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Condensate fraction of cold gases in a nonuniform external potential
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Exact calculation of the condensate fraction in multidimensional inhomogeneous interacting Bose systems
in a confining potential of arbitrary shape is a difficult computational problem. We have developed an iterative
procedure which allows us to calculate the condensate fraction as well as the corresponding eigenfunction of
the one-body density matrix. We successfully validate this procedure in diffusion Monte Carlo simulations of a
Bose gas in an optical lattice at zero temperature. We also discuss the relation between different criteria used for
testing coherence in cold Bose systems, such as the fraction of particles that are superfluid, condensed, or in the
zero-momentum state.
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Bose-Einstein condensation (BEC) is a fascinating phe-
nomenon in which the effects of quantum coherence be-
come apparent on a macroscopic scale [1–3]. Although
the phenomenon is known for a long time and the basic
theoretical concepts are well established, there is no general
method which would allow one to calculate exactly such
fundamental quantities as the condensate fraction N0/N and
the wave function of the condensate φ0(r), which can be
probed in modern experiments with ultracold atoms (see, e.g.,
the references in Refs. [1–3]). In order to calculate those,
one should solve the eigenvalue problem for the one-body
density matrix (OBDM) ρ1(r; r′) [1,4], which is generally
a very difficult task. Simple solutions can be obtained for
weakly interacting gas at zero temperature. In this case the
condensation is almost complete, N0/N ≈ 1, and φ0(r) can
be obtained by means of the mean-field theory as a solution
of the Gross-Pitaevskii equation (GPE) φGPE(r) [5]. Quantum
corrections to the mean-field predictions at zero temperature
can be calculated within the framework of the Bogoliubov
theory [1].

Monte Carlo (MC) methods make no approximation to the
model as compared to the perturbative techniques and can
address the case of strong interactions. In Ref. [6] properties
of a hard-core Bose gas in a harmonic trap were studied
by MC methods. Taking into account spherical symmetry of
the confinement and making some additional assumptions,
which are valid only for weakly interacting gas, the original
problem in three dimensions was reduced to an effective
one-dimensional problem and then standard methods of matrix
diagonalization were applied to calculate φ0(r). However,
in a large number of experiments with ultracold atoms the
external potentials do not possess spherical symmetry. This is
the situation of a gas in the optical lattice [3,7], a gas in the
presence of a disorder potential [8], etc. In such cases there is
a nontrivial dependence of the OBDM on all arguments and
it is not possible to reduce the diagonalization problem to a
simple matrix formulation. In this work, we propose a general
method for a OBDM with arbitrary coordinate dependencies
in higher spatial dimensions. We also compare the condensate
fraction with other quantities used for quantitative description
of coherence such as the fraction of condensed particles in the
momentum space and the superfluid fraction.

The eigenvalue problem for the OBDM reads as∫
ρ1(r; r′)φi(r′) dr′ = Niφi(r) , i = 0,1, . . . , (1)

with eigennumbers Ni labeled in descending order and
eigenfunctions satisfying the orthonormality condition∫

φ∗
i (r)φj (r) dr = δij .

In order to work out the largest eigenvalue N0 and the
corresponding wave function φ0(r), we use an idea stemming
from the matrix analysis. When a matrix acts on a vector it
produces a new vector which can be obtained from the initial
one by multiplication of its components along the directions
of the eigenvectors by the corresponding eigenvalues. If the
resulting vector is renormalized such that it has the same norm
as the original one, the result of applying the matrix is a rotation
of the vector in the direction of the eigenvector with the largest
eigenvalue. Iterating such a rotation many times will eventually
align the original vector with the eigenvector with the largest
eigenvalue. The convergence of the iterative procedure is very
fast if one of the eigenvalues is much larger than the others,
which is the case of a Bose-condensed system [9].

Applying this idea to Eq. (1), we come to the iterative
procedure, where the (i + 1)th approximation for the wave
function φ

(i+1)
0 is determined by∫

ρ1(r; r′)φ(i)
0 (r′) dr′ = N

(i)
0 φ

(i+1)
0 (r). (2)

The ith approximation for the number of condensed particles
is given by

N
(i)
0 =

∫∫
ρ1(r; r′)φ(i)∗

0 (r)φ(i)
0 (r′) dr dr′, (3)

which follows from Eq. (1). Repeating this procedure permits
one to obtain, in principle, the condensate wave function
exactly. A reasonable choice for the initial approximation is
φ

(0)
0 (r) = φGPE(r).

During the iterations the value of N0 is approached from
below. This can be seen by first expanding φ

(i)
0 (r) in terms of

eigenfunctions of the OBDM φ
(i)
0 (r) = ∑∞

j=0 cjφj (r) with the
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normalization condition
∑∞

j=0 |cj |2 = 1 and then inserting the
resulting expression into Eq. (3). This leads to the inequality

N
(i)
0 =

∞∑
i=0

Ni |ci |2 � N0 − (N0 − N1)(1 − |c0|2) � N0 , (4)

where N1 is the upper bound for the eigenvalues with i =
1,2, . . .. This proves the statement.

The iterative procedure can be implemented in MC calcu-
lations. The OBDM in the first quantized form is expressed
in terms of the many-body wave function of the ground state
ψ(R) as [1,4]

ρ1(r; r′) = N

∫
ψ∗(R)|r1=rψ(R)|r1=r′dr2 . . . drN,

where R = (r1, . . . ,rN ) is a shortcut for a point in 3N -
dimensional phase space. This allows one to rewrite Eqs. (2)
and (3) in a form which can be interpreted in terms of a MC
algorithm:

N
(i)
0

N
φ

(i+1)
0 (r) =

∫ [
φ

(i)
0 (r1)

ψ∗(r,r2, . . . ,rN )

ψ∗(R)

]
|ψ(R)|2 dR,

N
(i)
0

N
=

∫ [∫
φ

(i)∗
0 (r)φ(i)

0 (r1)
ψ∗(r,r2, . . . ,rN )

ψ∗(R)
dr

]
|ψ(R)|2 dR.

The MC calculation [10] produces a set of configurations,
R1,R2, . . ., in the phase space, distributed according to the
best approximation of |ψ(R)|2. The averaging of each of the
quantities in square brackets is then equivalent to the averaging
over the produced set of configurations R1,R2, . . .. In the
case of the variational MC method, Metropolis sampling of
the trial function ψT (R) produces configurations distributed
according to |ψT (R)|2. The diffusion Monte Carlo (DMC)
method samples the “mixed” distribution ψT (R)ψ(R). “Pure”
averages of N0 and φ0 over the ground state wave function
|ψ(R)|2 are approximated by extrapolation from variational
and mixed estimators. The integral over r can be evaluated in
a stochastic way by sampling a random point in the simulation
box and accumulating the values of the averaged quantity.
Since the OBDM is calculated as a mixed estimator, the result
that N (i)

0 is a lower bound to N0 [Eq. (4)] should not necessarily
hold.

A sufficient condition for the existence of BEC is the off-
diagonal long-range order (ODLRO) of the OBDM [2,3,11].
If the asymptotic value

Nk=0
0 = lim

|r−r′|→∞
ρ1(r; r′) (5)

does not vanish, there is a finite fraction of particles with zero
momentum (k = 0). Nk=0

0 can be used as a measure of BEC
in homogeneous and slightly inhomogeneous systems [12,13].
However, in general the wave function of the state with k = 0
is not the eigenfunction of the OBDM and as it follows from
Eq. (4) Nk=0

0 � N0.
Another quantity used to describe coherence in interacting

quantum systems is the superfluid fraction. The number
of atoms in the superfluid can be obtained as [14] Ns =
limv→0 2�F/(mv2), where �F is the increase of the free
energy in the reference frame moving with the velocity v. For
isotropic systems or for cubic lattices the result is independent

of the direction of v. It is interesting to compare Ns with N0

and Nk=0
0 .

In a weak external potential V (r) with the period L in
d spatial dimensions, Nk=0

0 can be approximated within the
perturbative framework as [15]

Nk=0
0

N
= 1 −

∑
n

|Ṽ (n)|2
Ld

[
h̄2

2m

(
2π
L

)2
n2 + 2gdnd

]2 , (6)

where gd is an effective interaction parameter in d dimensions
and nd = N/Ld is the number of atoms per unit volume. For
a dilute gas with a spherically symmetric interaction potential,
gd is proportional to the s-wave scattering length as . Ṽ (n) is
the Fourier transform of the external potential V (r); i.e.,

Ṽ (n) = 1

Ld/2

∫ L/2

−L/2
dr1 · · ·

∫ L/2

−L/2
drd e−i 2π

L
n·rV (r) .

Equation (6) is obtained as a perturbative solution of the GPE
[16]. Analogous calculations for the superfluid fraction lead
to an expression similar to Eq. (6) but with the coefficient
4/d in front of the sum. Bogoliubov theory gives exactly the
same result for Ns , while the expression for Nk=0

0 contains
an additional contribution due to quantum fluctuations (Lee-
Huang-Yang correction [17]). We note that known results for
systems with δ-correlated disorder [18] can be reproduced by
Eq. (6) after statistical averaging.

In order to make a direct comparison between N0, Nk=0
0 ,

and Ns , we do numerical simulations of a Bose gas in an
optical lattice. In contrast to the majority of the works, where
exact numerical results are obtained within the framework of
the Bose-Hubbard model (see, e.g., Refs. [3,7]), we consider
the full many-body Hamiltonian

H =
N∑

i=1

[
−h̄2∇2

i

2m
+ V (ri)

]
+

∑
i<j

Vpp(|ri − rj |), (7)

where Vpp(r) is a particle-particle interaction potential. In the
MC calculations, we use the hard-sphere potential of the radius
as . The GPE is solved for the δ potential characterized by the
scattering length equal to as . The external potential has the
form

V (r) = V0

d∑
α=1

cos2

(
2π

rα

λL

)
, (8)

where λL/2 is the lattice period. For simplicity we consider a
quasi-two-dimensional (d = 2) geometry when the system is
subjected to such a tight harmonic oscillator trapping in the
third dimension V (z) = mω2

hoz
2/2 that the energy of particles

is small compared to the energy of the harmonic confinement
h̄ωho. This corresponds to recent experiments in anisotropic
optical lattices, where the confinement in the third dimension
was produced by a periodic potential of large amplitude [19].
For this setup, Eq. (6) reduces to

Nk=0
0

N
= 1 − 1

2

(
V0

4

)2
d

(2ER + gdnd )2 , (9)

where ER = 2h̄2π2/(mλ2
L) is the recoil energy. For Ns/N we

get an analogous expression which reduces to the ratio of a
real mass to the effective mass in the absence of interactions
gd = 0 in agreement with Ref. [20].
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In the numerical calculations that we do with N = 100
particles the system parameters are chosen to remain in the
superfluid part of the phase diagram. Mean-field theory in the
tight-binding approximation gives the following critical value
for the superfluid–Mott-insulator transition [3]:

2dJ/Ud = 2n + 1 − 2
√

n(n + 1), (10)

where n is the number of atoms per lattice site, which must
be an integer, J is the tunneling rate, and Ud is the interaction
parameter. For d = 2, we get an estimate,

J

Ud

= aho

as

√
λL

πaho

(
2V0

h̄ωho

)1/4

exp

(
− λL

πaho

√
2V0

h̄ωho

)
, (11)

where aho = √
h̄/mωho is the harmonic oscillator length. In

order to remain in the superfluid regime, the values of 2dJ/Ud

should be larger than those given by Eq. (10), which leads to
restrictions on the values of V0 and as .

The one-body part of the variational wave function ψT (r)
used in the MC calculation is obtained by solving the GPE
for a single lattice period. A plausible approximation for the
condensate orbital is φ0(r) = φGPE(x,y)ψho(z), where ψho(z)
is the ground-state wave function of the harmonic oscillator.
We fix the height of the optical lattice to V0 = 0.3 h̄ωho and
restrict ourselves to the case of one atom per lattice period
(n = 1). The calculations are carried out for λL/aho = 15,
which corresponds to the experimental setup in Ref. [19].

We start the numerical investigation with the case of a weak
interaction, as/aho = 0.1. According to Eqs. (10) and (11) the
critical value of the lattice strength is V c

0 = 0.89 h̄ωho. It turns
out from MC calculations that the condensate fraction is very
large, N0/N ≈ 0.99, in a wide range of the strengths of the
optical lattice. This means that (i) the system is fully condensed
and (ii) the guess φ0(r) = φGPE(x,y)ψho(z) for the condensate
orbital is indeed extremely good. Figure 1 shows the averaged
OBDM ρP

1 (r) = ∫
d�r
2π

∫
dr′
L2

∫
dzρ1(r′ + r,z; r′,z), where r

and r′ are two-dimensional vectors. Its long-range asymptotic
value gives the fraction of particles with zero momentum in
(x − y) plane. As it is seen from the figure, Nk=0

0 /N ≈ 0.85,
which is considerably smaller than the condensate fraction
N0/N . The GPE approach works very well in the dilute
regime and predicts slightly a higher fraction of particles
with zero momentum, Nk=0

0 /N ≈ 0.87, while the result of
the Bogoliubov theory is slightly lower, Nk=0

0 /N ≈ 0.83.
The superfluid fraction calculated in two dimensions by

the DMC method, Ns/N = 0.75, coincides with the value
obtained from the GPE. Perturbative Bogoliubov theory gives
Ns/N = 0.67, refer to Eq. (9). In this regime Ns/N is smaller
than Nk=0

0 /N , which is in agreement with the results obtained
for the Bose-Hubbard model [21]. It is interesting to note that
the superfluid fraction is gradually reduced with increasing V0,
while the condensate fraction remains very large. A possible
interpretation is that for such small values of the gas parameter
the external potential effectively changes very smoothly (i.e.,
classically), so the system remains well described by the
GPE, which corresponds to having almost all particles in the
condensate. At the same time the superfluid flow of particles
becomes blocked by the strong external field. In this situation,
Ns can be much smaller than N0.

FIG. 1. One-body density matrix ρP
1 (r) normalized to mean

density n2 as obtained from the GPE (lines) and by the extrapolation
procedure in the DMC calculation (symbols). The parameters are
V0 = 0.3 h̄ωho and as/aho = 0.1 (squares, solid line) and 1 (circles,
dashed line).

Next we study a situation when the condensate fraction is
small. To do so, we consider a strongly interacting case with
as = aho, for which Eqs. (10) and (11) predict transition at
V c

0 = 0.32 h̄ωho. For this interaction the quantum fluctuations
deplete the condensate in a homogeneous system by approxi-
mately 20%. The presence of a lattice reduces the condensate
fraction to N0/N = 0.7. The behavior of the zero-momentum
fraction is determined by the competition of classical and
quantum effects. Strong repulsive interactions make the atomic
distribution more homogeneous, which leads to the increase
of Nk=0

0 /N . This classical effect is described by the GPE,
which predicts Nk=0

0 /N = 0.93 (see Fig. 1). Equation (9)
gives 0.92. This is larger than that for a weakly interacting

FIG. 2. Diagonal terms x = y of the projected condensate wave
function φ

p

0 (x,y) = ∫
φ0(x,y,z) dz obtained in one iteration (2) of

the solution of the GPE in the (x,y) plane multiplied by the Gaussian
in the z direction. Further iterations do not lead to noticeable changes.
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gas. Quantum fluctuations suppress Nk=0
0 /N together with

N0/N and MC calculations give Nk=0
0 /N = 0.45, which is

considerably lower than in the weakly interacting regime.
From the GPE we get Ns/N = 0.87, while the Bogoliubov
theory predicts a value close to that, Ns/N = 0.84. Instead,
the DMC result, Ns/N = 0.6, is significantly smaller. This
large discrepancy between the MC calculation and the GPE is
not only due to the strong influence of quantum fluctuations
but is also due to the different forms of the atomic inter-
action potential. We also note that here Ns/N is larger than
Nk=0

0 /N , in contrast to the case of weak interaction considered
above.

Finally, we test whether the solution of the GPE reproduces
well the condensate orbital φ0(r). The results are presented
in Fig. 2 for the case of large s-wave scattering length
as = aho. We find that even in such a strongly interacting
system the condensate orbital constructed as a product of
φGPE(r) by the Gaussian indeed turns out to be almost an
eigenstate. On the variational level the Jastrow terms, which
we construct as in Ref. [22], take into account pair correlations
and are responsible for suppression of the condensate fraction,
although in the studied case the shape of the VMC orbital
remains almost unaffected and is very close to the solution of
GPE. The DMC algorithm corrects the orbital and makes it

less localized compared to the GPE prediction (see Fig. 2). A
similar effect has been observed in harmonic traps where the
condensate moves to the edges [6].

To conclude, we have developed a procedure for obtaining
the number of condensed particles N0 which is applicable
to inhomogeneous systems in higher dimensions. For the
experimentally relevant case of the Bose gas in the optical
lattice, we show that the number of particles with zero
momentum Nk=0

0 might be significantly smaller than the
number of condensed particles N0. We propose to approximate
the condensate orbital by a solution of the GPE and prove that
the corresponding occupation number is a lower bound to N0.
We check in DMC calculations that such an approximation to
the condensate orbital can be successfully used even in strongly
interacting Bose gases. Numerical results are compared to
predictions of perturbative Bogoliubov theory.
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