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Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers:
Theory and experiment
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2 Rue Edouard Belin, FR-57070 Metz, France
(Received 8 April 2011; published 22 August 2011)

We analyze the dynamics of two semiconductor lasers with so-called orthogonal time-delayed mutual coupling:
the dominant TE (x) modes of each laser are rotated by 90◦ (therefore, TM polarization or y) before being
coupled to the other laser. Although this laser system allows for steady-state emission in either one or in
both polarization modes, it may also exhibit stable time-periodic dynamics including square waveforms. A
theoretical mapping of the switching dynamics unveils the region in parameter space where one expects to
observe long-term time-periodic mode switching. Detailed numerical simulations illustrate the role played by
the coupling strength, the mode frequency detuning, or the mode gain to loss difference. We complement our
theoretical study with several experiments and measurements. We present time series and intensity spectra
associated with the characteristics of the square waves and other waveforms observed as a function of the
strength of the delay coupling. The experimental observations are in very good agreement with the analysis and
the numerical results.
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I. INTRODUCTION

In many different configurations, the dynamics of a semi-
conductor laser is significantly perturbed by a time-delayed
optical coupling or optical feedback. The naturally damped
oscillatory transient dynamics (so-called relaxation oscilla-
tions) may become undamped and, depending on the coupling
strength and time-delay values, the laser diode can exhibit a
rich variety of bifurcation scenarios possibly leading to optical
chaos [1–3]. An in-depth understanding of these instabilities
leading to laser nonlinear dynamics is crucial in several
applications that require a stable laser output, or by contrast
that target the development of a controllable periodic [4] or
chaotic light source [5]. Moreover, the conclusions drawn
from the laser system analysis can typically be extended to
other systems in biology, chemistry, mechanics, and economy,
where the combination of nonlinearity and time delay is
ubiquitous [6].

Even more richness in the laser dynamics can be observed
in the presence of mode competition and noise, in addition
to time delay. In edge-emitting lasers (EELs), time-delayed
optical feedback or coupling can enhance lasing in the
many longitudinal modes and lead to either in-phase or
antiphase (anticorrelated) modal intensity dynamics [7–12].
In vertical-cavity surface-emitting lasers (VCSELs), time-
delayed optical feedback or optical coupling can modify the
intrinsic competition between orthogonal polarization modes
and induce or suppress polarization switching [13–18]. The
mode competition dynamics in the presence of time delay are
moreover very sensitive to noise (spontaneous emission noise
or external noise source), which not only may drive transitions
between stable states but also may lead to constructive
dynamical effects such as coherence resonance [19–22] and
stochastic resonance [23–25].

We focus here on such a particular example of a two-
state laser system in the presence of time-delayed coupling
and noise. It comes from a recent experiment [26] where
two Fabry-Perot multi-quantum-well EELs lasing with TE
polarizations are mutually coupled through TM polarizations.
More specifically, the dominant TE mode of each laser is
rotated by 90◦ before being delayed coupled to the other
laser. Such a configuration (hereby called orthogonal mutual
coupling) allows for the observation of square-wave switching
between TE and TM modes simultaneously in the two lasers,
at a period related to the coupling time delay and with duty
cycles that are tunable as a function of the coupling strength
and pump currents. The possibility to generate all optically
a stable and tunable pulsating laser output has attracted a lot
of attention in recent years. Similar examples of sinusoidal to
square-wave high-frequency pulsating dynamics have been ob-
served in VCSELs with so-called polarization self-modulation
[27–31], in EELs with polarization-rotated optical feed-
back [10,12,32–35], and in optoelectronic feedback systems
[36].

In this paper, we first make a detailed theoretical study of
the square-wave dynamics in EELs with orthogonal mutual
coupling, as observed experimentally in Ref. [26]. As the
coupling strength increases, the laser dynamics exhibits either
a steady two-mode dynamics (mixed-mode solution) or a
steady one-mode dynamics (pure-mode solution), but both
fixed points bifurcate to pulsating dynamics that evolve into
either transient or long-term stable square-wave dynamics. The
square-wave dynamics is characterized by their transient time
and averaged intensities in TE and TM polarizations (later
called x and y polarization modes). These quantities are then
mapped as a function of the cavity-loss difference between
x and y modes, of the coupling strength, and of the x-y
polarization frequency detuning. These mappings then allow
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us to emphasize those regions of the parameter space where one
can expect to observe long-term stable square-wave dynamics.
By showing different complex dynamics and by analyzing the
influence of several important laser parameters, our numerical
study complements the earlier experimental observations of
stable square-wave switching and therefore motivates further
measurements. In a second part of this paper, we present
several measurements of time-series and rf spectra of the
laser intensities in the coupled system. They not only illustrate
the symmetric and nonsymmetric switching solutions found
in numerical simulations, but also confirm the bifurcation
scenario leading to square-wave switching and the coexistence
of several solutions (multistability), as found in the theoretical
bifurcation analysis.

Our paper is organized as follows. Section II details the
theoretical model and presents the steady-state solutions.
Section III discusses the numerical results, obtained through
direct numerical integration of the rate equations. Section IV
shows the experimental results of stable symmetric and
nonsymmetric square-wave switching, and regular or com-
plex self-pulsations. Finally, Sec. V summarizes our main
conclusions.

II. MODEL

A. Model equations

The rate equations describing two identical semiconductor
lasers mutually coupled through polarization-rotated optical
injection are

dEx,i

dt
= k(1 + jα)(gx,i − 1)Ex,i + √

βspξx,i , (1)

dEy,i

dt
= jδEy,i + k(1 + jα)(gy,i − 1 − β)Ey,i (2)

+ ηEx,3−i(t − τ )e−jω0τ + √
βspξy,i , (3)

dNi

dt
= γN [μ − Ni − gx,iIx,i − gy,iIy,i]. (4)

Here, i = 1 and i = 2 denote the two lasers, Ex and Ey

are orthogonal linearly polarized slowly varying complex
amplitudes (corresponding, respectively, to TE and TM po-
larizations), and N is the carrier density. In the absence of
optical coupling, the emission frequency of the two lasers is
the same (ω0), which is the frequency of the x polarization and
is taken as reference frequency. δ is the frequency detuning
between the x and y polarizations. The modal gains include
self- and cross-saturation coefficients:

gx,i = Ni/(1 + εxxIx,i + εxyIy,i), (5)

gy,i = Ni/(1 + εyxIx,i + εyyIy,i). (6)

Other parameters are as follows: k is the field decay rate, γN is
the carrier decay rate, α is the linewidth enhancement factor,
β is the linear loss anisotropy, βsp is the noise strength, ξx,y

are uncorrelated Gaussian white noises, and μ is the injection
current parameter, normalized such that the solitary threshold
is at μth = 1. The parameters of the polarization-orthogonal
mutual coupling are η and τ , which represent the coupling
strength and the delay time, respectively. In Eq. (1), the phase
factor e−jω0τ corresponds to a phase accumulated due to the
propagation from laser 1 to laser 2 and vice versa and can

be eliminated by a redefinition of Ex,1 and Ex,2. Therefore, it
does not affect the dynamics and will be ignored.

B. Steady-state solutions

The model has two types of steady states:
(a) Mixed-mode solution, in which both lasers emit in x and

y polarization simultaneously. The mixed solution is invariant
under the exchange of lasers 1 and 2, i.e., I1x = I2x , I1y = I2y ,
and N1 = N2.

(b) Pure-mode solution, in which one laser emits only in
the x polarization, while the other only on the orthogonal
polarization. The pure-mode solutions are also symmetric with
respect to an exchange of lasers. In essence, the laser that emits
in the x polarization becomes the master laser which drives the
other laser into the orthogonal polarization through the rotated
optical injection.

These steady states can be computed as follows. (a) In the
symmetric mixed states, we have that I1x = I2x = Ix , I1y =
I2y = Iy , and N1 = N2 = N . The intensities Ix and Iy can be
calculated from

μ − 1 − (1 + εxx)Ix − εxyIy − gyIy = 0 (7)

and

η2 = Iy

Ix

{[δ + kα(gy − 1 − β)]2 + k2[gy − 1 − β]2}, (8)

where

gy = 1 + εxxIx + εxyIy

1 + εyxIx + εyyIy

. (9)

Equation (7), which is obtained from the carrier density
equation eliminating N by taking into account that

gx = N

1 + εxxIx + εxyIy

= 1, (10)

can be solved for Ix with Iy as a parameter, 0 < Iy < μ − 1.
Then, evaluating Eq. (8) (that results from solving the field
equations taking into account that the frequency of the y

polarization locks to the frequency of the x polarization), we
obtain the coupling strength η as a function of Ix and Iy . With
Ix and Iy , the carrier density can be calculated from Eq. (10).

The mixed states become unstable due to a Hopf bifurca-
tion. Numerically, we find that the symmetry property I1x =
I2x , I1y = I2y , and N1 = N2 persists after the bifurcation, after
which the intensities and carrier densities are time dependent.

(b) In the pure-mode solutions, the lasers emit orthogonal
polarizations. We will refer to the laser that has Ix �= 0 as
“solitary” laser (the carrier density in this laser will be Nx),
and we will refer to the laser that has Iy �= 0 as “injected” laser
(the carrier density in this laser will be Ny). For the solitary
laser, the trivial steady state is

Ix = μ − 1

1 + εxx

, (11)

gx = Nx

1 + εxxIx

= 1. (12)
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For the injected laser, since the frequency of the y polarization
locks to the frequency of the injected x polarization, Iy and
Ny can be calculated from Eq. (8), where

gy = μ

1 + Iy + εyyIy

= Ny

1 + εyyIy

. (13)

For Iy > 0, we can evaluate Eqs. (8) and (13), and determine
the coupling strength as a function of Ix and Iy . With Ix and
Iy , we can calculate the carrier densities in the two lasers Nx

and Ny from Eqs. (11) and (13).

C. Analysis of the stability of the steady-state solutions

Figure 1 displays the pure-mode (red online) and mixed-
mode (green online) stationary solutions for the y-mode
intensity Iy as a function of the coupling strength η. Together
with the branches of stationary solutions, we plot the numerical
solution, specifically, the value of Iy at the extreme (maxima
and minima) of Ix as we increase (a) and then decrease (b) η

(the details of the simulations are presented in the next section).
In Fig. 1(a), the coupling is gradually increased; in Fig. 1(b),
the coupling is gradually decreased. The model parameters are
such that, in the absence of coupling, the lasers emit only the
x polarization

Such a bifurcation diagram allows us to analyze the
critical values of the coupling strength when the stationary
solutions destabilize to time-periodic or more complicated
intensity waveforms. The complete bifurcation scenarios will
be discussed further in Sec. III.

In Fig. 1, there is only one branch of mixed-mode solution,
as there is only one positive root when solving Eqs. (7) and
(8) for Iy . For the pure-mode solutions, one or three positive
roots are found when solving Eqs. (8) and (13) for Iy . Thus,
the pure-mode branches correspond to an S curve (in Fig. 1,
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FIG. 1. (Color online) Intensity of the Iy polarization of the
pure-mode solution (red online) and of the mixed-mode solution
(green online), and I1y , I2y calculated numerically by integrating
the rate equations (dots, see text for details) with the following
parameters: k = 300 ns−1, μ = 2, α = 3, γN = 0.5 ns−1, τ = 3 ns,
β = 0.04, εxx = 0.01, εxy = 0.015, εyx = 0.02, εyy = 0.025, δ = −3
rad GHz, and βsp = 10−5 ns−1. In (a), the coupling strength η

gradually increases while in (b), it gradually decreases.

the critical point where middle and low branches merge, which
occurs for large η, is not shown).

The numerical simulations show that the mixed-mode
solution is stable for small values of η and destabilizes through
a Hopf bifurcation at η ∼ 38 ns−1 [Fig. 1(a)] to a time-periodic
pulsing dynamics in the two polarized modes (in Fig. 1, Ix is
not shown). Further increase of the coupling strength leads to
a sequence of bifurcations to more complicated waveforms
until the numerical solution switches to the pure mode at
η ∼ 78 ns−1.

As can be expected, hysteresis occurs when the coupling
strength is decreased [Fig. 1(b)]: the pure mode is numerically
stable until η ∼ 50 ns−1, where an abrupt switching occurs,
back to a pulsating dynamics in both polarizations.

The periodic or chaotic attractor that develops from the
mixed mode coexists with the pure-mode solution and possibly
also with other attractors: As can be seen in the bifurcation
diagrams in the forward direction [Fig. 1(a)] and in the
backward direction [Fig. 1(b)], the attractors are not the same.

Some analytical insight can be gained by an inspection of
the 10 × 10 matrix that determines the linear stability of the
pure-mode solution. Because of the block-diagonal form of the
stability matrix, we can extract one eigenvalue that controls
the stability of the pure mode. This real eigenvalue is
proportional to the carrier density and more specifically to
gx − 1 of the injected laser (that with Ex = 0). We found that,
for gx − 1 < 0 (gx − 1 > 0), the real eigenvalue is negative
(positive). The change of sign occurs at the value of the
coupling strength ηc that can be computed from Eq. (8) with
Iy being a solution of the quadratic equation

εxy(1 + εyy)I 2
y + [1 + εxy + εyy(1 − μ)]Iy + (1 − μ) = 0.

(14)

Depending on the parameters, the change of sign of this
eigenvalue occurs either at the upper or at the lower branch
of the pure-mode S curve; for the parameters chosen here,
it occurs at the upper branch at ηc = 50.13 ns −1. The other
eigenvalues that determine the stability of the pure mode are
those of the reduced matrix that contain delay terms and can
not be calculated analytically. Based on the analysis of gx − 1
as a function of η, we find that, for η < ηc, the pure mode is
unstable and any other bifurcation that may emerge from the
pure mode in this range will also be unstable. However, for
η > ηc, we can not make, analytically, any statement about
the stability of the pure mode, as it depends on the other
eigenvalues. As indicated before, we find numerically that
trajectories starting with initial conditions close to the pure-
mode solution are unstable for coupling values of η � 50 ns−1

as predicted also by the analysis Fig. 1(b).
To summarize, and as will be discussed in detail in the next

section, in Fig. 1 the labels I, II, and III indicate the three
regions of qualitatively different behavior. In regions I and III,
there are transient oscillations toward the stable steady states:
In region I, for η < 38 ns −1, the mixed mode is stable, while in
region III, for η > 50 ns−1, the pure mode is stable. In region II,
for 38 ns−1 < η < 50 ns−1, neither of them is stable and there
are various types of antiphased oscillations of the x and y polar-
izations, including the particular case of regular square waves.
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III. NUMERICAL RESULTS

A. Square-wave polarization switching

The model equations were integrated with initial conditions
such that the two lasers are off [Ex,i(t),Ey,i(t) at the noise
level in the time interval −τ � t � 0 and Ni = 0, i = 1,2],
and parameters such that, without coupling, the two lasers emit
the x polarization. Unless otherwise explicitly stated, the laser
parameters are k = 300 ns−1, μ = 2, α = 3, γN = 0.5 ns−1,
β = 0.04, εxx = 0.01, εxy = 0.015, εyx = 0.02, εyy = 0.025,
δ = −3 rad/ns, βsp = 10−4 ns−1, and the coupling parameters
are η = 50 ns−1, τ = 3 ns. In the following figures, the
intensity of the x polarization will be represented by a thick
line (red online), and the intensity of the y polarization by a
thin line (blue online).

Particular combinations of the gain saturation coefficients
and the linear loss anisotropy can result in polarization
bistability [37,38]. However, here we chose parameter values
such that, for the coupled lasers, we observe numerically
waveforms similar to those seen experimentally [26]. We
verified that, for these parameters and without coupling, the
lasers emit the x polarization. For the solitary lasers, when
increasing the injection current parameter μ, we did not see
any polarization instability or switching.
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FIG. 2. (Color online) Numerically stable square-wave switch-
ing. (a), (b) Time traces of the x (thick line, red online) and y (thin
line, blue online) polarizations of laser 1 (a) and of laser 2 (b). Notice
that the lasers emit the same polarization and switch simultaneously.
In (a) and (b), the circles indicate the switching times ti . In (c), the
time intervals spend in each polarization �t = ti − ti−1 are plotted
vs time for laser 1. The switchings are regular, and the switching time
is slightly larger than τ = 3 ns. (d), (e) Intensity power spectrum of
the x and y polarizations of laser 1. The coupling strength is η = 50
ns−1, and other parameters are as indicated in the text.

As shown in Figs. 2(a) and 2(b), for these parameters
and with mutual coupling, the lasers display square waves
that are numerically stable, in the sense that they persist
with a simulation time up to 200 μs. In the time traces of
Figs. 2(a) and 2(b), one can notice that both the x mode and
the y mode remain “on” (i.e., above the noise level) all the
time in the two lasers; however, the x and y modes switch
between on states (where Ix,i ,Iy,i � μ − 1, i = 1,2) and “al-
most off” states (where Ix,i ,Iy,i � 0, i = 1,2). The switching
occurs simultaneously in the two lasers, and there are weak
relaxation oscillations when the intensity approaches the on
state.

Figure 2(c) displays, for laser 1, the sequence of switching
intervals, i.e., the intervals in which one linear polarization is
emitted, and one can see that the switchings occur regularly,
with a periodicity slightly larger than τ [note the different time
scale in (c) with respect to panels (a) and (b)]. The duration
of the on state and of the off state is about half the period
of the square waves for both lasers. However, the switching
interval shows a randomness about its average [Fig. 2(c)] that is
entirely due to the spontaneous emission noise included in the
stochastic rate equations. The integration of the deterministic
rate equations shows that the switching interval is constant in
time within the resolution of the calculation. Finally, we point
out that the rf spectra of the intensities [Figs. 2(d) and 2(e)]
have a large number of harmonics at frequencies of the delay
as expected for square waves.

B. Bifurcation scenarios

The stability of the regular square waves depends on several
parameters such as the coupling strength η, the detuning
between the two polarizations δ, and their different losses β.

First, we discuss the influence of the coupling strength
on the basis of the bifurcation diagram shown in Fig. 1. In
the region labeled I, the laser system exhibits a steady-state
mixed-mode solution, i.e., stationary intensities in both x-
and y-polarization modes for both lasers and, moreover, the
solution is symmetric when exchanging the lasers: I1x = I2x

and I1y = I1y . Figure 3 shows the transient dynamics to the
steady-state two-mode solution. As the coupling increases,
this mixed-mode steady-state solution becomes unstable at
a Hopf bifurcation diagram, and the laser enters the region
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FIG. 3. (Color online) Transient dynamics toward a mixed-mode
solution. Parameters are as in Fig. 2 but with weaker coupling strength
η = 30 ns−1.

023838-4



BIFURCATION TO SQUARE-WAVE SWITCHING IN . . . PHYSICAL REVIEW A 84, 023838 (2011)

99.99 99.992 99.994 99.996 99.998

0

0.5

1

1.5

I x,
1, I

y,
1

Time (μ s)

(a)

99.99 99.992 99.994 99.996 99.998

0

0.5

1

1.5

I x,
2, I

y,
2

Time (μ s)

(b)

0 5 10 15
10

−5

10
0

10
5

10
10

P
ow

er
 S

pe
ct

ru
m

Frequency (GHz)

(c) I
x

0 5 10 15
10

−5

10
0

10
5

10
10

Frequency (GHz)

(d) I
y

FIG. 4. (Color online) Symmetric antiphased sinusoidal oscilla-
tions η = 40 ns−1 and other parameters are as in Fig. 2. (a), (b)
Intensity of the x and y polarizations in lasers 1 and 2; (c), (d)
intensity power spectrum of the x and y polarizations of laser 1.

labeled II where the intensities of both lasers start pulsating at
a frequency much faster than the inverse of the time delay, and
close to or related to the relaxation oscillation frequency. An
example of such a time-periodic dynamics in the two modes is
shown in Fig. 4. The pulsating dynamics keeps the symmetry
property of the mixed-mode solution, i.e., the laser 2 x- and
y-mode intensity dynamics are the same as those of laser 1
mode intensities.

For increasing coupling strengths, the laser exhibits a
large variety of pulsating dynamics and irregular switchings
between polarization modes. Solutions may be different
depending on the noise level in the simulations and depending
on the initial conditions, either starting from a mixed-mode
solution or from a pure-mode solution. The solutions may be
symmetric when exchanging lasers 1 and 2 or, by contrast,
nonsymmetric with different time traces for all mode intensi-
ties. An example of such typical waveform is plotted in Fig. 5.
When comparing to Fig. 4, the intensity dynamics now shows
features on a slower time scale, close to twice the time delay.
It is worth mentioning, as an example of multistability, that for
the same value of η = 48 ns−1, there is another symmetric and
regular pulsating dynamics in the mode intensities, at a time
period close to twice the time delay.

As the coupling strength is increased further, the dynam-
ics is dominated by time-periodic and irregular, symmetric
and nonsymmetric pulsations, although it starts seeing the
influence of the coexistence with a stable pure-mode steady-
state solution. For η = 50 ns−1, we have shown in Fig. 2
a regular and symmetric square-wave switching solution at
the period of twice the time delay. For slightly smaller
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FIG. 5. (Color online) Nonsymmetric antiphased pulselike oscil-
lations η = 48 ns−1 and other parameters are as in Fig. 2. (a), (b)
Intensity of the x and y polarizations in lasers 1 and 2; (c), (d)
intensity power spectrum of the x and y polarizations of laser 1.

coupling strength (η = 49.8 ns−1), we illustrate in Fig. 6
another square-wave switching dynamics in the polarization
dynamics, but this one being irregular and nonsymmetric
upon the exchange of both lasers. For slightly larger coupling
strength (η = 50.2 ns−1), we observe in Fig. 7 that the lasers
emit light with orthogonal polarization, and there are regular
pulses with periodicity slightly larger than 2τ in the other
polarization [e.g., in Fig. 7, we can see that laser 1 emits the y

polarization with regular pulses in the x polarization]. One can
also notice that the lasers do not emit the pulses simultaneously,
but alternate, such that laser 1 emits a pulse at time t , and laser
2, at time ∼ t + τ . It is worth mentioning that the gradual
change in the intensity power spectra in Figs. 4, 5, 6, and 2
suggests that the regular square waves seen in Fig. 2 (that
actually occur only in a very narrow region of η values) arise
due to a kind of frequency “locking.”

For even stronger coupling, when entering the region III,
the square-wave switching becomes a transient dynamics
toward the “pure-mode” solutions discussed in the preceding
section, which are symmetric with respect to exchanging the
lasers.

A typical transient is presented in Fig. 8, where one can see
that, after the transient, for laser 1 we have I1,x = μ − 1 = 1,
I1,y = 0, and for laser 2, I2,x = 0, I2,y �= 0. Since I2,x = 0 ,
laser 1 does not receive optical injection (the laser ending up
in this state will be referred to as the “solitary laser”). As for
laser 2, it receives injection from laser 1 that is strong enough
to turn on the y mode and to suppress the natural lasing mode
x (the laser ending up in this state will be referred to as the
“injected laser”).
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FIG. 6. (Color online) Nonsymmetric and irregular squarelike
switching η = 49.8 ns−1 and other parameters are as in Fig. 2. (a), (b)
Intensity of the x and y polarizations in lasers 1 and 2. In (a) and (b),
the circles indicate the switching times ti . In (c), the time intervals
spent in each polarization, �t = ti − ti−1, are plotted vs time for
laser 1. (d), (e) Intensity power spectrum of the x and y polarizations
of laser 1.

We conclude this section by discussing the influence of
different laser parameters on the stability of the regular
square-wave switchings shown in Fig. 2. As mentioned before,
this type of waveform occurs in a narrow parameter region
and if, for example, the lasers have slightly different injection
currents, instead of regular switching, we observe pulsing
waveforms as those shown in Fig. 7.

C. Analysis of the stochastic transient time

For parameters where the polarization antiphased oscilla-
tions are a transient dynamics, we studied the duration of the
transient and found that it is a stochastic quantity, determined
by the random initial conditions (i.e., the noisy initial values
of Ex,i and Ex,i in the time interval −τ � t � 0) and on the
spontaneous emission noise in the rate equations.

Figures 9(a) and 9(b) display in the parameter space (β, η)
the mean transient time 〈Tsq〉s and its normalized standard
deviation σsq/〈Tsq〉s . Here, 〈· · ·〉s indicates an “ensemble
average” over 50 stochastic trajectories that were simulated,
with different noise realizations, for each set of parameters
(β, η).

For each stochastic trajectory, the duration of the transient
was determined by analyzing the oscillations of the intensity
of the x polarization in the two lasers. Specifically, we calcu-
lated the normalized dispersion of the intensity oscillations
σi/〈Ix,i〉t , where 〈· · ·〉t indicates an average over a time
window of length 5τ that moves along the time series.
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FIG. 7. (Color online) Nonsymmetric regular pulsing behavior
η = 50.2 ns−1 and other parameters are as in Fig. 2. (a), (b) Intensity
of the x and y polarizations in lasers 1 and 2. In (a) and (b), the circles
indicate the switching times ti . In (c), the time intervals spent in each
polarization �t = ti − ti−1 are plotted vs time for laser 1.

Whenever σ1/〈Ix,1〉t or σ2/〈Ix,2〉t were small enough [see
panel (d) in Fig. 8 that display the typical time evolution of
this quantifier], we considered that the dynamics reached an
asymptotic behavior and thus determined the duration of the
transient. Clearly, the duration of the transient is a stochastic
quantity that depends on the random initial conditions and
the noise in the trajectory. For each trajectory, the maximum
simulation time was 50 μs and, therefore, this is the longest
transient time that we were able to calculate.

In Fig. 9(a), that displays the logarithm of transient time,
one can see that the transient is either short (top-left and
bottom-right corners) or equal to the maximum simulation
time (white center region). In the regions where the transient
finishes, the asymptotic state is in a mixed-mode solution
(top-left corner) or in a pure-mode solution (bottom-right
corner), while the white region in-between corresponds to
the antiphased polarization oscillations. In Fig. 9(b), one
can appreciate that the transient times to the mixed-mode
and to the pure-mode solutions have different characteristics:
When the pure-mode solution is reached, the duration of the
transient has a large deviation from its mean value (being
mainly a stochastic quantity), revealed by the large normalized
dispersion σsq/〈Tsq〉. On the contrary, when a mixed-mode
solution is reached, the transient time has a small deviation
from its mean value (being mainly a deterministic quantity),
and the value of σsq/〈Tsq〉 is small.

Figures 9(c) and 9(d) display the average largest intensity
of the x polarization and of the y polarization, computed as

023838-6



BIFURCATION TO SQUARE-WAVE SWITCHING IN . . . PHYSICAL REVIEW A 84, 023838 (2011)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

1

2

I x,
1, I

y,
1 (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

1

2

I x,
2, I

y,
2

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

Δ 
T

 (
ns

) (c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

σ 1/〈 
I x1

〉 t,σ
2/ 〈 

I x2
〉 t

Time (μ s)

(d)

FIG. 8. (Color online) Transient square waves. Parameters are
as in Fig. 2, but with larger coupling strength η = 51 ns−1. (a), (b)
Intensity of the x and y polarizations in lasers 1 and 2. (c) Switching
time intervals of laser 1. It can be noticed that toward the end of the
transient, the intervals spent in one polarization (x) gradually increase
while the intervals spent in the orthogonal polarization gradually
decrease. (d) Time variation of the normalized standard deviation
σi/〈Ix,i〉t of the intensities of the x polarization in the two lasers
(laser 1: thin black line, laser 2: thick line, green online). σi/〈Ix,i〉t are
calculated over a moving time window of length 5τ . One can notice
that when the transient finishes, laser 1 reaches stable continuous
wave emission on the x polarization, and σ1/〈Ix,1〉t ∼ 0.

follows:

〈Ix〉 = 〈max(〈Ix,1〉t ,〈Ix,2〉t )〉, (15)

〈Iy〉 = 〈max(〈Iy,1〉t ,〈Iy,2〉t )〉, (16)

where 〈· · ·〉t denotes a time average and 〈· · ·〉 denotes an an
average over the 50 stochastic trajectories.

In Figs. 9(c) and 9(d), one can distinguish two different
regions: For large β and small η (top left corner), 〈Ix〉 is close
to 1 and 〈Iy〉 is close to 0, indicating that in the asymptotic
state the intensity of the x polarization (y polarization) is large
(small) in both lasers. On the opposite corner, both 〈Ix〉 and
〈Iy〉 are close to 1, indicating that in the asymptotic state one
laser emits the y polarization (the injected laser), while the
other emits the x polarization (the solitary laser). In-between
these two regions, there is a region where the largest intensities
of the x and y modes are similar. This region corresponds, in
Fig. 9(a), to the region where the transient time is equal to the
maximum simulation time (i.e., is the region where antiphased
oscillations and square-wave regular switching occur).

Another relevant parameter determining the duration of the
transient time is the frequency detuning between the x and y

polarizations δ. Figure 10 displays the mean transient time,
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FIG. 9. (Color online) Phase diagram in the parameter space
(cavity-loss difference β, coupling strength η). Logarithm of the
average transient time (a), normalized dispersion of the transient
time (b), the average largest intensity of the x polarization (c), and
of the y polarization (d) (see text for details). In each caption, the
dots (blue online) indicate parameters where we have seen regular
square-wave switching, as that shown in Fig. 2.

its normalized dispersion, and the averaged largest intensities
〈Ix〉 and 〈Iy〉 in the parameter plane (frequency detuning,
coupling strength). Again one can distinguish two regions, one
for low coupling, in which the average transient time is short,
its normalized dispersion close to 0, 〈Ix〉 � 1, and 〈Iy〉� 0
(mixed-mode solution); for strong coupling, the average
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FIG. 10. (Color online) Phase diagram in the parameter space
(mode frequency detuning δ, coupling strength η). Logarithm of the
average transient time (a), normalized dispersion of the transient
time (b), the average largest intensity of the x polarization (c), and of
the y polarization (d) (see text for details). In each caption, the dots
(blue online) indicate parameters where we have seen regular square-
wave switching, as that shown in Fig. 2.

023838-7



MASOLLER, SUKOW, GAVRIELIDES, AND SCIAMANNA PHYSICAL REVIEW A 84, 023838 (2011)

transient is longer, its dispersion is larger, and both 〈Ix〉 � 1
and 〈Iy〉 � 1 (pure-mode solution). In-between these two
regions, there is a region where the transient time equals the
maximum simulation time. In this region, for most parameters,
antiphased oscillations occur, but also regular square-wave
switching is seen for specific combinations of parameter
values. In certain regions, we also have found coexistence of
antiphased oscillations with nearly constant two-mode output
(a mixed-mode solution), and this coexistence results in large
values of the normalized dispersion of the transient time [small
red region embedded in the black area in Fig. 10(b)].

IV. EXPERIMENTS

The experimental apparatus used to investigate the dynam-
ics of the orthogonal mutual coupling system is shown in
Fig. 11. The dynamical system itself consists of a U -shaped
configuration (red online), with two temperature-stabilized
EELs (LD1 and LD2) and optical components to control
polarization rotation, coupling strength, and beam steering.
The lasers are model SDL-5401 MQW devices, each with
nominal wavelength of 818 nm and current threshold of
18.5 mA. Each laser beam is collimated by a lens (CL),
encounters a beam sampler (BS), and then passes through
a Faraday rotator (ROT) with linear output polarizer (OP)
oriented at 45◦, which thus allows only the TE mode to pass
through going forward and extinguishes any TM output or
reflections. After passing through a rotatable polarizer (POL)
used to control coupling strength, the beam enters a second
output polarizer and Faraday rotator. The resulting beam,
now rotated 90◦ in polarization, is injected into the other
laser. All unlabeled components in the schematic diagram are
high-reflectivity mirrors.

The beam paths for detection (thin line, blue online) are also
shown in Fig. 11. The plate beam samplers (BS) are oriented
at near-normal incidence to minimize polarization dependence
of reflectivity; they divert 5% of each beam to the detec-
tion branches. Polarizing beam-splitter cubes (PBS) separate
the light into x- and y-polarization components, which then
are attenuated as needed with neutral density filters (ND)
before striking photodetectors (PD) with 8.75-GHz bandwidth.
The detected signals are amplified by 23 dB using wideband
(10 kHz–12 GHz) ac amplifiers (AMP) and are captured

LD1

ROT

POL
CL

Oscilloscope
or

RF Analyzer

LD2

ROT

CL

PD AMP
ND

PD AMP
ND

PD AMP
ND

PD AMP
ND

BS

BS

PBS

PBS

OP

OP

FIG. 11. (Color online) Schematic diagram of experimental
apparatus. Heavy line (red online) shows beam path of dynamical
system; thin line (blue online) indicates beam paths for detection. All
definitions of abbreviations are in the text.

FIG. 12. (Color online) Experimentally observed square-wave
dynamics. (a), (b) Time traces of the x (thick line, red online) and y

(thin line, blue online) polarizations of laser 1 (a) and laser 2 (b). (c),
(d) Intensity power spectra of the x and y polarizations of laser 1.
Operating conditions are noted in the text.

and displayed on either a 6-GHz digital storage oscilloscope
or radiofrequency spectrum analyzer. It is important to note
that the detectors and amplifiers are strictly ac coupled, and
therefore can not be used to determine absolute power levels.

Experimental observations from this setup agree well with
many numerical results presented in the previous sections.
Figure 12 shows polarization-resolved time series and rf spec-
tra for square waveforms, similar to those shown previously
in Fig. 2. Figures 12(a) and 12(b) show time traces of the
intensities of both modes of both lasers. The modes within each
laser are in antiphase, but the two lasers emit in the same po-
larization and exhibit switching simultaneously. Figures 12(c)
and 12(d) display the corresponding power spectra for the x

and y polarizations of laser 1, with many higher harmonics,
and a fundamental close to the inverse of 2τ . For these data,
both lasers were pumped at 2.10 times the threshold current;
the cavity length was 1.67 m, corresponding to τ = 5.57 ns,
and the one-way cavity transmission was 48.7%.

The symmetric waves in Fig. 12 change smoothly to
asymmetric square waves if the coupling is changed. Figure 13
illustrates this case, where all experimental conditions remain
the same as in Fig. 12, except for a reduction in the cavity
transmission to 46.6%. In the polarization-resolved intensity
time traces for each laser [Figs. 13(a) and 13(b)], the plateaus
of the x and y components now are different in duration,
but still in antiphase within each laser. In addition, they now
are nonsymmetric under exchange of the lasers. Figures 13(c)
and 13(d) show the rf spectra for the two components of laser
1; each still has the same fundamental frequency as the square
case, but the harmonic content is changed.

Due to the ac detection used in the experiments, we can
not identify if these square waves correspond to the numerical
solution where both polarization modes are always on, or the
transient solution where the mode which is off emits only at
the noise level. However, the experimental waves are stable
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FIG. 13. (Color online) Experimentally observed asymmetric
and nonsymmetric square-wave dynamics resulting from change in
coupling strength. (a), (b) Time traces of the x (thick line, red online)
and y (thin line, blue online) polarizations of laser 1 (a) and laser 2
(b). (c), (d) Intensity power spectra of the x and y polarizations of
laser 1. Operating conditions are noted in the text.

over a duration of tens of minutes, indicating that, if they are
transients, there must be a stabilizing mechanism.

Figure 14 illustrates a bifurcation sequence as a function of
increasing coupling strength. For visual clarity, intensity time
series in one mode of one laser only are shown. For these data,
the distance between lasers is 93.5 cm, so τ = 3.12 ns; both
lasers are pumped at twice threshold. The sequence of coupling

FIG. 14. (Color online) Experimental bifurcation sequence as a
function of coupling strength, shown as time traces of x polarization
of laser 2. Coupling strength increases from top (a) to bottom (e).
Operating conditions are noted in the text.

FIG. 15. (Color online) Experimental set of coexisting solutions,
shown as time traces of x polarization of laser 2. Operating conditions
are noted in the text, and are constant for all traces displayed. Pure-
mode steady states (not shown) also coexist with these dynamical
solutions.

strengths from Figs. 14(a) though 14(e), expressed again as
one-way fractional power transmission, are 1.5%, 13.3%,
15.8%, 24.3%, and 34.5%. Figure 14(a) shows weak oscilla-
tions on a mixed-mode state, which bifurcate in Fig. 14(b) to a
stronger oscillatory solution close to the relaxation oscillation
frequency, similar to that shown in Fig. 4. In Fig. 14(c), there is
irregular squarelike switching (compare Fig. 6), which evolves
to a regular pulsing form (compare Fig. 7), and in both of
these the frequency is now governed by the slower time scale
of the delay. Finally, in Fig. 14(e), the system goes to a stable
pure-mode solution. This sequence also agrees with theoretical
predictions, as summarized in Fig. 1. Similar sequences were
observed experimentally at other pump currents, as long as the
values for each laser are almost the same.

Another prediction of Fig. 1 is the existence of regions
of multistability involving both pulsating and steady-state
dynamics. Such regions are observed experimentally, and a
sample of coexisting solutions is shown in Fig. 15. Again, we
show intensity time series in one mode only to illustrate. All
data for this figure were captured with τ = 3.12 ns, power
transmission of 32.8%, and pumping at 2.05 times threshold.
It is clear that square waves, oscillating solutions, and various
mixes of the two all can coexist simultaneously. Perturbing
the system or randomizing initial conditions allows one to
change between solutions. In addition to the various pulsing
and switching waveforms shown, both pure-mode steady states
also were observed to exist stably in this region. Indeed,
square-wave solutions have only been observed experimen-
tally under conditions for which both pure modes coexist.

V. CONCLUSIONS

In summary, we have performed both theoretical and
experimental analyses of the complex dynamics occurring in
a system of two edge-emitting lasers being mutually coupled
through their normally nonlasing TM (y) polarizations.
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Our first goal is to characterize numerically square-wave
polarization switching dynamics, similar to those recently
reported experimentally [26]. Key ingredients for the ob-
servation of stable switching dynamics appear to be the
frequency detuning between the two polarizations (δ) and the
gain self- and cross-saturation coefficients (εab with a,b = x

or y). In the model employed in [26] that did not take
these into account, only transient polarization switching was
found.

Other more or less complex dynamics are also shown,
as bifurcations from single-mode or two-mode steady-state
solutions for both lasers. We found two types of square-wave
switching, one in which the intensities of the two polarizations
do not reach zero at any time during the oscillations, and
another in which, when the intensities are at the off state, they
approach zero within the limits of spontaneous emission noise.
The first type of square-wave switching (Fig. 2) appears to be
numerically stable and occurs in a narrow parameter region, the
second type (Fig. 8) is a transient dynamics toward the pure-
mode solution. Another important difference is that the first
type of square waveform is symmetric with respect to the
exchange of lasers, while the second type of square waveform
is asymmetric. Also, while further research is needed to fully
determine the role of noise, preliminary simulations suggest
that the symmetric square waveform is unaffected by the
noise strength. On the contrary, the asymmetric waveform is
affected by the noise, as it is a transient dynamics toward
a steady state (pure-mode solution) and the duration of the
transient is a stochastic quantity that depends, not only on the
initial conditions, but also on the spontaneous emission-noise
realization.

The theoretical results are supported by experimental
measurements, which complement the earlier observations of
stable square-wave switching of Ref. [26]. Both symmetric and
nonsymmetric square-wave switchings are found depending
on the laser coupling strength. The bifurcation scenario leading

to square-wave switching is also found experimentally when
increasing the coupling strength: A Hopf bifurcation first
leads to self-pulsation at the relaxation oscillation frequency,
that further bifurcates to symmetric or asymmetric square-
wave solutions, until the system restabilizes to a steady
state for large values of the coupling strength. Moreover,
the experiment also confirms the theoretical predictions of
coexistence (multistability) of several dynamical solutions
(steady states, self-pulsations, square-wave switchings). A
detail that it is, however, not clear from the experimental data
is to what the degree the intensities approach zero during the
off cycle of the square waves. Since the time-series data were
obtained with ac-coupled detectors, it is not possible to make
a meaningful comparison with the numerical results in this
respect.

We think our results could also motivate new investigations
in different directions. First, a more systematic analysis of
the influence of noise and of new and larger regions of
the parameters would be of interest. Second, it would be
interesting to compare similar polarization dynamics that may
be observed in coupled VCSELs through polarized mutual
optical injection, where the mode gain to loss ratio can be
varied through a sweep of the laser injection current or device
temperature [39].
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