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Search for a permanent electric-dipole moment using atomic indium
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We propose indium (In) as a possible candidate for observing the permanent electric dipole moment (EDM)
arising from violations of parity (P ) and time-reversal (T ) symmetries. This atom has been laser cooled and
therefore the measurement of its EDM has the potential of improving on the current best EDM limit for a
paramagnetic atom, which comes from thallium. We report the results of our calculations of the EDM enhancement
factor due to the electron EDM and the ratio of the atomic EDM to the electron-nucleus scalar-pseudoscalar
(S-PS) interaction coupling constant in In within the framework of the relativistic coupled cluster theory. It might
be possible to get new limits for the electron EDM and the S-PS CP -violating coupling constant by combining
the results of our calculations with the measured value of the EDM of In when it is available. These limits could
have important implications for the standard model (SM) of particle physics.
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It is now widely recognized that atomic electric dipole
moments (EDMs) arising from violations of parity (P ) and
time-reversal (T ) symmetries can provide important informa-
tion about new physics beyond the standard model (SM) [1,2].
T violation implies CP violation via the CPT theorem [3].
The dominant sources of the EDM of a paramagnetic atom are
the EDM of an electron and the scalar-pseudoscalar (S-PS)
interaction between the electron and the nucleus which violates
P as well as T symmetries [4]. Atomic EDMs due to the
electron EDM and the S-PS electron-nucleus interaction can
shed light on CP violation in the leptonic and semileptonic
sectors [1,5]. The origin of both of these kinds of CP violations
is not well understood.

The best limit on the EDM of a paramagnetic atom
currently comes from thallium (Tl) [6–9]. A new generation
of EDM experiments on the alkali-metal atoms like rubidium
[10], caesium [10–12], and francium [13] and based on the
techniques of laser cooling and trapping is currently underway.
These experiments have, in principle, the advantages of both
the beam and the cell experiments [14]. In particular, it is
possible to apply large electric fields and the coherence times
are long in these experiments [14]. The projected precision of
the current alkali-metal EDM experiments are about two orders
of magnitude better than that of the Tl experiment [10–12].
Indium (In), which is homologous to Tl, appears to be an
attractive candidate for the search of a permanent EDM for
essentially two reasons: First, this atom has been laser cooled
[15] and, second, the EDM enhancement factor due to the
electron EDM and the ratio of the atomic EDM to the S-PS
coupling constant can be calculated more accurately than that
of Tl due to its relatively smaller size. To demonstrate this
second point more elaborately, we carry out herein ab initio
calculations for the corresponding factors due to the EDM
of electron and the S-PS electron-nucleus interaction in In
and discuss the role of different correlation effects in these
properties.
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Following the work of Sandars [4] and its extension
[16–18], the effective atomic EDM Hamiltonian due to the
electron EDM can be written as

He
EDM = 2icde

∑
j

βjγ
5
j p2

j , (1)

and the S-PS interaction Hamiltonian is given by

H S-PS
EDM = iGF√

2
CS

∑
j

βjγ
5
j ρn(rj ), (2)

where de is the intrinsic electron EDM, γ 5 is a pseudoscalar
Dirac matrix, CS is the dimensionless S-PS constant, and
ρn(rj ) is the j th electron density over the nucleus.

The above interaction Hamiltonians mix atomic states
of opposite parities but with the same angular momentum.
They can be treated as first-order perturbations because their
strengths are sufficiently weak. Therefore, any atomic state
with a valence electron v can be expressed, after the inclusion
of these interactions, as

|�v〉 = ∣∣�(0)
v

〉 + λ
∣∣�(1)

v

〉
, (3)

where |�v〉 is the modified wave function with respect to
the original wave function |�(0)

v 〉 by the first-order correction
|�(1)

v 〉. λ represents the weak-coupling parameter de for He
EDM

or CS for H S-PS
EDM.

The enhancement factor due to the electron EDM and the
ratio of the atomic EDM to the S-PS coupling constant, which
is denoted here by R = Da

λ
for the atomic EDM Da of a state

|�v〉, is given by
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where D is the electric dipole (E1) operator. With the explicit
form of |�(1)

v 〉, we get
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where I represents the intermediate states and HEDM is one of
the EDM interactions given above.

The above expression depends explicitly on E1 matrix
elements, excitation energies (EEs), and matrix elements
of HEDM. However, it is possible to consider only a finite
number of excited states in the evaluation of this quantity if a
sum-over-states approach is used. In order to circumvent this
problem, we solve the first-order-perturbed wave function in a
similar approach of

(
H (0) − E(0)

v

)∣∣�(1)
v

〉 = −HEDM

∣∣�(0)
v

〉
. (6)

In the above expression, H (0) is the atomic Hamiltonian and
E(0)

v is the energy for the state |�(0)
v 〉. It is possible to estimate

the accuracy of the corresponding R values by calculating
the properties required to determine Eq. (5) for the dominant
intermediate states.

We employ the coupled-cluster theory in the relativistic
framework (RCC theory) to evaluate |�(0)

v 〉 and |�(1)
v 〉 as

described in Refs. [8,9,17,18]. These wave functions can be
expressed as

∣∣�(0)
v

〉 = eT (0){
1 + S(0)

v

}|�v〉 (7)

and
∣∣�(1)

v

〉 = eT (0){
T (1)(1 + S(0)

v

) + S(1)
v

}|�v〉, (8)

where |�v〉 is the Dirac-Fock (DF) wave function obtained by
appending the valence electron v to the closed-shell ([4d10] 5s2

in the present case) reference wave function, T (0) and S(0)
v are

the excitation operators for the core and valence electrons,
respectively, in the unperturbed case, whereas T (1) and S(1)

v

are their first order corrections. The atomic wave functions are
calculated using the Dirac-Coulomb (DC) Hamiltonian, which
is given by

H0 =
∑

i

{cαi · pi + (βi − 1)mic
2 + Vn(ri)} +

∑
i<j

VC(rij ),

(9)

where α and β are Dirac matrices, p is the momentum operator,
Vn(r) is the nuclear potential, and VC(r) is the Coulomb
potential.

We consider only single and double excitations in the
expansion of the RCC wave functions (CCSD approximation)
by defining

T = T1 + T2 and Sv = S1v + S2v (10)

for both the perturbed and unperturbed operators. Furthermore,
we construct triple excitation operators for S(0)

v as

S
pqr,(0)
vab =

̂
H0 T

(0)
2 + ̂

H0 S
(0)
2v

εv + εa + εb − εp − εq − εr

, (11)

which are used to evaluate the CCSD amplitudes iteratively.
This is referred to as the coupled-cluster method with singles,
doubles, and perturbative triples [CCSD(T)] approximation.
Here, εi is the single-particle energy of orbital i.

Hence, R in the RCC theory is given by
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(12)

TABLE I. Enhancement factor due to electron EDM and the ratio
of the atomic EDM to the S-PS coupling constant denoted by R to the
ground state of In due to de (dimensionless) and S-PS (in GF√

2
CS/A; A

is the atomic mass number) interactions obtained using DF and RCC
methods.

Source DF CCSD CCSD(T)

de −49.53 −82.35 −82.37
S-PS −31.10 −52.59 −52.60

where the dressed operator D(0) = eT (0)†
DeT (0)

, D = er is the
E1 operator due to the applied electric field, and c.c. represents
the complex conjugate terms. The procedure for the calculation
of the above expression is discussed elsewhere [8,9,17,18].

The single-particle orbitals in our calculations are a linear
combination of Gaussian-type orbitals (GTOs). They are
optimized by comparing the energies and the radial integrals
of these orbitals with those obtained numerically from GRASP2

[19]. We have allowed excitations from all the occupied
orbitals to unoccupied bound and continuum orbitals with
a maximum energy of 1500 a.u. This space is sufficiently
large for the convergence of the results of our calculations.
Orbitals up to l = 4 were included in the active space after
observing that the contributions from orbitals with higher
angular momenta were very small; inclusion of these orbitals
would have been computationally expensive with little or no
effect on the overall results.

In Table I, we present the R values for both de and S-PS
interactions at the DF, CCSD, and CCSD(T) levels. There
is a significant difference between the DF and CCSD(T)
results, highlighting the importance of strong correlation
effects for the reported R factors of this system. The small
difference between the CCSD and CCSD(T) results suggests
that the contributions from the triple excitations are small.
We give below contributions from various CCSD(T) terms
to understand the roles of different correlation effects in this
property.

In Table II, we present the contributions from the core
and the virtual orbitals to the factors R at the DF level
and individual contributions from different CCSD(T) terms.
The CCSD(T) contributions in this table have been classified
as important terms referring to terms whose contributions
are large (Goldstone diagrams for these terms are shown in
Fig. 1) and nonlinear terms whose contributions are relatively
small. Figure 1(a), representing D(0)T

(1)
1 , involves the lowest-

order DF contributions due to the core orbitals [Fig. 1(i)]
and some of the higher-order core-polarization correlation
diagrams [Fig. 1(ii), 1(iii), and more]. By comparing the DF
contributions from core orbitals and D(0)T

(1)
1 , it is obvious

that these core-polarization correlation effects contribute
significantly; they are larger than the DF core contribution.
The largest contributions come from the D(0)S

(1)
1v term and,

as shown in Fig. [1(b)], it contains the lowest-order DF
contribution due to the virtual orbitals. It also includes many
important core-polarization [Figs. 1(v) and 1(vi)] and pair-
correlation [Fig. 1(vii)] diagrams. However, the net correlation
contribution due to this diagram is not as large as it is from the
higher-order diagrams in D(0)T

(1)
1 . The other important term
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TABLE II. Contributions toR (with same units as in Table I) from

different CCSD(T) terms. D
(0)
OB represents effective one-body terms

from D(0), terms containing the bare D operator are the effective
two-body terms from D(0), “Others” and “Norm” give contributions
from other nonlinear terms and normalization of the wave function,
respectively.

Term From de From S-PS

From DF
(DHEDM)c + c.c. −17.56 −11.03
(DHEDM)v + c.c. −31.98 −20.07

Important RCC terms

D
(0)
OBT

(1)
1 + c.c. −39.79 −25.33

D
(0)
OBS

(1)
1v + c.c. −44.59 −28.24

D
(0)
OBS

(1)
2v + c.c. 10.10 6.39

Nonlinear RCC terms

T
(1)

1

†
D

(0)
OBS

(0)
2v −4.12 −2.62

S
(1)
1

†
D

(0)
OBS

(0)
1 + c.c. 3.55 2.27

S
(0)
2

†
D

(0)
OBS

(1)
1v + c.c. −2.06 −1.29

T
(1)

1

†
DT

(0)
2 + c.c. −4.74 −3.02

T
(0)

2

†
DT

(1)
1 S

(0)
2 −1.24 −0.78

T
(0)

2

†
DS

(1)
2 + c.c. 0.86 0.56

S
(0)
2v

†
DS

(1)
2v + c.c. −0.97 −0.61

Others 0.21 0.17
Norm 0.83 0.52

that has been considered is D(0)S
(1)
2v and it accounts mainly for

a particular class of core polarization effects.
We now consider some of the quantitative aspects of the

correlation effects in the above electron EDM enhancement
factor and the ratio of the atomic EDM to the S-PS coupling
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FIG. 1. Break down of important perturbed CCSD(T) diagrams
into lower-order many-body perturbation diagrams. Lines with a
single arrow pointing upward and downward represent the occupied
and unoccupied orbitals, respectively. Lines with a double arrow
represent the valence orbital.

constant. These effects in In are significantly larger than those
in the alkali-metal atoms, but their cancellations are not as
severe as in the case of Tl. The correlation effects for both
the above quantities are one and a half times the total DF
results. The core correlation effects are very strong, because
of the large overlap between the wave functions of the valence
5p1/2 and the outermost core 5s orbitals and the small energy
difference between them. At the DF level, the contributions
from the virtual orbitals are larger than those of the core or-
bitals. The total contributions from both D(0)T

(1)
1 and D(0)S

(1)
1v

are comparable. The contribution from D(0)S
(1)
2v is significant,

but with opposite sign. These contributions are from the
singly excited perturbed states; mainly from the [4d10]5s5p2

state. There are also some significant contributions from the

higher-order RCC terms; especially T
(1)

1

†
DT

(0)
2 , S

(1)
1

†
D(0)S

(0)
1 ,

S
(0)
2

†
D(0)S

(1)
1v , and T

(1)
1

†
D(0)S

(0)
2v through some of the core-

polarization and pair-correlation effects. Contributions due
to the normalization of the wave function (norm) and terms
containing nonlinear terms in T (0) and T (1) are small.

It is possible to get a sense of the accuracies of the
individual quantities that appear in Eq. (5) by comparing
their calculated values with their corresponding experimental
results. Experimental values for the EEs are available up
to very high accuracy [21] and experimental values of the
E1 matrix elements can be extracted from the lifetime
measurements of the available s states. The matrix elements
of HEDM cannot be measured directly. However, the accuracy
of this quantity can be indirectly estimated from the square
root of the product of the magnetic dipole hyperfine structure
constants (Ahyp) of the appropriate states [8,9].

We present the results for the EEs, E1 matrix elements,
and the hyperfine structure constants of the ground and
excited s states in Table III that contribute significantly to R.

TABLE III. Comparison of the excitation energies (in cm−1),
E1 matrix element, and hyperfine structure constants of low-lying
states in In with the available experimental results and all-order SD
calculations. Uncertainties from our calculations are given in the
parentheses.

Transition This work All-order SD [20] Experiment

Excitation energies
6s → 5p1/2 24 290 (80) 23 747 24 372.956 [21]
7s → 5p1/2 36 217 (90) 35 808 36 301.84 [21]
8s → 5p1/2 40 552 (100) 40 126 40 637.0 [21]
9s → 5p1/2 42 640 (115) 42 238 42 719.0 [21]

E1 matrix elements
6s → 5p1/2 1.91 (1) 1.91 1.92 (8) [22]
7s → 5p1/2 0.56 (2) 0.54
8s → 5p1/2 0.31 (2) 0.09
9s → 5p1/2 0.19 (2)

Ahyp of 115In
5p1/2 2256 (30) 2306 2282 (40) [23]
6s 1611 (50) 1812 1687.2 (6) [24]
7s 516 (30) 544.5 541.1 (3) [24]
8s 234 (20) 240.8
9s 106 (10) 128.1
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Experimental values for the EEs are available for most of
the excited states, but the hyperfine structure constants are
experimentally known only for the 5p1/2, 6s, and 7s states.
We find the E1 matrix element of the 6s → 5p1/2 transition
to be 1.92 (8) a.u. by combining the experimental values of
the lifetime of the 6s state [7.5 (7) s] [22] and considering the
branching ratio to be 2:3 of the 6s → 5p1/2 and 6s → 5p3/2

transitions [25] (refer to Ref. [26] for a detailed discussion
of these results). For EEs, the largest uncertainty comes from
the Breit interaction followed by the neglected basis orbitals
and triple excitations. However, most of the uncertainties
to the E1 matrix elements and Ahyps come from the latter.
All our results are in good agreement with the experimental
results. Our calculated results have been compared with those
obtained by the all-order SD method [20] and with the RCC
method containing only the linear terms of our CCSD approach
in the above table. Our EE results are in better agreement
with accurate experimental data than those using the all-order
SD method for all the excited states relevant for our present
work. The corresponding DF results are given elsewhere (see
Ref. [26]), and it is found in Ref. [20] that the Breit interaction
contributes very little to this property in this atom. Therefore,
the discrepancies between the results reported in Ref. [20] and
in the present work could be due to the nonlinear terms of the
CCSD(T) method. Our Ahyp for the 6s state, the most important
excited state in the calculation of R, is also more accurate than
the all-order-SD result. Our results for the other quantities
agree reasonably well with available experimental data. The

uncertainties in various quantities are estimated by considering
the differences between the results of the CCSD(T) and
CCSD methods as the upper limits to the contributions
due to the triple excitations, neglecting relativistic effects
(particularly the Breit interaction) and omitting higher angular
momentum symmetry orbitals in the present calculations.
After considering all possible uncertainties, the enhancement
factor due to the electron EDM and the ratio of the atomic
EDM to the S-PS coupling constant for In are estimated to
be −82 (5) and −53 (3), respectively. These results are almost
five and one and a half times smaller than those in Tl [9]
and Cs [18], respectively, but three times larger than those in
Rb [18]. Their accuracies can be further improved by using
the general RCC theory [27].

In conclusion, we propose In as a suitable candidate for
the search of a permanent EDM. Our theoretical studies show
that accurate calculations of the electron EDM enhancement
factor and the ratio of the atomic EDM to the S-PS coupling
constant of this atom are possible. The limits for the electron
EDM and the S-PS coupling constants that can be extracted by
combining these factors with the measured value of the EDM
of this atom, when it is available, could provide important
information about the validity of the SM of particle physics.

We thank H. S. Nataraj for useful discussions. These
calculations were carried out using the HPC 3TFLOP cluster
at PRL and the CDAC ParamPadma TeraFlop supercomputer,
Bangalore.
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