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Qualitatively different theoretical predictions for strong-field photoionization rates
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We give examples showing that two well-known versions of the S-matrix theory, which describes a nonresonant
multiphoton ionization of atoms and ions in intense laser fields, lead to qualitatively different results. The latter
refer not only to total ionization rates, but also to energy distributions of photoelectrons, for instance, in a
polarization plane of the laser field. It should be possible to make experiments testing predictions of both theories
in the near future.
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Introduction. There are several methods that describe the
ionization of atoms and molecules in nonperturbative laser
fields. Recently the most popular and accurate method (also
called an ab initio treatment) may be numerical solving
of the time-dependent Schrödinger equation for an initially
bound electron (or electrons). However, considering com-
puter limitations, older nonperturbative theories still have
an advantage over the ab initio treatment, particularly for
very strong laser fields of low frequencies. In the present
work we demonstrate that two such approximate theories
may lead to contradictory predictions in sufficiently intense
fields. Moreover, the field parameters taken by way of
example (see Figs. 2–4) indicate that future experiments
might question one of these theories in some situations. The
main aim of our work is to explicitly show these qualitative
differences and to stimulate an experimental activity in this
domain.

S-matrix theories. There are two well-known versions
of the so-called strong-field approximation (SFA), which is
the time-reversed S-matrix theory describing the nonresonant
multiphoton ionization of atoms and ions in intense laser
fields [1,2]. The main approximation utilized here is connected
with the use of the Gordon-Volkov wave function [3,4] as
the final state of an outgoing electron. Thus an effect of
a binding potential on the escaping electron is completely
neglected. In principle, one could think that this is a very crude
approximation. However, the Gordon-Volkov wave function
(instead of an exact one) works very well in the following
two cases. The first one is connected with the zero-range
model, which describes an outer (weakly bound) electron in the
negative hydrogen ion placed in the nonperturbative laser field
of an arbitrary polarization (see, for example, Refs. [5,6]). The
second case is connected with the Coulomb potential and the
sufficiently strong circularly polarized (CP) laser field [7–9].
In the latter case, due to selection rules, the ionized electron
is forced to absorb, on average, many more photons (for a
given electric-field amplitude of the laser) than for a linearly
polarized (LP) field. Classical considerations [10,11] lead to a
conclusion that in the intense CP laser-field ionized electrons
should have a kinetic energy peak near its ponderomotive
energy UP of the interaction of a free electron with the field.
(For the LP laser-field ionized electrons always have the kinetic
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energy peak not far from zero [1,2]). Since for strong fields
UP � EB (the binding energy), an effect of the Coulomb
potential on the final state of the outgoing electron should
indeed be very small. [In the present work we use atomic units
(a.u.): h̄ = e = me = 1, and we substitute explicitly −1 for
the electronic charge.]

The basic difference between the two pioneering works of
Keldysh [1] and Reiss [2] is the Hamiltonian form
of the laser-atom interaction used to evaluate the amplitude
of the ionization probability. Keldysh used the Hamiltonian in
the length gauge (LG), while Reiss used this Hamiltonian in the
velocity gauge (VG). The common feature of both approaches
[1,2] (but also present in numerous later papers) was an
application of nonrelativistic and dipole approximations to a
description of this interaction. However, the work of Keldysh
[1] concerned only the LP field of a low frequency. Keldysh
made some further assumptions (which are absent in Ref. [2])
to get his final analytical results. In the present work we would
like to focus on predictions of the S-matrix theory in both
gauges only for the CP field, because for the LP field such
predictions are not very different [12]. For the CP field the LG
counterpart of the VG SFA of Reiss [2,7] is Ref. [9], where
no further Keldysh-type assumptions have been made. The
LG SFA from Ref. [9] and the VG SFA from Refs. [2,7] are
physically equivalent (see Sec. III of Ref. [13]). Moreover, in
Ref. [9] the LG SFA has been extended to initial states (of the
hydrogenic atom) with the principal quantum number n = 2.
In Refs. [2,7,9] one assumes that two main conditions, among
others, are satisfied in the nonrelativistic S-matrix theory:

z1 ≡ 2UP

EB

= I

2ω2EB

� 1, (1)

and

zf ≡ 2UP

c2
= I

2ω2c2
� 1, (2)

where I stands for an intensity of the laser field and c is
the speed of light. The parameters z1 and zf have been
introduced by Reiss [2]. For the CP field z1 = 2/γ 2, where
γ stands for a well-known Keldysh adiabaticity parameter [1].
A qualitative difference between the VG SFA and the LG
SFA already appears in general expressions describing their
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respective ionization probability amplitudes, namely

(S − 1)VG SFA
f i

= i

∫ ∞

−∞
dt�̃i( �p)

(
1

2
�p2 + EB

)

× exp

{
i

2

∫ t

−∞
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]2

dτ + iEBt

}
, (3)

(S − 1)LG SFA
f i

= i
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]2
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, (4)

where �p is the asymptotic momentum of the ionized electron,
�̃i( �p) is the initial-state wave function in the momentum
representation, and �A(t) is the vector potential of the laser
field. (For a derivation of these formulas and ionization
rates, and for more detail see Secs. III–V of Ref. [13].) The
electric-field component of the laser is present in Eqs. (3) and
(4) through the relation �F (t) = (−1/c)∂ �A(t)/∂t , and there is
no magnetic-field component of the laser here. Let us note that
only for a specific choice of the initial-state wave function
these two amplitudes [Eqs. (3) and (4)] become identical.
This is a well-known case of the zero-range binding potential
[5,6], when �̃i( �p) ∼ ( �p2/2 + EB)−1. For all other binding
potentials, including the Coulomb potential, both amplitudes
have to differ as a matter of fact. In the VG SFA the product
�̃i( �p)( �p2/2 + EB) does not depend on time and can be taken
in front of the integral in Eq. (3), which leads to an analytical
simplicity in further calculations. However, there is also a very
serious drawback of the VG SFA. As has been shown recently
both for the LP [14] and for the CP [15] laser fields, the
VG SFA ionization rates vanish in the quasistatic limit [i.e.,
when (the field amplitude) F = const and (the laser frequency)
ω → 0] for the Coulomb potential. This result is apparently
nonphysical, because in the quasistatic limit the ionization is
caused only by a static electric field (for the CP field) or by the
static electric field averaged over a laser period T = 2π/ω (for
the LP field) [16,17]. Therefore, such ionization rates should be
nonzero and should depend on F , EB , and �̃i( �p). The absence
of the ionization in the VG SFA (for the Coulomb potential)
in the quasistatic limit is in apparent contradiction with both
theories and experiments describing atoms in constant electric
(not laser) fields.

Ionization rates. On the other hand, let us note that
nonvanishing ionization rates (in the quasistatic limit)
in the CP field exist when �̃i( �p) ∼ ( �p2/2 + EB)−1, i.e.,
when both amplitudes (3) and (4) are equal. Then
the respective, well-known, asymptotic expression is � =
(F/2κ) exp[−2κ3(1 − γ 2/15)/3F ] (with EB = κ2/2 and
γ � 1) {see Eq. (3.7) in Ref. [5], Eq. (22) in Ref. [15],
and Ref. [18]}. This expression becomes exact in the limit
F → 0. The VG SFA ionization rate (which is the same
as in the LG SFA) is well known (Ref. [2] or Eq. (21)
in Ref. [15]). One usually shows functions �(F ) [or �(I );
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FIG. 1. (Color online) The gauge-invariant SFA ionization rates
of the H− ion for F = 0.1a.u. and F = 0.005 a.u. vs ω.

I = 2F 2 for the CP field] for some ω = const. But it is very
instructive to look at the function �(ω) for some F = const.
We have done this in Figs. 1 and 2 in a total applicability
range of the nonrelativistic SFA. For each curve shown here
the lowest frequencies correspond to zf = 0.1 and the highest
ones to z1 = 1. The word “exact” in Figs. 1 and 2 means
that the ionization rates have been computed using respective
expressions derived long ago by Reiss in Ref. [2] or recently by
us (for the LG) in Ref. [9]. The word “asymptotic” here means
that the ionization rates have been computed using Eqs. (22) or
(13) from Ref. [15], respectively. A derivation of asymptotic
expressions seems to be a rather difficult task for the LG SFA
and the Coulomb potential.

In Fig. 1 we present the SFA ionization rates for the
zero-range binding potential with EB which corresponds to
a negative hydrogen ion H− and two different values of
the electric field. Figure 1 is an example demonstrating
that gauge-invariant ionization rates always approach some
constant (positive) value when F = const and ω → 0. The sit-
uation changes qualitatively when one considers the Coulomb
binding potential instead of the zero-range binding potential.
This is illustrated in Fig. 2. The LG SFA ionization rates still
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FIG. 2. (Color online) The LG SFA and the VG SFA ionization
rates of the H(1s) atom for F = 1a.u. vs. ω. The result of Scrinzi
et al. [19,20] (ω = 0) is also shown for comparison.
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approach some positive value when F = const and ω → 0, but
the VG SFA ionization rates do not. They approach zero, as we
have noted previously. Asymptotic expressions in the VG SFA
behave as ∼ω4 for the H(1s) atom. The power of ω describes
the slope of slanted lines in the log-log plot from Fig. 2. The
same behavior in this gauge is shown for the “exact” rates
when ω � EB . For an arbitrary F and a sufficiently low ω

one can always find a situation when the VG SFA ionization
rate is many orders of magnitude smaller than its LG SFA
counterpart. Therefore, an experiment could verify which rate
is correct for any atom.

The LG SFA ionization rates are not accurate in the
quasistatic limit, because to obtain them one neglects the
(long-range) Coulomb potential in the final state of the ionized
electron. For F = 1a.u. the agreement with the accurate
ω = 0 result is quite good, because Coulomb effects (in the
final state) are relatively weak. The ω = 0 ionization rate
is a numerical result of Scrinzi et al. [19,20] for the H(1s)
atom in the static nonperturbative electric field. Also the
experimental data of Buerke and Meyerhofer [21] for the
low-frequency (ω ≈ 0.043a.u.) ionization of the He+(1s) ion
in the CP laser field are in better agreement with the LG SFA
ionization rates. We discuss this fact in more detail late in
Ref. [22]. Taking into consideration some Coulomb correction
in the final state of the ionized electron one may significantly
improve the VG SFA theory, but it is still worse than its LG
counterpart [22].

It has been argued recently [23] that in the quasistatic
limit (then also γ → 0 for any F = const) the laser field
becomes so strong [in a sense that then Eq. (1) is amply
satisfied and Eq. (2) violated, because z1 → ∞ and zf →
∞] that the dipole approximation breaks down. Indeed, in
superstrong laser fields, first nondipole (i.e., connected with a
magnetic-field component of an electromagnetic plane wave)
and then relativistic effects have to be taken into account [24].
However, the magnetic-field component of the strong, but
nonrelativistic, laser field is less essential in the CP field than
in the LP field [25,26]. In the CP field, in the simplest frame
of reference (see [25,26] and references therein) a charge in
the plane-wave laser field always moves along a circle lying
in the polarization plane. Relativistic effects in the VG SFA
theory [within the Dirac formalism for the H(1s) atom in
the CP laser field] were studied in Ref. [8]. It was shown
that for sufficiently intense laser fields (roughly speaking,
when zf > 1) relativistic ionization rates are even smaller
than nonrelativistic ones (see Figs. 1 and 2 in Ref. [8]).
Therefore, it is likely that such relativistic ionization rates
approach zero even faster (when F = const and ω → 0) than
their nonrelativistic counterparts. As a result, taking into
account relativistic effects in the VG SFA theory does not
solve the problem of vanishing rates. Ionization rates should
approach nonzero values, which describe the ionization in
constant perpendicular electric and magnetic fields of the same
magnitude (see, for example, Ref. [24]).

Energy spectra. Other physical quantities, which show
qualitative differences between the VG SFA and the LG
SFA, are probability distributions of ionized electrons (pho-
toelectron energy spectra). In Ref. [9] we have found such
remarkable differences for the ionization in intense CP laser
fields of the hydrogen atom in some initial states with a
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FIG. 3. (Color online) The LG SFA and the VG SFA differential
ionization rates of the H(2p) atom in the polarization plane. The
azimuthal quantum number is m = −1, F = 1.4 a.u., and ω = EB =
0.125 a.u.

principal quantum number n = 2. In an experiment one usually
prepares an atom in the initial state with a single set of
the (n,l,m) quantum numbers (we omit spin effects here).
Therefore, we have generalized the LG SFA theory (from
Ref. [9]) to initial states (2,1, −1) and (2,1,1) [12]. In
Figs. 3 and 4 we present energy spectra of photoelectrons (i.e.
differential ionization rates: ∂2�/∂E∂ϑ) in the polarization
plane (ϑ = π/2) for the intense (z1 = 1000 or equivalently
γ = 0.045) CP laser field. Since the ionized electrons are
emitted mostly in this plane, one obtains similar pictures
for the spectra (∂�/∂E) integrated over a full solid angle.
The LG SFA ionization rates are usually a few orders of
magnitude larger than their VG SFA counterparts. In Figs. 3
and 4 we compare shapes of two probability distributions. To
this end the VG SFA differential ionization rates have been
multiplied by a suitable factor (much larger than 1) to get
the same area under both curves (vertical axes have a linear
scale in Figs. 3 and 4). There is also a vertical dashed line,
which displays UP . The VG SFA energy distributions have
a single-peak shape. The peak is near UP , but with a small
shift towards lower energies. These energy distributions are
identical for both initial states: (2,1, −1) and (2,1,1). The LG
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FIG. 4. (Color online) As Fig. 3, but for m = 1.
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SFA energy distributions, which show a double-peak shape,
are qualitatively different. They have peaks situated on both
sides of the vertical line E = UP . Moreover, the relative height
of these peaks changes rapidly, if one changes the azimuthal
quantum number m from –1 to 1 (or reversibly). There is a
minimum between both peaks at E ≈ UP . The positions and
heights of these two peaks are not clear to us, because our
analytical calculations do not allow for a simple interpretation.
However, the nature of the peaks may be connected with the
fact that the initial states with m = ±1 have the z component
of an angular momentum parallel or antiparallel with respect
to the angular momentum carried by the CP laser field (which
propagates along the z axis). On the other hand, the initial
state (2,0,0) also shows a multipeak spectrum in the LG
SFA [9,12]. A similar effect was observed quite long ago in the
ionization of the same atom in a weaker 20-cycles sine-square
laser pulse (with ω = 2EB) by Gajda et al. [27]. In this ab
initio calculations the asymmetry between the initial states
(2,1, −1) and (2,1,1) appears in photoelectron energy spectra
after switching off the laser field. Thus the results of Ref. [27]

are gauge invariant. It would be very interesting to compare
predictions of the present LG SFA theory with the data of Gajda
et al. (by integrating our ionization rates over the pulse profile).
Moreover, since no dependence on the sign of m = ±1 [in the
initial state (2,1,m)] is present in the VG SFA, this theory and
the results of Ref. [27] contradict each other.

Final remarks. In our opinion, there are deeper reasons for
qualitative differences, which characterize both versions of the
SFA theory. It has been observed quite long ago that the VG
SFA is “a hybrid procedure” from the point of view of a gauge
consistency [28]. In the VG SFA one uses eigenstates of an
“unperturbed” Hamiltonian H0 = −�/2 + V as reference
states. Contrary to that, in the LG SFA one employs eigenstates
of the physical energy operator, which is gauge invariant
(or gauge covariant) [29–31] (for more detail see references
therein).

The author is indebted to Professor Piotr Kosiński for
reading the manuscript and interesting remarks.
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