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Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope
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In this Rapid Communication, a method is proposed to spatially scale up a trapped ultracold gas while
conserving the quantum correlations of the initial many-body state. For systems supporting self-similar dynamics,
this is achieved by implementing an engineered finite-time quench of the harmonic trap, which induces a
frictionless expansion of the gas and acts as a quantum dynamical microscope.
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Research in ultracold strongly correlated states of matter
has recently been spurred by the experimental realization
of quantum gas microscopes, allowing detection, with single
site resolution and nearly unit-efficiency, of individual atoms
within a macroscopic sample in the strongly interacting
regime optical lattice [1,2]. These experiments are based on
high-resolution optical imaging. In a complementary way, the
nonequilibrium dynamics following a quench of an external
control parameter is often exploited to probe quantum correla-
tions in many-body systems [3]. Here we propose a scheme to
implement a quantum dynamical microscope, an engineered
controlled expansion that allows an initial many-body state
of an ultracold gas to be scaled up by a desired factor
while preserving the quantum correlations of the initial state.
The scheme rests on the possibility of driving a self-similar
dynamics in certain systems, which is a powerful tool to
understand the evolution of quantum correlations. Scaling
laws can often be exploited to describe harmonically trapped
ultracold gases, such as the Calogero-Sutherland model [4],
the Tonks-Girardeau [5–7] and certain Lieb-Liniger states [8],
Bose-Einstein condensates (BEC) [5,9,10], including dipolar
interactions [11], strongly interacting ultracold gas mixtures
[12], and more general many-body quantum systems [13].
Moreover, whenever the dynamics is not self-similar per se,
it can often be assisted by tuning the interactions, either by
means of Feschbach or confinement-induced resonances, or
time-modulation of the transverse confinement in effectively
low-dimensional Bose-Einstein condensates [14]. Nonethe-
less, in spite of the scaling laws, the expansion dynamics in
these systems generally induces undamped breathing of the
cloud and distorts the quantum correlations of the initial state
[5–13]. The method proposed in this Rapid Communication
suppresses these effects in a finite-time nonadiabatic expansion
which acts as a lens to zoom-up the initial state of the system.
This is achieved by carefully engineering the time modulation
of the trapping frequency to induce a frictionless dynamics
free from adiabaticity constraints.

Self-similar dynamics. Let us consider a D-dimensional
many-body system composed of N indistinguishable particles
confined in a time-dependent harmonic trap, described by a
Hamiltonian,
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where xi ∈ RD , xij = xi − xj , �
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i is the D-dimensional

Laplacian operator, and ε = ε(t) is a dimensionless time-
dependent coupling constant which reduces to the identity
at t = 0. We focus on systems with an interaction potential
satisfying the relation

V(λx) = λαV(x) (2)

under scaling of the coordinates. An equilibrium state � of the
system (1) at t = 0 follows a self-similar evolution,
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where μ is the chemical potential and τ (t) = ∫ t

0 dt ′/b2(t ′),
whenever the scaling factor b = b(t) is the solution of the
Ermakov differential equation

b̈ + ω2(t)b = ω2
0

/
b3, (4)

with ω0 = ω(0), satisfying the boundary conditions b(0) = 1
and ḃ(0) = 0. This dynamics further requires the coupling
constant and the scaling factor to be related by ε(t) = bα−2,
which leads to the following cases: (a) α = 2, ε(t) = 1,
with no need for auxiliary tuning of the interactions, for
example, as happens in a quasi-one-dimensional BEC in
the Thomas-Fermi limit or a two-dimensional (2D) Bose
gas with contact interactions [10,15], which has recently
been suggested as an instance of a quantum anomaly [16].
(b) α �= 2, ε(t) = bα−2 which does require external tuning
of the interactions as in one-dimensional (1D) and three-
dimensional (3D) BEC to assist the self-similar dynamics.
(Note that in a fast expansion the role of interactions might
be disregarded, as usually done in time-of-flight experiments,
and then the self-similar dynamics comes for free.) If the initial
state � is not in equilibrium, it will then follow the evolution
as if the trapping potential is kept constant in the scaled coor-
dinates and picking the overall phase in Eq. (3). Scaling laws
manifest in non-local correlations of the gas, such as the one-
body reduced density matrix (OBRDM) given by g1(x,y; t) =
N

∫
dx2 · · · dxN�∗(x,x2, . . . ,xN ; t)�(y,x2, . . . ,xN ; t), whose

time evolution under self-similar dynamics can be conve-
niently written as [6,13]
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ḃ

ω0

x2 − y2

2l2
0

)
(5)

031606-11050-2947/2011/84(3)/031606(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.031606


RAPID COMMUNICATIONS

A. DEL CAMPO PHYSICAL REVIEW A 84, 031606(R) (2011)

where l0 = √
h̄/mω0, and its Fourier transform n(k,t) =∫

dxdy eik·(x−y)g1(x,y; t), the momentum distribution

n(k,t) = bD
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as well as any higher-order correlation function, i.e.,
the n-body reduced density matrix gn({xi}ni=1; {x′

i}ni=1; t) =
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The Newton cradle experiment has singled out the 1D
Bose gas in the strongly interacting limit as a paradigmatic
example of an integrable system where relaxation to
equilibrium is suppressed even when perturbed to breakdown
integrability [17]. We shall illustrate our results with a
1D cloud of ultracold bosons in the limit of hard-core
contact interactions, a Tonks-Girardeau (TG) gas confined
in a harmonic trap of frequency ω0, with single-particle
eigenstates φn(x) and n = 0,1,2, . . . The many-body
ground state of this system can be efficiently described
using an auxiliary wave function, a normalized Slater
determinant [18], 
F (x1, . . . ,xN ) = 1√

N!
det(N−1,N)

n,l=(0,1)φn(xl),
describing a spin-polarized Fermi gas in the ground-state
of the trap. This wave function already includes the
hard-core condition as a result of the Pauli exclusion
principle encoded in the determinant structure. The bosonic
symmetry can be enforced by applying the antisymmetric
unit function A(x̂1, . . . ,x̂N ) = ∏

1�j<k�N ε(x̂k − x̂j ),
where ε(x) = 1(−1) if x >0 (<0) and ε(0) = 0. The
Bose-Fermi mapping relating both dual systems reads
�TG(x1, . . . ,xN ) = A(x̂1, . . . ,x̂N )
F (x1, . . . ,xN ). This is
a highly nonlocal mapping, but being involutive, it leaves
invariant any local correlation function such as the density
profile, i.e., those quantities derived from the probability
density are shared by both dual systems. The computation of
nonlocal correlations remains a nontrivial task, but elegant
expressions are known after the work by Pezer and Buljan [19].
A many-body state in the TG regime obeys the self-similar
scaling law in Eq. (3) whenever b is a solution of Eq. (4) [20].
The scaling is clearly exhibited by the density profile of a
TG gas nTG(x,t) =N

∫
dx2 · · · dxN |�TG(x,x2, . . . ,xN ; t)|2 =

N
∫
dx2 · · · dxN |
F (x,x2, . . . ,xN ; t)|2 = 1

b(t)nTG( x
b(t) ,0), its

width being governed by b.
Breathing and correlation dynamics. Consider the self-

similar expansion of a many-body system after quenching
the trapping potential between an initial ω0 and final ωf

frequency in a finite quench time τ , to scale it up by
a factor γ = (ω0/ωf )1/2. Two main features of the dy-
namics are to be tailored to create a quantum dynamical
microscope: the subsequent breathing of the density profile
and the evolution of quantum correlations gn. For illus-
trative purposes, we focus on those associated with the
OBRDM. First we note that for the sudden expansion in
free space [ω(t > 0) = ωf = 0], b(t) =

√
1 + ω2

0t
2 and for

t � ω−1
0 , b(t) ∼ ω0t , ḃ = ω0. Using the method of the station-

ary phase, n(k,t) ∼ |2πω0l
2
0/ḃ|Dg1(ω0kl2

0/ḃ,ω0kl2
0/ḃ), so the

asymptotic momentum distribution is the scaled density profile
of the initial state [13,19], which in the TG regime can
be further related to the momentum distribution of the dual
system, the ideal Fermi gas [6,7,21,22]. This mapping between
local and nonlocal correlations is expected as the density
decreases during expansion at a finite rate ḃ. Indeed, within
the scheme of symplectic tomography, the evolution under
quadratic Hamiltonians leads to a dynamical covering of
correlations in phase space [23]. In an isolated system, a
sudden quench of the trapping frequency between two given
finite values also induces undamped breathing of the density
profile. In the TG regime, this was shown by Minguzzi
and Gangardt [6], who further illustrated the dynamics of
the momentum distribution, periodically oscillating between
that of the initial trapped state and the quasi-momentum
distribution. Nonetheless, these two effects are ubiquitous
in the family of systems supporting a dynamical scaling
governed by the Ermakov equation. For a nonvanishing ωf �=
0, increasing finite values of the quench time lead to a gradual
suppression of the subsequent breathing, and one expects to
recover the adiabatic limit whenever ω̇(t)/ω2(t) 	 1. As a
specific example let us consider the functional dependence of
the trapping frequency to be given by

ω(t) = ω0 + (ωf − ω0) tanh

(
t

τ

)
(7)

with a characteristic quench time τ . The resulting b(t) can
be obtained by solving numerically the Ermakov equation
subjected to the initial conditions b(0) = 1, ḃ(0) = 0. The
effect of an increasing value of τ on the scaling factor b(t)
is shown in Fig. 1. Quenches of the potential in a finite
time τ ∼ ω−1

0 distort the momentum distribution and induce
breathing of the cloud. As it turns out, these quenches do lead
to nonzero finite values of ḃ(tf � τ ) and the scaling factor
b(tf ) deviates from the desired target value γ , as shown in
Fig. 2. As τ is increased and the adiabatic limit is approached,
the variation of the scaling factor becomes slower and slower,
and ḃ(tf ) → 0. Eventually, the quench follows the adiabatic
trajectory b(t) = √

ω(t), for which the OBRDM reads

g1(x,y; t) = 1

bD(t)
g1

(
x

b(t)
,

y
b(t)

; 0

)
, (8)
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FIG. 1. (Color online) Adiabatic limit. The scaling factor follow-
ing a quench for increasing quench time τ eventually approaches the
adiabatic result γ = √

(ω0/ωf ) = √
10. The inset shows how ḃ(tf )

vanishes for large values of τ (tf = 20τ ).
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FIG. 2. (Color online) Adiabatic limit. Momentum distribution
of a Tonks-Girardeau gas following a quench of the trapping
potential [see Eq. (7)] with N = 10, ω(0) = ω0, and ω(τ ) = ω0/10
for increasing quench times τ =(A) 0.1, (B) 1, (C) 10, and (D) 100
in units of ω−1

0 . The dashed line represents the distribution following
the quench, while the solid line corresponds to the desired adiabatic
limit (tf = 500, k0 = √

mω0/h̄). The insets show the evolution of
the scaling function b(t) along and after the quench. The adiabatic
limit is approached for increasing values of τ ∼ 100ω0, leading to
a suppression of the breathing dynamics of the cloud and scaling of
quantum correlations.

which is the desired result of scaling the initial OBRDM.
Similarly, the momentum distribution evolves according to

n(k,t) = bD(t)
∫

dxdy g1(x,y; 0) exp [iγ k · (x − y)]

= bD(t)n(b(t)k,0), (9)

and coincides with the initial momentum distribution up to
the scaling factor b(t). Note that these expressions can be
applied both for expansions [b(t) > 1] as well as compressions
[b(t) < 1]. Nonetheless, the required adiabatic time scale can
be exceedingly long making it unstable against perturbations
(see below), and we next tackle the problem of achieving a
final scaled state in a predetermined time of expansion τ .

Frictionless dynamics: Preserving quantum correlations
during expansion. Following the theoretical proposals in
[15,24], shortcuts to adiabaticity have been implemented
in the laboratory both for thermal gases and Bose-Einstein
condensates [25,26]. In the following, we show how shortcuts
to adiabaticity can be exploited to control the dynamics of
quantum correlations in the family of many-body systems
given by Eq. (1). First we notice that the Ermakov equation can
be inverted to design a many-body fast frictionless trajectory
between an initial and a final trap in a given quench time τ (a
time analog of the focal plane in an optical microscope), hence
providing a shortcut to adiabaticity. To this aim we enforce the
scaling law solution in Eq. (3) to reduce to the initial state �

at t = 0 and its scaled-up form at t = τ . This leads to the fol-
lowing boundary conditions for the scaling function: b(0) = 1,
ḃ(0) = 0, b̈(0) = 0, b(τ ) = γ = [ω0/ωf ]1/2 being the scaling
factor, and ḃ(τ ) = 0, b̈(τ ) = 0. This set of conditions can be

used to fully determine the coefficients in an ansatz, say, of
polynomial type b(t) = ∑5

j=0 aj t
j . One finds that

b(t) = 6 (γ − 1) s5 − 15 (γ − 1) s4 + 10 (γ − 1) s3 + 1

(10)

with s = t/τ , which is a solution of the Ermakov equation
that drives the evolution from the initial trapped state �(x,0)
to the final state �(x,t) = γ −D/2�(x/γ,t = 0) in a finite time
τ , mimicking the adiabatic evolution.

The required modulation of the trapping frequency can be
obtained as well from Eqs. (4) and (10), and might involve
imaginary frequencies associated with a repulsive potential
ω2 < 0 [24] whenever the demanded expansion time is small,
τ � ω−1

0 . Should that be required, the trajectory can be
implemented in the laboratory as in [27]. The upshot of the
frictionless dynamics is that quantum correlations at the end
of the quench (t = τ , and only then) are those of the initial
state scaled by a factor b(τ ) = γ . In particular,

g1(x,y; τ ) = 1

γ D
g1

(
x
γ

,
y
γ

; 0

)
, n(k,τ ) = γ Dn(γ k,0). (11)

Similar expressions hold for higher-order correlations,
i.e., gn({xi},{yi}; τ ) = γ nDgn ({xi/γ },{yi/γ }; 0), with {xi} =
{xi}ni=1. Moreover, as long as the initial state is an equilibrium
state in the initial trap, so it is the state at τ with respect to the
final trap, preventing any nontrivial dynamics after the quench,
for t > τ if ω(t > τ ) = ωf . Nonetheless, at intermediate
times t ∈ [0,τ ) the momentum distribution exhibits a rich
nonequilibrium dynamics and can show, for instance, evolution
toward the scaled density profile of the initial state. Note that
this mapping is favored by a large scaling factor γ .

Implementing a frictionless dynamics allows a controlled
expansion toward the scaled-up state to be performed, as
illustrated in Fig. 3. For a given final time τ of expansion,
the momentum distribution approaches most closely the
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FIG. 3. (Color online) Frictionless quantum quench of a Tonks-
Girardeau gas. Evolution of the momentum distribution exhibiting
signs of dynamical fermionization at an intermediate stage of the
expansion, before reaching the final time τ at which it reduces to
the scaled-up distribution of the initial trapped state (γ = √

10, N =
10). The inset shows the smooth evolution of the scaling factor in a
frictionless expansion in an arbitrarily short quench time τ for both
γ = √

2 (solid line) and
√

10 (dashed line) expansion factors.
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initial density around t ≈ τ/2. As shown in the inset, ḃ

has a maximum precisely at t = τ/2, around which it is
approximately constant as in the asymptotic free expansion.
For t > τ/2 the evolution proceeds so as to reconstruct the
initial state, scaling it by the desired factor γ . We close
noticing that the process is robust in the sense that within
linear response, errors in the implementation of the trap
modulation or a many-body perturbation represented by the
operator εW (x,t) lead only to a quadratic decay of the
fidelity between the target state �(τ ) and the resulting state
at the end of the quench �′(τ ), F(τ ) = |〈�(τ )|�′(τ )〉|2 =
1 − ε2(τ/τZ)2 + O(ε4), where the Zeno-like time τZ =
h̄/[〈W̃ 2〉 − 〈W̃ 〉2]1/2, with W̃ = 1

τ

∫ τ

0 [U0(−t)W (t)U0(t)]dt

where U0 is the time evolution operator. The upshot is that
the effect of εW (x,t) is controlled by the ratio τ/τZ and can be
suppressed in a nonadiabatic expansion. Hence, the adiabatic
approach inevitably fails in the presence of perturbations,
while the robustness of the engineered quench inducing a

frictionless dynamics is warranted for low enough values
of τ .

In conclusion, for many-body systems supporting self-
similar dynamics, we have shown how to scale up the system
by means of a controlled expansion without modifying the
quantum correlations. While this goal can be achieved by
slowing down the expansion, the effect of perturbations grows
with the expansion time. As an alternative to the adiabatic
dynamics, we propose implementation of a fast frictionless
quench of the trapping potential, which acts as a quantum
dynamical microscope, leading to the scaled-up initial state at
the end of the quench.
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