and show improvement in noise handling properties and resilience to statistical errors.
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I. INTRODUCTION

In quantum mechanics it is not possible to directly observe
a quantum state |ψ〉. In order to obtain full knowledge about
|ψ〉 it is necessary to accumulate measurement statistics of
observables, such as position x̂ or momentum p̂, on many
different bases. In quantum optics, this statistical measurement
can be achieved by angle-resolved homodyne measurement
of the operator x̂θ = x̂ cos θ + p̂ sin θ to acquire statistics of
the squared modulus of the wave function |〈xθ |ψ〉|2. Instead
of the quantum state |ψ〉, one is rather usually interested
in reconstructing the more general density matrix ρ̂ of the
system. Fully equivalent to ρ̂, it is also possible to reconstruct
the Wigner function W (q,p) from |〈xθ |ψ〉|2. However, the
reconstruction of ρ̂ or W (q,p) is not immediate and requires
the reconstruction of the complex phase of the quantum
system from the many angle-resolved measurements. With
the measurement of |〈xθ |ψ〉|2, these two operations together
are referred to as quantum homodyne tomography or optical
homodyne tomography [1].

While some tomography algorithms reconstruct the former
density matrix, others rather reconstruct the latter Wigner func-
tion. Independently, tomography algorithms can be roughly
classified into two species. Historically the first to be pro-
posed and used for optical homodyne tomography, linear
methods exploit and inverse the linear relationship between
the experimentally measurable quantity |〈xθ |ψ〉| on one hand
and ρ̂ or W (q,p) on the other hand. Among them, the
filtered back-projection algorithm [1,2] based on the inverse
Radon transform [3] is the most commonly used. Similar
in nature, there also exist methods based on quantum state
sampling of individual components of the density matrix ρ̂

with sample functions [4,5]. The linear methods, however,
suffer in general from technical difficulties associated with
the numerical deconvolution necessary to perform the linear
inversion of the Radon transform (see Sec. II for details).
In addition, they usually do not guarantee the physicality
of the reconstructed state, the positivity of ρ̂. Finally they
perform weakly against statistical noise and show numerical
instabilities for higher frequency components and fine details
of the reconstructed objects. Variational methods, such as the
maximum entropy [6] and maximum likelihood [7] algorithms,
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were later applied to optical homodyne tomography to address
these problems. These methods can be designed to enforce the
physicality of the reconstructed state and are usually more
resilient to statistical errors. Since the reconstructed states
are not defined constructively, an approximation procedure,
typically iterative, is used to achieve the reconstruction in
practice [8].

Notice that in theory it is actually possible to bypass
these numerical reconstructions and directly observe the
Wigner function W (q,p) with repeated measures of the parity
operator P̂ = eiπn̂ where n̂ is the number operator [9]. This
measurement technique uses the link between the Wigner
function value at point (q,p) and the expectation value of
P̂ for the displaced density matrix ρ̂,

W (q,p) = 2

π
tr[D̂(−α)ρ̂D̂(α)eiπn̂], (1.1)

where D̂ is the displacement operator and α = (q + ip)/
√

2.
A close tomography technique has been experimentally
demonstrated in coupled systems of atoms and light [10].
Unfortunately, a parity detector is a highly nonlinear detector
which can only be partially implemented for light beams with
time-multiplexing and single-photon detectors. Therefore with
current state-of-the-art technologies in quantum optics, it is
not possible to rely on count statistics alone for quantum state
tomography and one has to use optical homodyne tomography
based on Gaussian measurements.

While the linear methods look inferior to the variational
methods, most of their associated problems are only technical
in nature and can in principle be solved. In this paper we show
that is it possible to use a linear reconstruction algorithm with
better resilience to noise and better physical properties overall
than the usual filtered back-projection method. The success of
this approach lies in a systematic expansion of both the Wigner
function W (q,p) and the marginal distribution p(x,θ ) in polar
coordinates. This circular harmonic expansion technique has
been applied in the past to other problems where the Radon
transform plays a role in tomography [11,12], and here we
adapt it to the quantum framework of optical homodyne
tomography. In Sec. II we first review the basics of the
inverse Radon transform and the usual filtered back-projection
algorithms for optical homodyne tomography. In Sec. III we
introduce the expansion method: We first conduct a spectral
analysis of the angular components of p(x,θ ) and W (q,p);
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from this analysis we argue that a polynomial approximation is
an efficient way to expand the radial components. In Sec. IV we
give details about the implementation of the algorithm and also
provide an estimator of the reconstruction errors. Using our
estimator we study the performances relatively to the filtered
back-projection algorithm on simulated and experimental data
sets. We complete this comparison with numerical studies of
the distance between target and reconstructed quantum states.

II. FILTERED BACK-PROJECTION

In 1917, Radon introduces the integral transform R of two-
dimensional (2D) functions integrated along straight lines and
provides the formula for the inverse transform R−1 [3]. Today
the Radon and inverse Radon transforms are ubiquitous in
tomography and find applications in many different area of
science. The Radon transform is as well applicable to optical
homodyne tomography. First we recall the definition of the
observable operator x̂θ of an homodyne measurement,

x̂θ = Û
†
θ x̂Ûθ = x̂ cos θ + p̂ sin θ, (2.1)

where Ûθ is the rotation operator in phase space, or phase-
shifting operator. The marginal distribution of the homodyne
current p(x,θ ) is then distributed according to the squared
modulus of the wave function,

p(x,θ ) = |〈xθ |ψ〉|2 = 〈x|Ûθ |ψ〉〈ψ |Û †
θ |x〉, (2.2)

where |xθ 〉 is the eigenvector of x̂θ . The Radon transform R
links the Wigner function W (q,p) of the quantum state |ψ〉 and
p(x,θ ) the marginal distribution of the homodyne current with
a projection of W (q,p) on a particular angle of observation
θ [13],

p(x,θ ) = R (W )

=
∫∫

R2
W (q,p)δ(x − q cos θ − p sin θ )dqdp

=
∫ +∞

−∞
W (x cos θ − p sin θ,x sin θ + p cos θ )dp.

(2.3)

In his original paper, Radon mathematically inverses his
transform with the back-projection B of the derivative of the
Hilbert transform H of p(x,θ ),

W (q,p) = 1

2π
B

(
∂

∂y
H(p(x,θ ))(y).

)
, (2.4)

where the back-projection operator B of a function f (x,θ ) is
the function F (q,p) defined by

F (q,p) =
∫ π

0
f (q cos θ + p sin θ,θ )dθ. (2.5)

Expanding Eq. (2.4) we obtain the inversion formula,

W (q,p) = − P
2π2

∫ π

0

∫ +∞

−∞

p(x,θ )

(q cos θ + p sin θ − x)2
dxdθ,

(2.6)

where P is the principal-value operator. Although exact, this
expression is nevertheless unusable with experimental data as
the algebraic expression of p(x,θ ) is unknown. However, the

projection-slice theorem or Fourier slice theorem [14] gives
another reverse path from p(x,θ ) to W (q,p) to work around
the difficulties of the principal-value operator (see Fig. 1). If
p̃(k,θ ) and W̃ (u,v) are, respectively, the one-dimensional and
two-dimensional Fourier transforms of p(x,θ ) and W (q,p),
then the projection-slice theorem states that

p̃(k,θ ) = W̃ (k cos θ,k sin θ ). (2.7)

Simply computing the Fourier transform p̃(k,θ ) from the
measured data would seem like the most efficient way to obtain
W (q,p) after a second inverse Fourier transform, but Eq. (2.7)
shows that it is necessary to interpolate W̃ (u,v) in Fourier
space, which leads to significant numerical difficulties [15].
To avoid this interpolation Eq. (2.7) can be used to replace
W̃ (u,v) in the inverse Fourier transform of W (q,p) to obtain
the inversion formula,

W (q,p) = 1

2π

∫ π

0

∫ +∞

−∞
p(x,θ )K(q cos θ

+p sin θ − x)dxdθ. (2.8)

Here, the marginal distribution is convoluted with an integra-
tion kernel K(x) and then back-projected into phase space,
where K(x) is defined as the inverse Fourier transform of |k|

K(x) = 1

2π

∫ +∞

−∞
|k|eikxdk. (2.9)

To use Eq. (2.8) in practice it is necessary to regularize K(x)
and replace it with some numerical approximation. This is
possible with the use of a window function g(k) such that the
integral,

1

2π

∫ +∞

−∞
g(k)|k|eikxdk, (2.10)

converges. The most common way to regularize Eq. (2.9) is
to choose g(k) = 1[−kc,+kc](k) and introduce a hard frequency
cutoff parameter kc so that

K(x) ≈ 1

πx2
[cos(kcx) + kcx sin(kcx) − 1] . (2.11)

In practice, the choice of kc affects how much high
frequency components of the Wigner function will get recon-
structed. If kc is set too low the convolution in Eq. (2.8) will
filter out the fine physical details of the Wigner function. If kc

is set too high, the convolution will introduce unphysical high
frequency noise from the statistical errors in the measurement
of p(x,θ ). Figure 2 shows the integration kernel K(x) for
different high frequency sensitivities. Choosing the right value
of kc is a tradeoff between these two regimes. From Eqs. (2.7)
and (2.8) it is also possible to insert other filter functions at
different steps of the inversion to obtain modified algorithms
with enhanced and more selective noise filtering properties. In
any case the numerical implementation of Eq. (2.8) will rely
on deconvolution of the marginal distribution, an operation
very sensitive to statistical noise.

III. HARMONIC SERIES EXPANSION

To numerically perform optical homodyne tomography,
it is necessary at some point to apply an approximation
procedure from the infinite dimensional space which features
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the unknown physical state to a finite dimensional space
used to describe the reconstructed state. In the filtered back-
projection algorithm, the discretization is achieved by direct
evaluation of W (xi,pi) on the set of points {(xi,pi)}i chosen
to probe the phase space. Rather than this point-by-point
reconstruction, a discretization of another space should help to
solve the numerical issues encountered in Sec. II. Since we are
dealing with objects behaving like probability distributions, the
statistical moments of p(x,θ ) and W (q,p) might be a solution
to the problem. In Ref. [16], Ourjoumtsev et al. describes such
a technique where they parametrize the Wigner function of a
photon subtracted squeezed vacuum with the second and fourth
moments of the marginal distribution p(x,θ ). Generalizing
this approach for any quantum state to higher order moments
requires the use of the moment generating function 〈eλx〉,
where 〈x〉 is the expectation value of x with regards to p(x,θ ).
Superior to the moment generating function the characteristic
function 〈eiλx〉 only needs the mean and variance to be defined
to exist. This and the projection-slice theorem of Eq. (2.7)
hint that Fourier space is a good candidate for an efficient
discretization.

We decompose our discretization procedure in two steps:
(1) an angular harmonic decomposition with Fourier series;
(2) a polynomial series expansion of the radial components.
We express W (q,p) in radial coordinates (r,φ) and notice that
W (r,φ + 2π ) = W (r,φ). Therefore we write the radial part of
W (r,φ) in terms of a Fourier series and we define the set of
radial functions, or angular harmonic components {wn(r)}n by

wn(r) = 1

2π

∫ +π

−π

W (r,φ)e−inφdφ, (3.1)

which allows us to write W (r,φ),

W (r,φ) =
∞∑

n=−∞
wn(r)einφ, (3.2)

with the symmetry relation wn(r) = w∗
−n(r). The 2D Fourier

transform W̃ (u,v) of W (q,p) is written in radial coordinates,

W̃ (k,θ ) =
∫ +∞

0

∫ +π

−π

W (r,φ)e−irk cos(θ−φ)rdrdφ, (3.3)

with the change of variables (u,v) → (k,θ ). W̃ (u,v) is related
to the Weyl function χ (u,v) = tr(ρ̂e−ivq̂+iup̂) by a simple π/2
rotation,

W̃ (u,v) = χ (−v,u), (3.4)

W̃ (k,θ ) = χ

(
k,θ + π

2

)
. (3.5)

We can easily write W̃ in polar coordinates in terms of the
angular harmonic components wn(r) of W (r,φ),

W̃ (k,θ ) =
∞∑

n=−∞

∫ +∞

0
wn(r)rdr

×
∫ +π

−π

e−ikr cos(θ−φ)+inφdφ. (3.6)

With a Jacobi-Anger expansion of eiz cos φ using Bessel
functions Jn,

eiz cos φ =
∞∑

n=−∞
inJn(z)einφ, (3.7)

it is possible to conduct the angular integration in Eq. (3.6) to
obtain the expression,

W̃ (k,θ ) = 2π

∞∑
n=−∞

(−i)neinθ

∫ ∞

0
wn(r)Jn(kr)rdr. (3.8)

Notice that
∫ ∞

0 wn(r)Jn(kr)rdr is the nth order Hankel
transform of Wn(r).

In the same fashion, since p(x,θ + 2π ) = p(r,θ ) we
decompose the marginal distribution as

pθ (x) =
∞∑

n=−∞
cn(x)einθ , (3.9)

with the sets of radial functions cn(x) defined by

cn(x) = 1

2π

∫ +π

−π

p(x,θ )e−inθ dθ. (3.10)

Using the projection-slice theorem of Eq. (2.7) and the
orthogonality of einθ on [−π, + π ] we are able to write for
every angular harmonic order n,

in

2π

∫ +∞

−∞
cn(x)e−ikxdx =

∫ ∞

0
wn(r)Jn(kr)rdr. (3.11)

We have obtained a relation between, on one side the Fourier
transform of the angular harmonics of p(x,θ ), and on the other
side, the Hankel transform of the angular harmonics of W (r,φ).
If we inverse the Hankel transform with the orthogonality
relation, or closure relation of Bessel functions,∫ ∞

0
kdkJn(kr)Jn(kr ′) = 1

r
δ(r − r ′), (3.12)

we finally obtain

wn(r) = in

2π

∫ ∞

0
Jn(kr)kdk

∫ +∞

−∞
cn(x)e−ikxdx. (3.13)

At that point it would be natural to convey some radial
decomposition of wn(r) and cn(x). However, there is no simple
way to achieve this. Looking at Eq. (3.13), we notice that
the Fourier transform of kJn(k), or at least Jn(k), should be
involved in the process. The latter is written in terms of the
Chebysheff’s polynomials of the first kind Tn,∫ +∞

−∞
Jn(k)e−ikxdk = 2(−i)n√

1 − x2
Tn(x)1[−1,+1](x). (3.14)

Equation (3.14) hints at the use of the polynomial series to
achieve this radial decomposition. It is safe to assume for
applications that the Wigner function will only take nonzero
values from the origin up to a certain limit L � r . Since we
are carrying the decomposition in polar coordinates what we
are looking after is a polynomial family which is orthogonal
on a disk of radius L. There are of course infinitely many such
families but one which proves to be particularly adequate to
the task is the set of Zernike polynomials Zn

s (r,ϕ) = Rn
s (r)einϕ

originally introduced for the study of optical aberrations in
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lenses and other circular optical systems [17]. The polynomials
are defined for s � |n| � 0 and s − |n| even. While the angular
part gives straightforward orthogonality and fits with our
previous approach using Fourier series, the radial components
R±n

s defined for t = |n| � 0 by

R±n
s (r) =

(s−t)/2∑
k=0

(−1)k
(s − k)!

k!
(

s+t
2 − k

)
!
(

s−t
2 − k

)
!
rs−2k, (3.15)

are orthogonal on [0,1] with respect to the weight function r

for all positive and negative orders n,∫ 1

0
Rn

s (r)Rn
s ′(r)rdr = 1

2(s + 1)
δs ′
s . (3.16)

Furthermore it turns out that the Radon transform of Zernike
polynomials happens to have the simple expression,

R
(
Rn

s (r)einφ
) = 2

s + 1

√
1 − x2Us(x)einθ , (3.17)

where Us(x) are the Chebysheff’s polynomials of the second
kind [18,19] (see also the last paragraph of this section
for a proof). The critical aspect for tomography lies in the
fact that Us(x) is again an orthogonal polynomial family on
[−1,1] with respect to the weight function

√
1 − x2. In other

words by finding a family of orthogonal polynomials whose
Radon transform element by element is yet another family of
orthogonal polynomials, we have in some sense diagonalized
the Radon transform. The inverse Radon transform can also
be exactly calculated and any technical difficulties associated
with kernel functions or regularization immediately vanish.

With the use of Eq. (3.16) we are eventually able to expand
the angular harmonic functions wn(r) on the nth order radial
polynomials Rn

s (r),

wn(r) =
∞∑

s=0

ws
nR

n
s (r). (3.18)

Given that Rn
s (r) is nonzero only when s � |n| � 0 and s − |n|

is even, we introduce the change of variable s → |n| + 2m,
re-index the sequence ws

n and rewrite Eq. (3.18),

wn(r) =
∞∑

m=0

wm
n Rn

|n|+2m(r). (3.19)

Putting Eqs. (3.19) and (3.2) together we obtain the complete
expansion of W (r,φ) inside the unit disk D(0,1),

W (r,φ) =
∞∑

n=−∞

∞∑
m=0

wm
n R

|n|
|n|+2m(r)einφ. (3.20)

Notice from Eq. (3.15) that R+n
s (r) = R−n

s (r) which justifies
the use of R

|n|
|n|+2m although wm

n are in general complex
constants. Applying the relation (3.17) on Eq. (3.20), p(x,θ )
is also written in terms of the coefficients wm

n as

p(x,θ ) =
∞∑

n=−∞

∞∑
m=0

2wm
n

|n| + 2m + 1

√
1 − x2U|n|+2m(x)einθ .

(3.21)

p(x,θ)

p(k,θ)

W(q,p)

W(u,v)∼ ∼

1D Fourier
transform

2D Fourier
transform

Radon transform

projection slice theorem

FIG. 1. Different transforms for different paths from p to W .

To justify the use of Zernike polynomials and prove
Eq. (3.17), the relation,∫ 1

0
Rn

m(r)Jn(rk)rdr = (−1)(m−n)/2 Jm+1(k)

k
, (3.22)

between Zernike polynomials and Bessel functions [17] is
essential. If we recall Eq. (3.11), replace wn(r) by its expansion
on Rn

s (r) in Eq. (3.18) and cut the integration from +∞ to
unity, we obtain

∞∑
m=0

wm
n (−1)m

J|n|+2m+1(k)

k
= i|n|

2π

∫ +∞

−∞
cn(x)e−ikxdx. (3.23)

To finally obtain the complete inversion ofR and the expansion
of cn(x) as in Eq. (3.21), we only need to inverse the Fourier
transform in Eq. (3.23) from the rhs to the lhs and use the
Fourier transform of Js(k)/k,∫ +∞

−∞

Js+1(k)

k
eikxdk = 2is

s + 1
Us(x)

√
1 − x21[−1,+1](x),

(3.24)

to obtain

cn(x) =
∞∑

m=0

wm
n

|n| + 2m + 1
U|n|+2m(x)

√
1 − x21[−1,+1](x).

(3.25)

Notice that Eqs. (3.22) and (3.24) close the link between Us(x)
and Rn

m(r), the first two families of orthogonal functions used
in the analysis, and the Bessel functions Jn(k) orthogonal with
respect to the weight function 1/k,∫ ∞

0
Js(k)Jt (k)

dk

k
= 1

2s
δk
s . (3.26)

-3
-2
-1
 0
 1
 2
 3
 4
 5

-4 -2  0  2  4

K
(x

)

x

kc = 3
kc = 5
kc = 7

FIG. 2. Regularized integration kernel K(x) for different values
of kc.
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FIG. 3. Comparison between polynomial series tomography (left panels; N = 8,M = 30) and filtered back-projection tomography (right
panels; kc = 8.0) for the state ρ = 0.8|1〉〈1| + 0.2|0〉〈0|. (a) J = 5 × 103; (b) J = 20 × 103; (c) J = 80 × 103; (d) J = 320 × 103; (e)
J = 5 × 103; (f) J = 20 × 103; (g) J = 80 × 103; (h) J = 320 × 103. All data sets have been synthetically generated with rejection sampling.

In summary by identifying three families of orthogonal
functions related together by the Radon transform R and the
Fourier transform F , we have been able to find an expansion
of the Wigner function W (q,p) that allows to greatly simplify
the technical difficulties of tomography with inverse Radon
transform.

IV. RECONSTRUCTION ALGORITHM

A. The algorithm

The algorithm works in four steps: (1) choosing the size L

of the reconstruction disk, (2) evaluating the coefficients wm
n ,

(3) choosing the cutoffs N and M of the angular and radial
series, and (4) calculating W (r,φ). Step 1 is necessary for the
orthogonal relations given in Sec. II on [0,1] and [−1, + 1] to
hold. In practice we have to normalize the marginal distribution

p(x,θ ) → p(x/L,θ )/L and the Wigner function W (r,φ) →
W (r/L,φ)/L. Step 2 is easily conducted by inverting the
relation (3.21) with the orthogonal Chebysheff’s polynomials
U|n|+2m(x),

wm
n = |n| + 2m + 1

2π2

∫ +π

−π

dθe−inθ

×
∫ +1

−1
dx

p(x/L,θ )

L
U|n|+2m(x). (4.1)

The recurrence relation,

Us+1(x) = 2xUs(x) − Us+1(x), (4.2)

allows one to efficiently calculate Us(x) for any s and any
x given U0(x) = 1 and U1(x) = 2x. After obtaining the
coefficients wm

n and choosing cutoff orders N and M , the
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FIG. 4. Comparison between polynomial series tomography (left panels; N = 8,M = 30) and filtered back-projection tomography (right
panels; kc = 8.0) for a thermal state of mean photon number 〈n̂〉 = 1. (a) J = 5 × 103; (b) J = 20 × 103; (c) J = 80 × 103; (d) J = 320 × 103;
(e) J = 5 × 103; (f) J = 20 × 103; (g) J = 80 × 103; (h) J = 320 × 103. All data sets have been synthetically generated with rejection
sampling.

Wigner function W (r,φ) is then approximated by the partial
sums,

W ′(r,φ) =
N∑

n=−N

M∑
m=0

wm
n R

|n|
|n|+2m

( r

L

)
einφ/L. (4.3)

Using the symmetry relation wm
−n = (wm

n )∗, we keep the real
part of Eq. (4.3) and simplify the sum on n to

W ′(r,φ) =
M∑

m=0

N∑
n=0

Rn
n+2m

( r

L

)
/L

× [
am

n cos(nφ) + bm
n sin(nφ)

]
, (4.4)

where we have defined wm
n = (am

n + ibm
n )/2 for n � 1 and

wm
0 = am

0 . Figures 3 and 4 show examples of reconstructed
Wigner functions for a mixture of |0〉 and |1〉, and a thermal
state, respectively. In comparison to filtered back-projection

tomography, polynomial series tomography converges faster
with fewer numbers of experimental points J . The recon-
structed Wigner functions also show less visible artifacts and
are overall smoother. To evaluate efficiently Rm

n (r) we notice
that Rn

n(r) = r |n| and then use the recurrence relation [20],

Rn
n+2(m+1)(r) = n + 2(m + 1)

(m + 1)(n + m + 1)
×

{(
(n + 2m + 1)r2

− (n + m)2

n + 2m
− (m + 1)2

n + 2(m + 1)

)
Rn

n+2m(r)

− m
n + m

n + 2m
Rn

n+2(m−1)(r)

}
. (4.5)

In contrast to setting the value of kc, the values of N and
M have a real physical meaning. This is a major advantage
of this method compared to the usual filtered back-projection
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FIG. 5. Effect of increased radial resolution on the stability of tomography of an experimentally measured photon subtracted squeezed
vacuum (same data as in Ref. [21]). For all panels J = 1 × 105. (a) Polynomial series tomography, N = 8, M = 20; (b) M = 30; (c) M = 40;
(d) filtered back-projection tomography; kc = 7; (e) kc = 9; (f) kc = 11.

algorithm. M will decide what will be the highest polynomial
order of the radial features of W . Therefore it is equivalent
to choosing the maximum photon number of the density
matrix diagonal elements. N will set the resolution of the
angular features of W , which decides how many off-diagonal
components of the density matrix will be reconstructed.
Furthermore it is easy to change N and M after computing the
coefficients wm

n . Figure 5 shows the effect of increasing M on
the precision of polynomial series tomography. In comparison
to filtered back-projection tomography when increasing the
kernel sensitivity kc, increasing the radial resolution M

does not produce artifacts in the Wigner function. Figure 6
further shows the effect of increasing N and M on the
precision of the tomography reconstruction of experimental
data. While the angular components show quick convergence,
the radial components require higher M values to be faithfully
reconstructed. Figure 7 illustrates the advantage of polynomial
series tomography in radial resolution for quantum states with
a higher number of photons. Both M and kc where set at
values high enough to recover the original Schroedinger’s
cat state negativity at the origin of phase space. While the
back-filtered projection shows numerical instability when kc

is set high, the Wigner function reconstructed by polynomial
series tomography is smoother at the equivalent resolution.

Finally the value of Rn
n+2m in r = 0 will be nonzero only

for n = 0, therefore we have the useful formula to evaluate the

Wigner function at the origin of phase space,

W ′(0,0) =
M∑

m=0

(−1)mam
0 /L, (4.6)

which is similar to the formulation of W (0,0) using the
diagonal elements of the density matrix.

FIG. 6. Effect of N and M on the convergence of polynomial
series tomography. Same experimental data as in Fig. 5. (a) Circular
cut at constant r and effect of N for M = 32, J = 2 × 105. (b) Radial
cut at constant φ and effect of M for N = 10, J = 2 × 105.
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FIG. 7. Effect of increased radial resolution on the stability of
tomography of a Schroedinger’s cat states with 〈n̂〉 = 3. For all
panels J = 4 × 104. (a) Original Wigner function; (b) polynomial
series tomography, N = 8, M = 46; (c) filtered back-projection
tomography, kc = 11.

B. Unbiased error estimator

To quantitatively compare our algorithm with the usual
back-filtered tomography algorithm we give a consistent
method to estimate the reconstruction error and obtain con-
fidence intervals when calculating the value of W (q,p). If
W ′ and W ′′ are the reconstructed value of W (q,p) with Eqs.
(4.4) and (2.8), respectively, we call σ 2

W ′ and σ 2
W ′′ the variance

of the reconstruction errors assuming they are distributed
according to a Gaussian for both algorithms. We also assume
that there are no systematic errors but only statistical errors.
Let’s assume an optical homodyne measurement set consists of
J experimental points {(xj ,θj )}j independently and identically
distributed according to the underlying marginal distribution
p(x,θ ). To begin with we give an estimator of σ 2

W ′′(q,p) for the
usual filtered back-projection method using formula (2.8). To
calculate the value of W at point (q,p), p(x,θ ) will be replaced
either by a binned histogram made from the data set {(xj ,θj )}j ,

or by a sum of delta functions approximating p(x,θ )

p(x,θ ) = 1

J

∑
j

δ(x − xj )δ(θ − θj ). (4.7)

In the latter case, the swap of p(x,θ ) for expression (4.7) in
Eq. (2.8) leads to

W ′′(q,p) = 1

2πJ

J∑
j=1

K(q cos θi + p sin θi − xi). (4.8)

Since p(x,θ ) is a valid probability distribution W ′′(q,p) is
nothing else than 〈K(q cos θ + p sin θ − x)〉 the expectation
value of the kernel function. Therefore Eq. (4.8) can be
regarded as a Monte Carlo integral where the expectation value
of the kernel function is calculated by randomly sampling
K according to the distribution p(x,θ ). In other words, the
optical homodyne tomography with filtered back-projection
is in effect an analogical Monte Carlo integration where the
homodyne measurement plays the part of the random number
generator. In that familiar case the statistical properties of the
reconstruction error are well known. First of all we are assured
of the unbiased convergence of the sum in Eq. (4.8). The central
limit theorem also states that the error will indeed converge
to a Gaussian distribution of zero mean and whose standard
deviation σW ′′(q,p) for J experimental points is

σW ′′ (q,p) = σK/
√

J − 1, (4.9)

which exhibits a 1/
√

J rate of convergence, and where σK =√
〈K2〉 − 〈K〉2/2π . By using the approximations,

〈K〉 ≈ 1

J

J∑
j=0

K(q cos θj + p sin θj − xj ), (4.10)

〈K2〉 ≈ 1

J

J∑
j=0

K2(q cos θj + p sin θj − xj ), (4.11)

we can actually estimate σK in a straightforward way easy to
include in the implementation of Eq. (4.8).

The same analysis for the coefficients {wm
n } yields the

reconstruction sum,

wm
n = |n| + 2m + 1

2π2

J∑
j=1

U|n|+2m(xj/L)e−inθj /L. (4.12)

As previously, errors are Gaussian distributed for every
coefficient wm

n with a 1/
√

J rate of convergence. If a quantity
Y is calculated through the measure of the variables {yi}i�I

with the formula,

Y = f (y1, . . . ,yI ), (4.13)

then the variance σ 2
Y of Y can be approximated by

σ 2
Y =

I∑
i=1

⎛
⎝(∂yi

f )2σ 2
yi

+ 2
∑
j>i

(∂yi
f )(∂yj

f )σ 2
yiyj

⎞
⎠ , (4.14)

where σ 2
xy = 〈xy〉 − 〈x〉〈y〉. Using Eq. (4.4) we can apply this

formula to estimate the variance σW ′ anywhere in phase space,
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FIG. 8. Estimation of σW (0,0) with filtered back-projection to-
mography (plain line) and polynomial series tomography (dotted
lines). (a) ρ = 0.8|1〉〈1| + 0.2|0〉〈0|; (b) thermal state with 〈n̂〉 = 1;
(c) photon subtracted squeezed vacuum (same data as in Fig. 5).

but because of its simple formulation thanks to Eq. (4.6), we
will only study it at the origin (0,0):

σ 2
W ′(0,0) = 1

(J − 1)L2

M∑
m=0

(
σ 2

am
0

+ 2
M∑

k>m

(−1)m+kσ 2
am

0 ak
0

)
.

(4.15)

Notice that in this case the variance estimator formula of Eq.
(4.14) is not an approximation anymore due to the linear
combination nature of Eq. (4.4) or (4.6). We can compute
an estimate of σam

0
when computing the coefficients wm

n in the
same way we did with Eqs. (4.10) and (4.11). Figure 8 shows

FIG. 9. Effect of M on the convergence of W ′(0,0) and the
magnitude of σW ′ (0,0). (a) Thermal state with 〈n̂〉 = 1, rejection
sampling. (b) Experimental photon subtracted squeezed vacuum state
(same data as in Fig. 5).

estimation of the reconstruction errors for different states using
Eqs. (4.9) and (4.15). We have found that the value of kc has
very little influence on σW ′′ at the center of phase space. On the
contrary M has a strong influence on σW ′(0,0). However, as
was shown in Figs. 3,4 and 5, far from the origin the polynomial
series tomography algorithm shows less uncertainties.

We also assumed the convergence error due to finite
truncation N and M of the expansion to be smaller than the
statistical error itself. This can be checked in the algorithm
by iteratively calculating σ 2

W ′(0,0) for increasing values of M

and stop when the magnitude of the M th and last coefficient
wM

0 is less than σ 2
W ′(0,0) (see Fig. 9). This technique can be

repeated independently for every point of phase space (q,p),
and different values of N and M can even be used for different
points of phase space.

C. Monte Carlo error estimation

Independently from the estimators of the previous para-
graph, we also use Monte Carlo simulations to generate many
synthetic data sets and evaluate the reconstruction errors. This
method is easily applied if we know precisely which state |ψ〉
is under investigation. For example, we can choose a known
density matrix or Wigner function and calculate the associated
marginal distribution p(x,θ ). From this marginal distribution
we generate K synthetic data sets of J points {(xj ,θj )}(k)

j using,
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FIG. 10. Comparison between Monte Carlo simulation and direct
estimation of σW (0,0). Black curves are the estimation of σW (0,0)
with Monte Carlo simulation using K data sets. Dashed curves are
the direct estimation of σW (0,0) using Eqs. (4.9) and (4.15) for
the K th data set. (a) Data sets of J = 105 points generated using
rejection sampling for the state 0.8|1〉〈1| + 0.2|0〉〈0|. (b) Data sets
of J = 105 points generated with bootstrapping resampling from the
same experimental data as Fig. 5. (i) Filtered back-projection tomog-
raphy with kc = 7; (ii) polynomial series tomography with M = 10;
(iii) M = 20; (iv) M = 30; (v) M = 40.

for example, rejection sampling. With the algorithm of our
choice we repeat the tomography reconstruction and calculate
a set of K Wigner function {W (k)}k . Finally for a given point
of phase space (x0,p0), we calculate the average value W̄0 of
the set {W (k)}k:

W̄0 = 1

K

K∑
k=1

W (k)(x0,p0), (4.16)

and obtain an estimate of the error σW̄ at point (x0,p0) by

σ 2
W̄

= 1

K

K∑
k=1

[
W (k)(x0,p0) − W̄0

]2
. (4.17)

Since it is a Monte Carlo–based simulation, every quantity
shows again a 1/

√
K convergence rate.

With experimental data, we can sample p(x,θ ) only once
and therefore we need a technique to generate the synthetic
data sets after the experimental measurement. Resampling is
the easiest approach and here we estimate the reconstruction
error of experimental data sets with the bootstrapping resam-
pling method [22]. The results of both techniques are illustrated
in Fig. 10 and overall there is a good agreement between the
estimated values of Monte Carlo simulations and the predicted
value of σW (0,0) using Eq. (4.9) or (4.15).

D. Distance to a target state

To conclude this comparative study of polynomial series
expansion and filtered back-projection-based tomography, we
numerically estimate in this final paragraph the distance
between some original target quantum state and reconstructed
states using both algorithms. For this purpose we will consider
one distance for the Wigner function and one distance for the

FIG. 11. Estimation of the distance between the target thermal
state of mean photon number 〈n̂〉 = 1 and reconstructed quantum
states averaged over 1000 samples of J data points for different to-
mography settings. (a) L2 distance 〈dL2(Wtarget,Wtomo)〉. (b) Frobenius
distance 〈dF (ρ̂target,ρ̂tomo)〉.

density matrix. We use the L2 Euclidian distance dL2(.,.) for
the Wigner function defined by

dL2(WA,WB) =
(∫ ∫

dxdp |WA(x,p) − WB(x,p)|2
)1/2

,

(4.18)

and with the Frobenius norm ‖.‖F defined by

‖A‖F =
√

tr (A∗A) =
⎛
⎝∑

i,j

|Aij |2
⎞
⎠

1/2

, (4.19)

we define a distance dF (.,.) for density matrix as

dF (ρ̂A,ρ̂B) = ‖ρ̂A − ρ̂B‖. (4.20)

First we choose a target state and derive its exact Wigner
function Wtarget and density matrix ρ̂target. We then evaluate
the distances from the target state according to Eqs. (4.18)
and (4.20) using as before Monte Carlo sampling techniques.
Rather than averaging a reconstructed state over many

FIG. 12. Estimation of the distance between the target state
0.8|1〉〈1| + 0.2|0〉〈0| and reconstructed quantum states averaged
over 1000 samples of J data points for different tomography
settings. (a) L2 distance 〈dL2(Wtarget,Wtomo)〉. (b) Frobenius distance
〈dF (ρ̂target,ρ̂tomo)〉.
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FIG. 13. Estimation of the distance between the target odd
Schroedinger’s cat state ∝ |α〉 − |α〉 with 〈n̂〉 = 3 and reconstructed
quantum states averaged over 1000 samples of J data points for
different tomography settings. (a) L2 distance 〈dL2(Wtarget,Wtomo)〉.
(b) Frobenius distance 〈dF (ρ̂target,ρ̂tomo)〉.

simulated data sets, we average the distance computed over
many reconstructed states and estimate the numbers:

〈
dL2(Wtarget,Wtomo)

〉
and

〈
dF (ρ̂target,ρ̂tomo)

〉
. (4.21)

Numerical simulation results are shown in Figs. 11–13
for, respectively, thermal state with 〈n̂〉 = 1, a mixture of
vacuum and one-photon state 0.8|1〉〈1| + 0.2|0〉〈0|, and an
odd Schroedinger’s cat state with 〈n̂〉 = 3. In agreement with
the previous results on tomography uncertainties, we observe
that polynomial series expansion tomography performs better
than filtered back-projection for these two first cases. In the
case of the Schroedinger’s cat state ∝ |α〉 − | − α〉, both
distances behave differently for higher J and tend to reach
a precision limit which depends on the tomography algorithm
and settings. Although the exact cause of this saturation is
unknown, we believe it is due to the significantly more complex
structure of the Schroedinger’s cat state. According to our
simulations, it seems to depend only on the radial and angular
precision settings, more precisely on parameters M , N , and
kc. In this case again, polynomial series expansion proves to
reach a higher precision level than filtered back-projection
for a relevant range of tomography settings. To conclude this
paragraph, it is interesting to notice that in the case of the
dL2(.,.) distance there is an intrinsic limitation on the precision
of polynomial series expansion tomography due to the circular
geometry of the reconstruction space [23]. This could be the
reason for the saturation phenomenon visible in Fig. 13.

V. CONCLUSION

We have shown and demonstrated a technique for optical
homodyne tomography based on polynomial series expansion
of the Wigner function. In Sec. II we have given the basis of
the usual filtered back-projection algorithm and explained the
main reason for its weak performances against statistical noise.
We have also introduced the projection-slice theorem and the
relation between phase space, Fourier space, and the marginal
distribution. In Sec. III we have shown that it is possible to
link three families of orthogonal functions between these three
spaces to decompose p(x,θ ) the marginal distribution, W (q,p)
the Wigner function, and their Fourier transforms. We have
shown that the Radon transform preserves the orthogonality
of these families and therefore takes an especially simple form
in this case. In Sec. IV we have explained and applied to
experimental and simulated data the most straightforward im-
plementation of that technique with a direct linear estimation
of the coefficients of the polynomial series expansion. We
have also provided estimators of the reconstruction errors and
shown that it performs better than filtered back-projection
tomography with respect to reconstruction artifacts and sta-
tistical errors. More precisely, polynomial series tomography
is superior with fewer experimental data points and when
higher radial resolution is needed for higher photon number
states. These results are confirmed when looking at the
distance between a chosen target state and states reconstructed
with both tomography techniques. Furthermore this technique
exploits the projection-slice theorem directly and therefore is
faster than convolution-based filtered back-projection. Finally
we remark that it is in principle possible to use the maximum
likelihood technique to find the set of coefficients wn

m that
maximizes the probability of measuring the experimentally
measured data set.
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