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Mesoscopic transport and interferometry with wave packets of ultracold atoms: Effects
of quantum coherence and interactions
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We propose a way to simulate mesoscopic transport processes with counterpropagating wave packets of
ultracold atoms in quasi-one-dimensional (1D) waveguides and show quantitative agreement with analytical
results. The method allows the study of a broad range of transport processes at the level of individual modes, not
possible in electronic systems. Typically suppressed effects of quantum coherence become manifest, along with
the effects of tunable interactions, which can be used to develop a simpler type of sensitive atom interferometer.
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Atomtronics, or electronics with ultracold atoms, is an
emerging field with broad potential. Exploratory papers on the
subject have focused primarily on atomic replicas of electronic
components like diodes and transistors [1–3]. The degenerate
temperatures and the quantum nature of ultracold atoms,
however, make atomtronics akin to nanoscale mesocopic
processes [4], rather than traditional electronics. Therefore,
besides component design, progress in atomtronics calls for
the study and simulation of the transport mechanisms by which
mesoscopic circuits operate.

Fermionic atoms in waveguides can mimic electrons in
nanowires [5]. But with bosonic carriers atomtronics be-
comes more than an imitation of mesoscopic electronics.
Carrier statistics influences the characteristics of atomtronics
components [3], but not their functionality. But in atom-
tronics implementations of mesoscopic transport, bosons
can offer significant advantages by bypassing certain as-
sumptions implicit in the solid state such as (i) multi-
ple modes always present with fermionic carriers, which
suppress coherent correlations, and (ii) fixed interparticle
interactions, often ignored in models of ballistic transport in
nanowires [4].

With no exclusion principle to guarantee the nonvanishing
momenta assumed with fermions, transport experiments with
degenerate bosons require a different approach: We propose to
simulate the basic Landauer [4,6] paradigm of mesoscopic
transport with wave packets of cold bosons, which allows
enhanced flexibility of operation, revealing features absent or
suppressed in electronic transport, which can now be simulated
mode by mode. Additionally loss of coherence and buildup
of spurious nonlinear effects are minimized by eliminating
the spatiotemporal interval between the source [7] and the
scattering potential.

Mesoscopic transport with wave packets. In mesoscopic
solid state systems transport is described by quantum scat-
tering [4,6]. Fermionic carriers move ballistically in quasi-
one-dimesional (1D) nanoscale leads between macroscopic
contacts that act as absorbing reservoirs for the carriers.
Any device connected to the wire acts as a scatterer. In a
single-channel circuit with two leads (left→ l, right → r), the
particle current for spin-polarized fermions (F ),

JF =
∫ ∞

0

dk

2π
[v(k)fl(k)Tl(k) − v(k)fr (k)Tr (k)], (1)

is determined by the Fermi distribution functions fl(r) of the
contacts, the transmission probabilities Tl(r) for left and right
incident particles, and their velocities v(k). The underlying
picture is that of carriers injected at all available modes k in
both leads, and the net current is given by the weighted sum
of the current at each mode,

JB(k) = v

2
[(fl − fr ) + (flTl + frRr ) − (flRl + frTr )], (2)

termed bosonic (B), being single mode, in contrast with
multimode fermionic currents. The first term is due to inbound
particles, bias driven with no scatterer. The last two terms are
incoherent sums of the reflected and transmitted fractions,
outbound from the scatter.

The single-mode current is determined by the scattering
probabilities; therefore it can be directly simulated with
ultracold atoms. Start with a wave packet ψ(x,t = 0−) of
ultracold atoms (of axial extent 2b) in a quasi-1D harmonic
trap [5], first on the left and then on the right of the “device” (a
scattering potential implemented with tightly focused lasers,
blue or red detuned for barriers or wells). To initiate the
transport experiment, at t = 0 the axial trap is turned off
and the atoms are given an inward momentum ±h̄k by using
Bragg beams [8], ψ(x,0+) = e±ikxψ(x,0−). The wave packet
is allowed to evolve for tf > 2kb such that the scattered
wave packet has little overlap with the device, and then the
spatial and momentum distribution imaged. The integrated
densities n±(tf ) = ∫

dkθ (±k)|ψ(k,tf )|2 of the left(−) and
right(+) moving scattered fractions directly give the scattering
probabilities, which, for broad packets, match those of plane
waves e±ikx . Along with fl(r) of the system, they determine
JB(k). Snapshots of the propagation of the spatial wave
function with a split-step operator method are shown in
Figs. 1(a) and 1(b). Fermionic transport is simulated by
replacing the integral in Eq. (1) by a Riemann sum sampled at
discrete intervals of �k:

JF =
∫ ∞

−∞

dk

2π
f (k)JB(k) � �k

2π

∑
i

f (ki)JB(ki). (3)

Figure 2 shows the accuracy of this approach for both single-
mode bosonic transport and integrated fermionic transport
for a snowplow quantum pump [5] of interest in mesoscopic
physics. The key point is that JB needs to be sampled only at
some points in k space to map out JF .
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FIG. 1. (Color online) Simulation of mesoscopic transport with
wave packets of Thomas-Fermi profile |ψ(x,0−)|2 = (3/4b3)[b2 −
(x − x0)2], b = 200, and velocity k = 0.5, for a static rectangular
barrier slightly shifted from the origin. (a) Left incident packet,
(b) right incident packet, (c) simultaneous left and right incident
packets propagating coherently, and (d) single wave packet split into
50:50 superposition of ±h̄k momentum states, similar to (c) but with
additionally two outbound fractions.

The power of the method is in its simplicity and the
variations it allows for exploring transport features, many
not possible in mesoscopic systems: (i) nonlinear transport,
tunable by Feshbach resonances [9] in packets of Bose-
Einstein condensate (BEC) in an optical dipole trap [10],
(ii) quantum to semiclassical limit by narrowing packet
widths, (iii) transport and resonance transmission with dif-
ferent potentials by sculpting laser profiles and bias fields,
(iv) time-varying potentials, (v) coherence effects by propa-
gating left- and right-going packets simultaneously [Fig. 1(c)],
and (vi) adjustable periodic potential with optical lattices.

Simulation and physical parameters. To describe coherent
superpositions and velocity-changing time-varying scatterers,
Eq. (2) is generalized to

J [ψ(k,t)] = (h̄/m)〈ψ(k,t)|k|ψ(k,t)〉/〈ψ(k,t)|ψ(k,t)〉 . (4)

This, at t = tf after scattering, corresponds to the last two
terms of Eq. (2); the first term determined by the Fermi
functions vanishes for biasless transport fl = fr . Possible
initial states in position space ψ(x,0−) are shown in Fig. 1.
For the incoherent sum of the left [Fig. 1(a)] and right going
[Fig. 1(b)] packets, the currents are computed separately
and averaged J = 1

2 {J [ψl(k,t)] + J [ψr (k,t)]}. Packets are
weighted by fl(r) for biased transport.
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FIG. 2. (Color online) Wave packet simulation with a single split
wave packet as in Fig. 1(d), compared to an exact analytical [5] current
profile of a “snowplow” quantum pump operating by a translating
potential. Fermionic and Bosonic currents are plotted. Inbound
packets alone [Fig. 1(c)] are insufficient for k < v. Numerical curves
are interpolations of the marked computed values.
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FIG. 3. (Color online) Coherent transport by a shifted static
barrier. (a) Two-wave-packet simulation [Fig. 1(c)] for the rectangular
barrier (dots) exactly matches the analytical curve. Simulation
with the Gaussian barrier (laser profile) is close. Also shown
are the effects of (a) positive and negative nonlinearity g1D and
(b) different magnitudes of positive nonlinearity. (c) For a centered
packet [Fig. 1(c)], the small initial imbalance, due to the barrier shift,
tilts the net transport. Numerical curves are interpolations of points
at intervals marked by the “dots” in (a).

Assuming degenerate bosons, we use the initial Thomas-
Fermi profile |ψ(x,0−)|2 = [3/(4b3)][b2 − (x − x0)2]. The
packet(s) are propagated with the 1D Gross-Pitaevskii (GP)
equation [− h̄2

2m
∂2
x + V (x) + g1D|ψ |2]ψ = −ih̄∂tψ, with the

nonlinearity [11] measured by the effective 1D interaction
g1D = 2aN (a → scattering length, N → number of atoms).
The transverse trap frequency ωr defines our units l =√

h̄/(mωr ), E0 = h̄ωr , and τ = ω−1
r . In the noninteracting

case g1D = 0, but the Thomas-Fermi profile is still used, as
results are insensitive to packet shape, if it is wide enough to
approximate plane waves (Fig. 6). Also, a small nonlinearity
g1D � 1 can substantially broaden the initial packet and still
approximate linear behavior.

Any atom species with a BEC and a Feshbach resonance
through zero scattering length may be used. For example,
with 39K in a trap of radial and axial frequencies of ωr =
2π × 600 Hz and ωa = 2π × 0.6 Hz, possible in current
experiments [12], our units are l = 0.65 μm, E0 = 0.029 μK,
and τ = 0.26 ms. With scattering length tuned to 0.05aB , in
these units g1D = 0.81 and packet width b = 106 for N = 105

atoms [13], appropriate for testing linear transport. A scattering
length of 1.5aB gives g1D = 24 and b = 330, sufficient to
test nonlinear transport described here. Our simulations use
wider packets b = 600 only for precise matching of plane
wave results (Fig. 6). Typical packet velocity l/τ = 2.5 mm/s
defines the time scale of the experiments, 2kb � 50 ms.

Transport interferometry with static potentials. Mesoscopic
transport assumes a lack of phase coherence among individual
carriers, due to the randomization in the reservoirs [4], hence
the incoherent sum of transmission probabilities in Eq. (1).
With trapped atoms we can relax this condition with some
interesting consequences.
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FIG. 4. Scattering matrix elements. (a) Single barrier shifted from
the origin. (b) Double-barrier potential of separation 2d .

Consider a symmetric static scatterer in 1D with no
potential gradient [Fig. 4(a)]. Two identical wave packets
of momenta ±h̄k simultaneously incident on opposite sides
should not give a net current since scattering probabilities are
independent of the side of incidence. That is indeed so if the
scatterer is centered at the origin. But if it is shifted a distance
d from the origin, there is net flow [Fig. 1(c)]. The transport
fraction P = n+ − n− depends sinusoidally on the shift d, as
shown in Fig. 3(a).

Classically impossible, such a current is a purely quantum
effect due to coherent superposition of the left and right going
packets; underscored by the fact that it is zero if the packets
are incident separately as in Figs. 1(a) and 1(b), and then the
resulting currents are added.

This can be understood by considering the scattering matrix
elements (Fig. 4) of plane waves: s12 = s21 = t , s11 = r2ikd ,
and s22 = re−2ikd . The transmission amplitudes are unaffected
by the shift. But the reflection amplitudes undergo phase
shifts, so the coherent sums on both sides, ψ±(x) = (t +
re∓2ikd )e±ikx , give

N = 1
2 [|ψ+(x)|2 + |ψ−(x)|2] = 1 + 2 cos(2kd) Re{t∗r},

(5)
P = 1

2 [|ψ+(x)|2 − |ψ−(x)|2] = 2 sin(2kd) Im{t∗r}.
Number conservation requires Re{t∗r} = 0, but generally

Im{t∗r} 
= 0, yielding nonvanishing P . Even with no shift,
asymmetric scatterers can generate differential reflection
phases, leading to net flow. This is demonstrated in Fig. 5,
for the asymmetric double-barrier configuration of Fig. 4(b).
While the transmission amplitudes are side-symmetric, the re-
flection amplitudes S11(22) = rl(r)e

−2ikd + t2
l(r)rr(l)e

+2ikd/(1 −
rrrle

+4ikd ) differ in phase unless the two barriers are identical.
This effect is due to coherent superposition of the two waves

±k introducing a spatial periodicity that breaks translational
invariance. The effect of bias is different, as can be seen with
a packet initially centered at x = 0 [Fig. 1(d)]. A barrier
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FIG. 6. (Color online) Wave-packet simulation of a turnstile
pump. (a) Coherent and incoherent transport compared to analytical
results [5]. (b) Convergence with packet width (b = 400 and 600
indistinguishable); our estimates for 39K correspond to b = 100,
and the small nonlinearity has no perceptible effect. Plots are
interpolations of points at intervals marked on one.

shift means more of the packet on one side. For d � b,
this adds a term in Eq. (5), P � d|ψ(0,0)|2(|t |2 − |r|2 −
1) + sin(2kd)Im{t∗r}, causing a linear tilt in P [Fig 3(c)].
Here, P is reduced by 1/2 as half of a centered packet is
outbound.

Although nonclassical, this is consistent with thermody-
namics as there is no net current in a thermal mixture. Even
for a 50:50 mixture of orthonormal states cos(kx) and sin(kx)
the net current vanishes, as seen for the representative case
of a shifted δ potential Uδ(x − d): J [cos(k)] = −J [sin(k)] =
− sin(2kd)h̄k2U/[2m(k2 + U 2)].

Coherence in time-dependent phenomena. By running
left and right going packets separately or simultaneously
the role of quantum coherence in transport phenomena can
be evaluated. We illustrate with two different time-varying
potentials associated with the mesoscopic process called
quantum pumps [5]: (i) snowplow, where a single potential
barrier [Fig. 4(a)] translates at uniform velocity d = vt , and
(ii) turnstile, where heights of two barriers [Fig. 4(b)] vary out
of phase, hl = h[1 + sin(ωt)] and hr = h[1 + cos(ωt)]. For
the snowplow, there is absolutely no difference in the current
profile (Fig. 2) whether the two packets are run simultaneously
or separately. This is because the shift d is now a function of
time, so the sinusoidal dependence on the shift averages out.
But, the turnstile pump shows a significant difference whether
the left and right going packets interfere coherently or not, as
seen in Fig. 6(a). This supports our earlier conclusions [5] that
the snowplow pump can be simulated classically, but turnstile
pumps involve quantum interference.

Effects of interactions. Even a small interaction-induced
nonlinearity can lead to a dramatic change of the transport
features. As shown in Fig. 3 the dependence of the transport
fraction P on the shift d changes from a sinusoidal to a
sawtooth pattern, with sharp changes at specific values of
the shift. Plots for small positive and negative nonlineari-
ties are mirror images of each other across the antinodal
planes of the sinusoidal curves for the corresponding linear
case [Fig. 3(a)]. Even for the asymmetric barriers (Fig. 5),
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nonlinearity sharpens the drop-off of the first peak. Since the
superposition principle does not apply for nonlinear equations,
general analytical solutions may not be possible, even with
stationary solutions on hand [7]. Therefore, our method can be
a valuable tool for probing nonlinear scattering and transport
by enabling direct comparison of numerical simulations and
experiments in the same framework.

Nonlinear propagation is sensitive to the packet shape since
the nonlinear term in the GP equation depends on |ψ |2 which
is nonuniform for a wave packet, unlike for a plane wave.
Therefore, rather than fix the normalization

∫
dx|ψ(x,t)|2 as

we vary the packet widths (as done in the linear case), we fix
the product g1D|ψ(0,0)|2, where |ψ(0,0)|2 is the initial peak
density. This leads to consistent convergence with the nodes
and the turning points occurring at convergent values, shown in
Fig. 7. This does not happen if

∫
dx|ψ(x,t)|2 is fixed instead.

Note our nonlinearity g1D|ψ(0,0)|2 ∼ 0.02 is small enough to
be in a regime where GP approximation is valid [14].

Conclusions and outlook. We have presented an experimen-
tally feasible and theoretically accurate way to conduct meso-
scopic transport experiments relevant in solid state nanocir-
cuits, with ultracold atoms. The tunability of parameters
and absence of Coulomb interaction allow study of transport
phenomena with much broader possibilities. Coherence effects
inherently suppressed in solid state systems can be made
manifest with single-mode transport studies possible with
atoms. The predictable and sensitive coherent transfer due
to small barrier shifts and asymmetries suggests applications
for sensitive atom interferometers [15,16] where the device
laser is connected to a sensor; this can be quite robust since
it measures scattered densities well separated in position and
momentum space, without multistep splitting-recombination
of wave fronts, typical of interference effects as in Mach-
Zehnder interferometers [16].

Nonlinearity in quantum coherent transport and scattering
has very rich behavior as our simulations indicate. Our
approach provides a simple numerical way and a viable
experimental method for probing such effects, still largely
unexplored. Sharper variations with nonlinearity, as in Fig. 3,
suggest that small interactions could actually be used to
enhance interferometric sensitivity.
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