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Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality
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Quantum cryptographic protocols based on complementarity are not secure against attacks in which
complementarity is imitated with classical resources. The Kochen-Specker (KS) theorem provides protection
against these attacks, without requiring entanglement or spatially separated composite systems. We analyze the
maximum tolerated noise to guarantee the security of a KS-protected cryptographic scheme against these attacks
and describe a photonic realization of this scheme using hybrid ququarts defined by the polarization and orbital
angular momentum of single photons.
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Introduction. Quantum key distribution (QKD) protocols
allow two distant parties to share a secret key by exploit-
ing the fundamental laws of quantum mechanics. However,
standard quantum cryptographic protocols based on quantum
complementarity, such as the Bennett-Brassard 1984 (BB84)
protocol [1], are not secure against attacks in which the
adversary imitates complementarity with classical resources
[2]. Interestingly, BB84-like protocols can be improved to
assure “the best possible protection quantum theory can
afford” [2] by exploiting the fact that the Bell [3] and Kochen-
Specker (KS) [4] theorems show that the outcomes of quantum
measurements do not admit local and noncontextual descrip-
tions, respectively. The extra security provided by the Bell
theorem has been extensively investigated [5–7]. However, this
extra security is based on the assumption that the legitimate
parties can perform a loophole-free Bell test, something which
is beyond the present technological capabilities and is not
expected to be an easy task in the future [8]. A similar
problem affects recent proposals combining the KS theorem
with entanglement [9,10]. Therefore, it is worth exploring
the extra security offered by the KS theorem in situations
which require neither entanglement nor composite systems,
but only single systems with three or more distinguishable
states. For cryptographic purposes, the difference between
qubits and systems of higher dimensionality is this: Whereas in
qubits different bases are always disjoint, from qutrits onward
different bases may share common elements. It is this property
which is at the root of the proofs of Bell and KS theorems.

Here we investigate the experimental requirements for
obtaining the extra security offered by a KS-protected QKD
protocol introduced by Svozil [11], based on the properties
of the simplest KS set of states [12]. Hence we propose
to implement such a protocol by adopting ququart states
encoded in the hybrid polarization-orbital angular momentum
four-dimensional space of single photon states [13,14]. For
this purpose, we introduce the optical schemes to measure all
the states needed to prove KS contextuality. The capability of

*adan@us.es
†fabio.sciarrino@uniroma1.it http://quantumoptics.phys.uniroma1.it

encoding a four-dimensional quantum state in a single photon
by exploiting these two different degrees of freedom enables us
to achieve a high stability and transmission rate in free-space
propagation.

Svozil’s protocol. The cryptographic protocol introduced
by Svozil in [11] is a variation of the BB84 protocol and
works as follows: (i) Alice randomly picks a basis from the
nine available in Fig. 1 and sends Bob a randomly chosen
state of that basis. (ii) Bob, independently from Alice, picks
a basis at random from the nine available and measures the
system received from Alice. (iii) Bob announces his bases
over a public channel, and Alice announces those events in
which the state sent belongs to the measured basis. Therefore,
the probability of adopting the same basis is 1

9 . (iv) Alice
and Bob exchange some of the remaining matching outcomes
over a public channel to ensure that nobody has spied their
quantum channel. (v) Alice and Bob encode the four outcomes
by using four different symbols. As a result, for each successful
exchange Bob and Alice share a common random key.

The advantage of this protocol over the BB84 protocol is
that it is protected by the KS theorem against attacks in which
the adversary replaces the quantum system with a classical
one. These attacks can be described using a classical toy model
[2,11] in which, in step (i), Alice is actually picking one of
nine differently colored eyeglasses (instead of one of the nine
different bases in Fig. 1) and picking a ball from an urn (instead
of picking one of the 18 states in Fig. 1) with two color symbols
in it (corresponding to the two bases the state belongs to). Each
one of the nine differently colored eyeglasses allows her to see
only one of the nine different colors. To reproduce the quantum
predictions: (a) each of the balls must have one symbol Si ∈
{1,2,3,4} written in two different colors chosen among the 18
possible pairs. Her choice of eyeglass decides which symbols
Alice can see. (b) All colors are equally probable and, for a
given color, the four symbols are equally probable. In step
(ii), Bob is actually picking one of nine differently colored
eyeglasses and reading the corresponding symbol. A classical
strategy like this one can successfully imitate the quantum part
of the BB84 protocol (see [2] for details) but not the protocol
described above. The reason is that the requirements (a) and
(b) cannot be satisfied simultaneously. Figure 1 shows how to
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FIG. 1. (Color online) The protocol is based on a KS set of 18
states which can be grouped in 9 bases represented by 9 colors. Every
state belongs to two different bases. No set of 18 balls can have all
the properties required to imitate the KS set; at least two balls must
have different symbols. Therefore, the imitation can be detected.

prepare 18 balls with the minimum number of balls not having
the same symbol.

Experimental requirements. As shown in Fig. 1, the mini-
mum number of balls not having the same symbol is two out
of 18. A ball attack can be detected only in those runs in which
Alice and Bob pick differently colored eyeglasses. Therefore,
for the set in Fig. 1, the trace of such an attack will be a 2

18
probability of Alice picking a symbol such that the correspond-
ing interlinked symbol (seen only with differently colored
eyeglasses) is different. As a consequence, to demonstrate
that the experimental results cannot actually be imitated with
balls and to experimentally certify the extra security of this
KS-based QKD protocol, we need an experimental probability
w of wrong state identification, defined as the probability that
Bob makes a wrong identification of the state sent by Alice
when Bob has successfully measured in a correct basis, of
w < 1

9 ≈ 0.111.
Implementation using polarization- and orbital-angular-

momentum-encoded ququarts. Here we propose a scheme for
the experimental implementation of the KS-protected QKD
protocol. To test its feasibility, we need to prepare the 18
states, measure each of them in two different bases, and
obtain an average value of w over the 18 × 2 possibilities.
The condition which must be fulfilled is w < 0.111, which
corresponds to a mean fidelity value of the transmission of the
state of F = 0.889. In addition, to check that any intercept
and resend strategy causes a disturbance, one should be able
to measure what happens when the states are measured in the
wrong basis. While in the correct basis the probabilities for the
four possible outcomes are (in the ideal case) 0, 0, 0, and 1, in
the wrong basis they are either 0, 0, 1

2 , and 1
2 or 0, 1

4 , 1
4 , and 1

2 .
Svozil’s protocol uses nine sets of four-dimensional states

defining a 18-state KS set. We propose encoding four-
dimensional quantum states by exploiting two different de-
grees of freedom of the same particle, an approach that allows
us to achieve higher efficiency in the transmission process.
It has recently been demonstrated that ququart states can be
efficiently generated by manipulating the polarization and

orbital angular momentum (OAM) of a single photon [13].
In particular, we consider a bidimensional subset of the
infinite-dimensional OAM space, denoted as o1, spanned by
states with OAM eigenvalue m = ±1 in units of h̄. According
to the nomenclature |ϕ,φ〉 = |ϕ〉π |φ〉o1 , where |·〉π and |·〉o1

stand for the photon quantum state “kets” in the polarization
and OAM degrees of freedom, the logic ququart basis can be
rewritten as

{|1〉,|2〉,|3〉,|4〉} → {|H, + 1〉,|H, − 1〉,|V, + 1〉,|V, − 1〉},
(1)

where H (V ) refers to horizontal (vertical) polarization.
Following the same convention, the OAM equivalent of the
basis |H 〉 and |V 〉 is then defined as |h〉 = 1√

2
(| + 1〉 + | − 1〉)

and |v〉 = i√
2
(| + 1〉 − | − 1〉). Finally, the ±45◦ angle “an-

tidiagonal” and “diagonal” linear polarizations are hereafter
denoted by the kets |A〉 = (|H 〉 + |V 〉)/√2 and |D〉 = (|H 〉 −
|V 〉)/√2, while the OAM equivalent is denoted by |a〉 =
(|h〉 + |v〉)/√2 and |d〉 = (|h〉 − |v〉)/√2. It is convenient to
work with Laguerre-Gauss laser modes (LG0,±1) as OAM
eigenstates since, in this case, the states (|h〉,|v〉,|a〉,|d〉) will
result as the Hermite-Gauss modes (HG1,0,HG0,1) along the
axes and rotated by 45◦. This feature allows us to easily
transform the states by an astigmatic laser mode converter
[15]. We stress that by choosing a bidimensional subspace
of OAM we avoid detrimental effects on the state due to the
radial contribution in the free propagation and Gouy-phases
associated with different OAM values [16]. Hence, a hybrid
approach for the encoding of a ququart state, based on OAM
and polarization, leads to a higher stability for the single
photon propagation compared to a qudit implemented only
by adopting the OAM degree of freedom. According to the
previous definitions, a state (a1,a2,a3,a4) of the KS set is
implemented as

a1|H, + 1〉 + a2|H, − 1〉 + a3|V, + 1〉 + a4|V, − 1〉. (2)

The coefficients ai for each state are shown in Table I, along
with the settings needed to analyze each basis.

Generation. Figure 2 shows the optical schemes for the
generation and detection of any ququart state of the KS set.
The generation of the states can be achieved by adopting a
spontaneous parametric down conversion (SPDC) source of
pair of photons, as in Fig. 2(a), where we consider a collinear
generation of couples |H 〉|V 〉, where one of the two photons
acts as a trigger for the heralded generation of a single photon to
be sent to the experimental setup. As in [13], the manipulation
of the OAM degree of freedom can be achieved by adopting
the q-plate device [16,17]. On the polarization, the q plate acts
as a half-wave plate, while on the OAM it imposes a shift
on the eigenvalue m = ±2q, where q is an integer or half-
integer number determined by the (fixed) pattern of the optical
axis of the device. In order to manipulate the OAM subspace
o1 = {| + 1〉,| − 1〉}, a q plate with topological charge q = 1/2
should be adopted [18]. Interestingly, the fact that the q plate
can entangle or disentangle the OAM and polarization degrees
of freedom can be exploited for the preparation of any ququart
states. In order to generate all the states of the KS set, it is
sufficient to exploit a technique based on a quantum transferrer
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TABLE I. The ququart states that compose the KS set are divided in nine basis and encoded in
polarization and orbital angular momentum degrees of freedom by adopting the devices in Fig. 2.
Column E identifies whether or not the states are entangled states of the two degrees of freedom.
Column S specifies the experimental setup to be adopted for the analysis. Column MC gives the angle
between the horizontal axis and the orientation of the cylindrical lenses of the mode converter MC.
Column QWP indicates the angle of the quarter wave plate to be inserted after the PSI in Fig. 2(b)
for the analysis of bases IV and IX.WP refers to the type of wave plate to be inserted in the setup: H
means half-wave plate and Q means quarter-wave plate.

Set Logic E S PSI1 PSI2 QWP MC WP

I (1,0,0,0),(0,1,0,0) b π

4
(0,0,1,1),(0,0,1, − 1) b π

4
II (1,1,1,1),(1,1, − 1, − 1) c π

4 H π

8
(1, − 1,0,0),(0,0,1, − 1) c π

4 H π

8
III (1,1,1,1),(1, − 1,1, − 1) b π

4
(1,0, − 1,0),(0,1,0, − 1) b π

4
IV (−1,1,1,1),(1,1, − 1,1) � b � π

4 0
(1,0,1,0),(0,1,0, − 1) b � π

4 0
V (1,0,0,1),(0,1, − 1,0) � c � � π

4 H π

8
(1,1,1, − 1),(−1,1,1,1) � c � � π

4 H π

8
VI (1,0,0,1),(0,1,1,0) � c � 0 Q π

4
(1,1, − 1, − 1),(1, − 1,1, − 1) c � 0 Q π

4
VII (1,1,1, − 1),(1,1, − 1,1) � c � 0 Q π

4
(0,0,1,1),(1, − 1,0,0) c � 0 Q π

4
VIII (0,0,0,1),(1,0,1,0) c H π

8
(1,0, − 1,0),(0,1,0,0) c H π

8
IX (0,1, − 1,0),(0,1,1,0) � b � π

4 0
(1,0,0,0),(0,0,0,1) b � π

4 0

FIG. 2. (Color online) (a) Setup for the generation of ququart states: One of the two photons emitted by SPDC acts as a trigger, while
the other one is sent to a polarizing beam splitter (PBS), wave plates, and a quantum transferrer based on the q plate in order to generate the
desired ququart. (b) Setup for the analysis of bases (I-III-IV-IX): The setup in the dotted rectangle analyzes the four states of basis I; basis III
can be measured by inserting a half-wave plate (HWP) at π/8 before the PBS. A polarizing Sagnac interferometer (PSI) and a quarter-wave
plate are needed to analyze bases IV and IX (adding a HWP at π/8 before the PSI). (c) Setup for the analysis of bases (II-V-VI-VII-VIII): The
part in the dotted rectangle is suitable to sort the four states of all the bases (the gray wave plate can be a HWP or a QWP depending on the
particular basis as shown in Table I); this part is sufficient to analyze basis VIII. Basis II can be analyzed by adding a mode converter (MC).
Using a PSI before the MC makes it possible to analyze bases VI (adding a HWP at π/8) and VII. Finally, the states of basis V can be sorted
by an additional PSI and QWP. The pictures in the three boxes on the right represent the Sagnac interferometer, the LG mode sorter, and the
cylindrical lens mode converter, respectively. The detection stage consists of a q plate, a single-mode fiber, and a detector.
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π → o1 described in [13]. The OAM eigenmodes produced
in this way are not exactly LG modes but hypergeometric
Gaussian ones [19]. Since some of the detection schemes are
based on the properties of Laguerre-Gaussian modes, this fact
will lead, in some cases, to a detection efficiency of around
80%. Thus, in order to avoid noise due to different OAM order
contributions, it is sufficient to insert in the detection stage a
q plate and a single-mode fiber connected to the detector (see
Fig. 2).

Measurement of the KS bases. The bases involved in the
KS set have different structures as shown in Table I. They can
be classified in three groups, depending on whether they are
composed of separable, entangled (between polarization and
OAM), or both separable and entangled states.

The detection setup is shown in Figs. 2(b) and (c). Their
components are a polarizing Sagnac interferometer with a
Dove prism (PSI) [20], an astigmatic laser mode converter
(MC) [15], and a Laguerre-Gauss mode sorter (LGS) [21]. The
PSI consists of a Sagnac interferometer with a polarizing beam
splitter as input-output gate and a Dove prism that intercepts
the two counterpropagating beams and can be rotated around
the optical axes. This scheme allows us, under appropriate
conditions, to transform an entangled state into a separable
one. In this case, the prism must be rotated in order to add
a phase shift of �φ = π/2 between |H 〉 and |V 〉 (α = π/8
in Fig. 2). For example, the states of basis IV are transformed
into (|L,a〉,|L,d〉,|R, + 1〉,|R, − 1〉). The MC consists of two
cylindrical lenses (with the same focal length f ) at distance
f/

√
2. It allows us to convert the HG states (|a〉,|d〉) into

(| + 1〉,| − 1〉) and, if rotated by 45◦ along the optical axes, to
convert (|h〉, |v〉) into (| + 1〉, | − 1〉) [15]. The LGS consists
of a Mach-Zehnder interferometer with a Dove prism in each
arm. The two prisms are rotated by β = π/4 with respect
to each other. A phase plate (ψ = π/2) in one of the two
arms allows us to send | + 1〉 and | − 1〉 in the two different
output ports of the Mach-Zehnder. States belonging to sets
I-III-IV-IX can be analyzed by adopting the scheme reported
in Fig. 2(b) with some slight modifications related to the
specific basis to be measured. The scheme in Fig. 2(c) leads
to the analysis of bases II-V-VI-VII-VIII. All the details
on the settings of the different measurement devices are in
Table I.

Conclusions. Device-independent QKD based on loophole-
free Bell tests are still far in the future. It is therefore worth in-
vestigating whether quantum contextuality can produce some
extra protection to BB84-like protocols which do not use entan-
gled states. Here we have presented a proposal to demonstrate a
quantum contextuality-based extra protection against a partic-
ular attack, requiring neither composite systems nor entangled
states.
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