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We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-
Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can
be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this
system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing
key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both
Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of
information from the background gas (reservoir) to the impurity (system).
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Introduction. In past decades, high precision control of
ultracold atomic gases has allowed the realization of ex-
periments unveiling fundamental phenomena in the physics
of many-body quantum systems at low temperatures. Key
examples are the observation of Anderson localization [1],
the superfluid-Mott insulator transition [2], the creation of
Tonks-Girardeau gases [3], and the atom laser [4], just to
mention a few.

More recently, hybrid systems composed of quantum
dots, single trapped ions, and optical lattices coupled to
Bose-Einstein condensates (BECs) have been studied both
theoretically and experimentally [5]. These systems are studied
in the framework of open quantum systems [6], effectively
described as one or more two-level systems (qubits) interacting
with a reservoir consisting of the ultracold gas. The possibility
of manipulating crucial parameters of the reservoir, such
as the scattering length [7], combined with the continuous
improvements in quantum control of qubits, highlights the
enormous potential of hybrid systems as quantum simulators
of both condensed-matter models and open quantum systems.

In this Rapid Communication, we study a qubit system
composed of an impurity atom trapped in a double-well
potential, interacting with a BEC environment. This model
has been shown to describe an effective pure-dephasing model
[8]. Our focus is on the dynamics of quantum information
between the qubit system and the ultracold reservoir. We show
how information flux can be manipulated by experimentally
achievable means, such as changing the scattering length, the
effective dimension of the background gas, or the trapping
geometry of the qubit.

Recently, dynamics of information flow has been an active
area of research in the open quantum systems community
due to several proposals to link it to the division of quantum
processes into Markovian and non-Markovian ones [9–12].
The latter ones have been defined as processes where an
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open system recovers some previously lost information and
therefore temporarily combats the destructive effect of the
environment as a sink for quantum properties. Such effects,
limiting the performance of all quantum devices, can indeed
be seen as loss of information on the system. Therefore,
looking at the dynamics of information flow gives us an
indication of the time of usability of a given quantum system
for quantum information processing and, more generally, for
quantum technologies.

Bose-Einstein condensates are often referred to as typical
examples of non-Markovian reservoirs; however, a quan-
titative and qualitative analysis of such a claim does not
exist in previous literature. This is partly due to the fact
that non-Markovianity measures have been introduced only
recently. Here we present the first characterization of non-
Markovian effects in the context of ultracold gases. We derive
an analytic expression for the non-Markovianity measure
of Ref. [9] valid for general pure-dephasing qubit models.
We find a crossover between Markovian and non-Markovian
dynamics in an experimentally accessible parameter space of
the model, and we uncover the physical mechanisms at the
root of non-Markovian phenomena induced by the ultracold
background gas.

Our findings pave the way to the realization of quantum
simulators for non-Markovian open quantum system models
with ultracold atomic gases. It is worth mentioning that the
first quantum simulator for Markovian open quantum systems
has been experimentally realized very recently in the trapped
ion context [13,14].

Experiments on quantum simulators of non-Markovian
open quantum systems, on the other hand, have not yet been
performed and are, in general, more demanding than their
Markovian counterpart. Non-Markovian quantum simulators
would allow one to tackle crucial fundamental open questions
in the theory of non-Markovian open quantum systems, such
as the generalization of the Lindblad theorem.

The model. The setup we consider (see Fig. 1) consists
of an impurity atom trapped in a deep double-well potential
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FIG. 1. (Color online) Setup of the impurity-BEC system. The
impurity is trapped in a double-well potential VA (solid) and immersed
in a BEC confined by a shallow harmonic potential VB (dashed). The
impurity occupies mostly the two states |L〉 and |R〉, in which the
atom is localized in the left and right well, respectively. Finally, the
distance between the two wells is 2L.

VA(r). The impurity atom forms a qubit system with the two
qubit states represented by the occupation of the impurity atom
in the left or the right well: |L〉 and |R〉, respectively. The
impurity atom couples to a bosonic background gas B trapped
in a shallow potential VB(r), which forms a Bose-Einstein-
condensed environment for the qubit system. The Hamiltonian
for this system, derived in Ref. [8], is

H=
∑

k

Ekc
†
kck+σz

∑
k

(gkc
†
k + g∗

kck) +
∑

k

(ξkc
†
k + ξ ∗

k ck),

(1)

where σz = |R〉〈R| − |L〉〈L| and Ek =√
εk[εk + 2g

(D)
B nD ] is the

energy of kth Bogoliubov mode ck of the condensate with
boson-boson coupling frequency g

(D)
B and condensate density

nD . D denotes the effective dimension of the environment. The
energy of a free mode is εk = h̄2k2/(2mB), where k = |k| and
mB is the mass of a background gas particle. Furthermore, gk
and ξk are coupling constants that depend on the spatial form
of the states |L〉 and |R〉 and on the shape of the Bogoliubov
modes. Their specific form is elaborated in Ref. [8]. When the
background gas is at zero temperature, the reduced dynamics
of the impurity atom is captured by the following time-local
master equation (ME):

dρ(t)

dt
= �(t)[σz,ρ] + γ (t)

[
σzρ(t)σz − 1

2
{σzσz,ρ(t)}

]
. (2)

Quantity �(t) renormalizes the energy of the qubit but has no
qualitative effect on the dissipative dynamics. Instead, in this
work we are interested in the decay rate,

γ (t) = 4g2
ABn0

h̄

∫
dk sin2(k · L)

(2π )D
sin(Ekt/h̄)

εk + 2g
(D)
B nD

e−k2τ 2/2,

(3)

where gAB is the impurity-boson coupling frequency, τ is a
trap parameter, and L is half the distance between the two
wells of the double-well potential.

We have derived ME (2) using the time-convolutionless
projection operator technique to second order in the coupling
constant gAB [6]. Remarkably, in this case the second-
order ME describes the reduced dynamics exactly [15].
Solving the ME reveals that the impurity atom dephases
without exchanging energy with the background gas. More
precisely, ρii(t) = ρii(0) and ρij (t) = e−
(t)ρij (0) when i �= j ,
where ρij = 〈i|ρ|j 〉 and i,j = R,L. The decoherence function

(t) = ∫ t

0 ds γ (s) coincides with that derived in Ref. [8];
however, here we wish to stress the connection between the

decay rate and the non-Markovian features. The authors of
Ref. [8] discovered situations when the decoherence function

(t) is nonmonotonic and conjectured that this is due to
non-Markovian effects in the reduced dynamics. Already
the form of the ME (2) supports this intuition; the theory
of non-Markovian quantum jumps has shown that there is
a profound connection between non-Markovian effects and
negative regions of the decay rates of Lindblad-structured
MEs as the one of Eq. (2) [16]. The full characterization
of non-Markovian systems, however, is usually not an easy
task. In the following, we derive an analytic expression
for the non-Markovianity measure, discover the existence
of a Markovian–non-Markovian crossover, and expose the
physical mechanisms at the root of this transition in the system
dynamics.

Non-Markovianity measure. Breuer, Laine, and Piilo (BLP)
have proposed a rigorous definition for non-Markovianity of
a quantum channel � based on the dynamics of the so-called
information flux σ (t) = dD[ρ1(t),ρ2(t)]/dt [9]. This is the
temporal change in the distinguishability D[ρ1(t),ρ2(t)] =
1
2 ||ρ1(t) − ρ2(t)||1 of two evolving quantum states ρ1,2(t) =
�(t)ρ1,2(0) as measured by the trace distance. Negative infor-
mation flux describes information leaking from the system to
its environment and it is associated to Markovian dynamics.
Instead, if it is possible to find a pair of states ρ1,2(0) for which
the information flux is positive for some interval of time, that
is, the system regains some of the previously lost information,
then process � is considered non-Markovian. The amount
of non-Markovianity is defined to be the maximal amount of
information that the system may recover from its environment,
formally NBLP = maxρ1,2

∫
σ>0 ds σ (s).

Generally, calculating NBLP is difficult because of the
optimization over all pairs of initial states. Indeed, an ana-
lytic expression for the non-Markovianity measure has been
calculated, until now, only for the Jaynes-Cummings model,
the driven qubit model, and the depolarizing channel [9,17,18].
For the model studied in this Rapid Communication, we find
that σ (t) > 0 if and only if γ (t) < 0; that is, the process
is non-Markovian precisely when the decay rate can take
temporarily negative values. Within experimentally relevant
values of the physical parameters, we have discovered at most
a single time interval t ∈ [a,b], when the decay rate is negative
and information flows back to the system after an initial period
of information loss. Therefore, instead of using the original
measure faithfully and quantifying non-Markovianity as the
maximal amount of information that the system may recover,
we introduce a normalized quantity that reveals the maximal
fraction of the previously lost information that the system can
recover:

N = max
ρ1,2

D[ρ1(b),ρ2(b)] − D[ρ1(a),ρ2(a)]

D[ρ1(0),ρ2(0)] − D[ρ1(a),ρ2(a)]
. (4)

Unlike NBLP, the modified quantifier N is bounded between
zero (system only leaks information) and one (system regains
all previously lost information) and is therefore more mean-
ingful as a number. We have confirmed numerically that in
the relevant case of dephasing noise the above quantity is
maximized for the same pair of initial states that maximize
NBLP. These are the states whose Bloch vectors lie on the
opposite sides of the equator of the Bloch sphere [17]. Using
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these states in the general expression of Eq. (4), we find the
analytic expression of the non-Markovianity measure for a
dephasing qubit to be

Ndeph = e−
(b) − e−
(a)

e−
(0) − e−
(a)
, 
(t) =

∫ t

0
ds γ (s). (5)

We are now ready to study how changes in the background
scattering length and in the dimensionality of the BEC affect
the dynamics of information flow.

Three-dimensional BEC. As a first step, we consider a three-
dimensional (3D) background BEC with equal confinement
of the background gas in all directions. We consider a
87Rb condensate of density n3 = n0 = 1020 m−3 and 23Na
impurity atoms trapped in an optical lattice with lattice
wavelength λ = 600 nm and trap parameter τ = 45 nm.
The impurity-boson coupling is gAB = 2πh̄2aAB/mAB , where
mAB = mAmB/(mA + mB) and mA and mB are the masses of
the impurity atoms and the bosons, respectively, and aAB =
55 a0, where a0 is the Bohr radius. Similarly, the boson-boson
coupling frequency is g3D

B = 4πh̄2aB/mB , but now we assume
that the s-wave scattering length of the background gas can be
tuned from its natural value aB = aRb ≈ 5.3 nm via Feshbach
resonances. We explore a range of values of aB consistent with
the assumption of dilute gas and with the regime of weakly
interacting gases. The latter is a stronger condition, requiring√

a3
Bn0	1. As a consequence, we can tune the scattering length

up to a maximum value given by aB ≈ 3 aRb.
Figure 2 shows the non-Markovianity measure Ndeph as

a function of aB for three different values of the well
separation L. Increasing L magnifies the fraction of recovered
information flow due to the increased ability of the condensate
to resolve the qubit system. Similarly, non-Markovian effects
are amplified for stronger interaction of the condensate.
However, we find that the scattering length alone plays a
crucial role in the emergence of non-Markovian reservoir
memory effects. When the background gas is free or very
weakly interacting, 0 � aB � acrit

B ≈ 0.034 aRb, the qubit only
leaks information to the BEC environment. Instead, for a
strong enough interaction strength of the background gas,
aB > acrit

B , the condensate can take on the role of information
storage and feed some information back to the qubit. This

aB/a

3D background gas

L=75 nm

L=50 nm

L=100 nm

Ndeph

Rb

FIG. 2. (Color online) Non-Markovianity measure Ndeph as a
function of the scattering length of the background gas aB with
values of well separation L = 50 nm (red dashed line), L =
75 nm (blue dotted line), and L = 100 nm (black solid line).
The inset shows Ndeph for very small values of the scattering
length.

N
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FIG. 3. (Color online) Non-Markovianity measure Ndeph as a
function of the scattering length of the background gas aB when
the background gas is three-dimensional (red dashed line), quasi-
two-dimensional (blue dotted line), and quasi-one-dimensional (black
solid line). The inset shows a longer range of the scattering length
aB . In all figures, the well separation is L = 75 nm.

result holds for any value of L. This finding challenges the
conclusion of Ref. [8], where the scattering length dependent
Markovian–non-Markovian crossover was only attributed to
the 1D case. We have discovered that the situation is indeed
more subtle and we will show next that the crossover point
exists in all three dimensions.

Lower dimensions. By a suitable modification of the
potential of the condensate VB(r), we can create a quasi-
2D background gas where the gas is trapped in a slightly
anisotropic, pancake-shaped harmonic trap. Assuming that the
scattering length is still much smaller than the axial length of
the condensate, aB 	 az, the coupling term is modified to
g2D

B = √
8πh̄2aB/(mBaz) and the 2D condensate density is

n2 = √
πn0az [19]. Within the limits of a dilute gas, we can

increase the scattering length up to aB ≈ 2 aRb. The potential
VB(r) can be also modified to create a cigar-shaped quasi-1D
background gas with transversal width a⊥. The consequent
coupling is g1D

B = 2h̄2aB/(mBa2
⊥) and the 1D density is n1 =

n0πa2
⊥, again provided that gas is weakly enough confined,

aB 	 a⊥ [20]. In the quasi-1D regime, diluteness of the gas
allows at most aB � aRb.

In Fig. 3, we plot the non-Markovianity measure Ndeph in
the quasi-1D, quasi-2D, and 3D cases. In lower dimensions,
we find the critical values a

crit,2D
B ≈ 0.122aRb and a

crit,1D
B ≈

0.183aRb. Clearly, when the dimensionality of the background
gas is lowered, the crossover value of the scattering length
acrit

B increases. Crucially, as we remarked before, a
crit,3D
B > 0

and therefore it is possible to create both Markovian and non-
Markovian dynamical processes in all three dimensions.

We note here that the quantities we have chosen to vary,
namely, the scattering length aB and the well separation
L, are indeed the most relevant quantities for manipulating
the information flowback. The trap parameter τ determines
the trapping frequency of the double-well trap VA(r) and
acts as a natural cutoff parameter in the decay rate of
Eq. (3). As long as the double-well trap is deep enough
to prevent hopping between the two sites, the particular
value of τ has only a minor effect on information flow.
It is also clear from the form of the decay rate that the
boson-impurity coupling gAB cannot affect the Markovian–
non-Markovian crossover. Moreover, we have found that its
value has negligible effect on the non-Markovianity quantifier
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Ndeph. Intuitively, it affects the amount of outgoing and
incoming information almost equally but leaves their ratio
unchanged. In order to explain the key non-Markovian features
in the dynamics of the qubit system when the dimensionality
and the scattering length of the background gas vary, we
need to take a closer look at the spectrum of the BEC
reservoir.

Environmental spectrum. The crossover between Marko-
vian and non-Markovian processes is best understood in
terms of the environmental spectrum J (ω). Consider the
general dephasing model introduced by Palma, Suominen,
and Ekert describing qubit dynamics: ρii(t) = ρii(0) and
ρij (t) = e−
̃(t)ρij (0), where 
̃(t) ∼ ∫

dω J (ω)(1 − cos ωt)/ω
[21]. The dynamical process is non-Markovian if and only if
γ̃ (t) = d
̃(t)/dt < 0 for some interval of time. We assume
an Ohmic-type spectrum J (ω) ∼ ωs and recall the convention
that the spectrum is sub-Ohmic when s < 1, Ohmic when
s = 1 or super-Ohmic when s > 1. Introducing an ad hoc
exponential cutoff so that J (ω) = ωs exp{−ω2/ω2

C}, where
ωC is the cutoff frequency, it is straightforward to show that
the dynamics is non-Markovian when s > scrit = 2. Therefore,
in a general setting, a qubit dephasing under the effect of
either a sub-Ohmic or an Ohmic environment can only leak
information to its environment. If the environment has a
super-Ohmic spectrum, the issue is less straightforward: only
if the spectrum is sufficiently super-Ohmic with s > scrit,
information can flow back to the system from the environment.

The qubit in an ultracold bosonic environment considered
in this work is a special case of the model above with
J (ω) = ∑

k |gk|2δ(h̄ω − Ek). The reservoir spectrum J (ω)
does not have a simple analytical expression due to the
complicated form of the coupling constant gk. However, it can
be shown that, in the case of a free background gas in one, two,
or three dimensions, the spectrum is sub-Ohmic, Ohmic, or
super-Ohmic, respectively [8]. The spectrum changes critically
when one considers the boson-boson coupling quantified by
the scattering length aB . In this case, increasing the scattering
length effectively increases the value of s. Hence when we
increase aB in the 1D case, the spectrum changes from
sub-Ohmic to Ohmic to super-Ohmic and once a critical
threshold of super-Ohmicity is reached the environment can
feed information back to the system. In the 2D non-interacting
case, the spectrum is Ohmic and a weaker interaction is
required to reach the crossover point scrit, leading to a

crit,2D
B <

a
crit,1D
B . Finally, in the 3D case, the spectrum is already super-

Ohmic in the noninteracting case, although not super-Ohmic
enough to give rise to non-Markovian dynamics. Already a

small increase in the scattering length modifies the spectrum
so that the direction of information flow can be temporarily
reversed.

Conclusion. We have studied quantum information flux in
an ultracold hybrid system of an impurity atom immersed in
a BEC environment. We have shown explicitly how precise
control of the ultracold background gas affects the spectrum
felt by the qubit and therefore enables the manipulation of
the qubit dynamics and the information flux. An important
discovery is the existence of a controllable crossover between
Markovian and non-Markovian dynamics. In particular, we
have discovered experimentally accessible means of reaching
non-Markovian dynamical regimes, where the background gas
may feed information back to the qubit instead of acting only
as a sink for information. Such quantum reservoir engineering
is fundamental for understanding decoherence processes in
quantum information processing and, more specifically, for
the realization of quantum simulators.

The loss of any quantum property—be it quantum super-
position or entanglement or quantum discord—can be seen as
due to information lost by the system because of its interaction
with the environment. In this sense, studying information
flux is a convenient way to quantify the tendency of the
quantum system to retain those quantum properties necessary
for quantum technologies. Non-Markovian systems are able
to regain previously lost information and, therefore, compared
to Markovian systems, they guarantee a longer operational
time for quantum devices. A natural future direction, which
will constitute the subject of a followup paper, is the study of
the optimal conditions for entanglement-keeping in quantum
registers of impurities, as indicated by information flow.

Finally, we would like to stress that the ideas presented
in this work can be realized in present-day experiments.
The measurement of the degree of non-Markovianity can
be achieved by measuring the impurity coherence, since
Ndeph = [ρLR(b) − ρLR(a)]/[ρLR(0) − ρLR(a)]. This can be
done by mapping the states |L〉 and |R〉 to the superpositions
|L〉 ± |R〉. This atomic “beam splitter” would allow one to
infer, from the measurement of the population imbalance of
the two wells, the coherence ρLR [22].
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